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Conversion-type metal oxides have been actively explored as promising electrode materials for lithium-

ion batteries (LIBs) since much higher capacity can be achieved than well-established intercalation-type 

materials. However, these materials suffer from capacity fading, voltage hysteresis, and insufficient 

Coulombic efficiency, which limit their usage in the commercial LIBs. (Reddy et al., 2013; Cabana et al., 

2010)In order to address the downside of conversion-type materials, understanding in reaction 

mechanisms is of importance since how reaction occurs significantly affect the fundamental 

electrochemical properties such as redox potential, capacity, etc. During conversion reaction (lithiation), 

metal oxides are completely reduced to the metallic states with the evolution of lithium oxide. (Taberna 

et al., 2006) In the view of microstructure, conversion reaction induces a breakdown of metal oxides into 

a composite of metallic nanoparticles and surrounding lithium oxides. (He et al., 2015; 2016) When 

reconversion occurs (delithiation), metallic nanoparticles become metal oxides. While structural changes 

during conversion have been explored extensively, those during reconversion is still not clear even though 

both reactions are evenly important for overall battery performance. Thus, elucidating the phase evolutions 

during delithiation can provide insights to ameliorate the electrochemical performances of conversion-

type materials. 

 In this work, we investigate the structural changes at metal oxide during battery operations at 

complementary length scales. X-ray absorption spectroscopy is implemented to follow the averaged 

changes in the oxidation states and local bonding properties (bonding neighbors, bond length, and 

coordination numbers, etc.). (Jang et al., 2016; Chae et al., 2015) Also, conversion and reconversion-

induced phase transformations and morphological changes are identified with transmission electron 

microscopy. Multimodal analyses show that conversion and reconversion occur in different reaction 

routes. Conversion is a direct reaction, which takes place without intermediate phases, while reconversion 

happens with an intermediate Li-M-O phase (M: metal). The capacity loss during electrochemical cycles 

is mainly originated from the unfinished delithiation reaction, evidenced by remaining Li-M-O even at the 

end of the delithiation stage. From the presence of the Li-M-O, we can speculate a two-step of 

reconversion reaction: 1) Lithium ions are extracted from Li2O and M migrates into the empty space in 

lithium oxide (LixO), resulting in the formation of Li-M-O intermediate phase. 2) Remaining Li ions are 

fully removed, as a result, only MO is left at the end of reconversion. This work demonstrates the phase 

evolutions during both lithiation and delithiation, which provides the fundamental understanding on 

performance decay of conversion-type materials. 
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