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Abstract. We describe birational models and decide the rationality/unirationality of moduli

spaces A, (and A?V) of (1, d)-polarized Abelian surfaces (with canonical level structure,

respectively) for small values of d. The projective lines identified in the rational/unirational moduli
spaces correspond to pencils of Abelian surfaces traced on nodal threefolds living naturally in the
corresponding ambient projective spaces, and whose small resolutions are new Calabi—Yau
threefolds with Euler characteristic zero.

Mathematics Subject Classifications (2000). 14K10, 14J32, 14M20, 14M12.

Key words. Abelian surfaces, moduli, rationality, Calabi—Yau threefolds.

Let A, denote the moduli space of polarized Abelian surfaces of type (1,d), and let
AI;V be the moduli space of polarized Abelian surfaces with canonical level structure.
Both are (possibly singular) quasi-projective threefolds, and AS’V is a finite cover of
Ags. We will also denote by .:Zld and ;lldev nonsingular models of suitable
compactifications of these moduli spaces. We will use in the sequel definitions
and notation as in [GP1, GP2]; see also [Mul], [LB] and [HKW] for basic facts con-
cerning Abelian varieties and their moduli. Throughout the paper, the base field
will be C.

The main goal of this paper, which is a continuation of [GP1] and [GP2], is to
describe birational models for moduli spaces of these types for small values of
d. Since the Kodaira dimension is a birational invariant, thus independent of the
chosen compactification, we can decide the uniruledness, unirationality or
rationality of nonsingular models of (any) compactifications of these moduli spaces.

Motivation for our project has come from several directions:

Tai, Freitag and Mumford have proved that moduli spaces of principally
polarized Abelian varieties are of general type when the dimension g of the Abelian
varieties is large enough (in fact > 7). However, for small dimensions, they are
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rational or unirational and have nice projective models: see the work of Katsylo
[Kat] for g =3, van Geemen [vG] and Dolgachev and Ortland [DO] for g =3 with
level 2 structure, Clemens [Cle] for g =4, and Donagi [Do], Mori and Mukai [MM]
and Verra [Ver] for g =5. However, it is an open problem to determine the Kodaira
dimension of the moduli space for g =6.

Using a version of the Maass—Kurokawa lifting, Gritsenko [Gril, Gri2] has
recently proved the existence of weight 3 cusp forms with respect to the paramodular
group I';, for almost all values of . Since one knows the dimension for the space of
Jacobi cusp forms one deduces in this way lower bounds for the dimensions of
the spaces of cusp forms with respect to the paramodular group I';, and thus
for the plurigenera of the corresponding moduli spaces. More precisely, he has
shown that

Ay is not unirational (in fact py(Ay) > 1) if d > 13 and

d # 14,15, 16, 18, 20, 24, 30, 36.

In fact it is pointed out in a note by Gritsenko and Hulek [Gril] that the same
method shows that .A}fv is of general type for all primes p > 37. See also [Bori], [HS1]
and [HS2] for related results.

A few other moduli spaces have known descriptions:

o A, = M, \ A via the Jacobian map. M, is the moduli space of stable curves of
genus 2 and A, stands for the divisor of the curves with at least one
nondisconnecting node. In particular A; is rational [I].

e A, and Aj; are rational [BL]. It follows from results of [Ba] that .Al(ezz), the
moduli space of (2,4)-polarized Abelian surfaces with canonical level structure,
is birational to P! x P! x P!. On the other hand it doesn’t appear to be known
whether A§" is unirational.

° Alfv is rational. See [BLvS] for a proof of this and for the geometry of
(1,4)-polarized Abelian surfaces.

° AlSeV =~ P(H(Fum(3))), where bar stands for the toroidal compactification for
the Voronoi or Igusa decomposition, and Fym is the Horrocks—Mumford
bundle on P*. See [HM] and [HK W] for details, and Section 3 for a brief review
of the relevant facts.

° .Alfv is birational to V;, a prime Fano threefold of index 1 and genus 12 [MS].
We will give a short proof of this result in Section 5.

e Ay is rational (see [O’G] for unirationality and [GP2]). In fact .Al;V is naturally
birational to P? ((GP2]). O’Grady shows also that A, 1s a threefold of general
type for all prime numbers p > 11.

e A is birational to the Klein cubic threefold

4
K= :Zx%xiﬂ :0} cp?

i=0
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See [GP2] for details. This is the unique PSLy(Z,;)-invariant cubic in P*, and
PSLy(Z) is its full automorphism group [Ad]. The Klein cubic being smooth
is unirational but not rational. It would be interesting also in this case to com-
pare KC with the toroidal compactification.

In this paper and its sequel [GP3], we will focus on (most of) the moduli spaces
which Gritsenko has not shown to have nonnegative Kodaira dimension. In par-
ticular, we will give details in this paper as to the structure of A d=6, 8 and
10, and in [GP3] will discuss A%y and A, for d=14, 16, 18 and 20. In this paper
we prove the following results:

THEOREM 0.1

(a) .,4166" is birational to a nonsingular quadric hypersurface in P*.
(b) .Alfv is birational to a rational conic bundle over P>.
(©) .Alle(;’ is birational to a quotient P32, x Z,, where the action on P* is given by

(s xoi x3ixg) = (Xg:x3:x0:x1)  and (X710 X2: X3: X4) = (X1: —X2: X530 —X4).

This quotient is rational and isomorphic to a (singular) prime Fano threefold of genus
9, index 1 in P'°.

Of these, the description of Alfov is the easiest, following immediately from [GP1].
The description of Alg’v follows from the fact that a (1,6)-polarized Abelian surface
A C P’ is determined (but not completely cut out by) the cubics vanishing on A.
Since the structure of the ideal of a (1,6)-polarized Abelian surface was not pre-
viously known, we will provide details in Section 4.

The structure of A" is the most difficult to analyze because it lies at the boundary
between those surfaces determined by cubics and those determined by quadrics. In
fact we will show that if 4 € P7 is a general (1,8)-polarized Abelian surface, then
its homogeneous ideal is generated by 4 quadrics and 16 cubics. The 4 quadrics
cut out a complete intersection threefold X c P’ containing 4, which in general
has as singular locus 64 ordinary double points. We show that such an X in fact
contains a pencil of (1,8)-polarized Abelian surfaces, and since the family of such
Heisenberg invariant threefolds turns out to be an open subset of P?, we obtain
a description of A}, as a P!-bundle over an open subset of P.

In the above outline, the threefold X plays a special role. It is a Calabi-Yau
threefold since there is a small resolution : X — X with w v = Ox. Furthermore,
as X contains a pencil of Abelian surfaces, this small resolution can be chosen so
that X possesses an Abelian surface fibration. Such fibrations are of independent
interest in the study of Calabi-Yau threefolds. Historically there have been very
few examples; in fact, for a long time the only examples of a Calabi—Yau threefolds
with a fibration whose general fibre is a simple Abelian surface have been the
Horrocks—Mumford quintics, whose geometry we review in Section 3. The
Horrocks—Mumford quintic in P* is defined as the zero locus of the wedge of two
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independent sections in H(Fwm(3)), where Fiyy is the Horrocks—Mumford bundle.
Since a (general) section of this bundle vanishes along a (1,5)-polarized Abelian sur-
face in P*, a Horrocks—-Mumford quintic contains a pencil of such surfaces.

It turns out that in every case considered in this paper, there exist similar examples
of Calabi—Yau threefolds. This is the second focus of this paper. We find similarities
in many of these examples. In particular, many of them contain second pencils of
Abelian surfaces of a different type. The classic example of this occurs in the case
of Horrocks—Mumford quintics, where a surface obtained via liaison starting from
a (1,5)-polarized Abelian surface is a nonminimal (2,10)-polarized Abelian surface.
We will see similar phenomena also occur in many of the other examples. Another
remark is that all the Calabi—Yau threefolds we discuss in this paper have Euler
characteristic zero.

There is a natural reason for the existence of such Calabi—Yau threefolds. In fact,
this is motivated by the existence of two series of degenerate ‘Calabi—Yau’ threefolds.
The first series, which occurs in P"~! for n > 5, are the secant varieties of elliptic
normal curves in P"~!. These were studied in [GP1], § 5. Many of the examples of
Calabi-Yau threefolds given here are partial smoothings of these secant varieties.
This also works naturally in case n =4, if one thinks of the secant variety as a double
cover of P?. As a result, we discuss in Section 2 of this paper the (1,4) case. We also
include a section on (1,7)-polarized Abelian surfaces, where the Calabi—Yau threefold
which arises in this fashion (first noted by Alf Aure and Kristian Ranestad,
unpublished) plays an important role in the description of the moduli. In particular,
we give in Section 5 an alternative approach to rationality of Alfv to that givenin [MS].

Another series of degenerate ‘Calabi—Yau’ threefolds appear in P*"~!, n > 3, as
the join of two elliptic normal curves of degree n, lying in disjoint linear subspaces
of P?~1. These are threefolds of degree n*> in P*"~!. We discuss the geometry of
these singular threefolds briefly in Section 1. This series gives rise to other classes
of Calabi—Yau threefolds, as partial smoothings, in the (1,8) and (1,10) cases. Much
of this paper is devoted to describing the geometry of these threefolds.

In brief, the Calabi—Yau threefolds discussed in this paper can be described as
follows. Partial smoothings of secant varieties are

e Double covers of P? branched over certain nodal octics, see Theorem 2.2. These
double covers contain pencils of (1,4)-polarized Abelian surfaces.

e Horrocks—Mumford quintics, containing both a pencil of (1,5) and a pencil of
(2,10)-polarized Abelian surfaces, see Theorem 3.2.

e Nodal complete intersections of two cubics in P°, containing both a pencil of
(1,6) and a pencil of (2,6)-polarized Abelian surfaces, see Theorem 4.10.

e Calabi-Yau threefolds defined by the 6x6 Pfaffians of certain 7x7-skew-
symmetric matrix of linear forms in P%, see Proposition 5.2. These contain both
a pencil of (1,7) and a pencil of (1,14)-polarized Abelian surfaces. Some details
concerning the geometry of these threefolds are delayed until [GP3] in the dis-
cussion of (1,14)-polarized Abelian surfaces.
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e Calabi-Yau threefolds defined by the 3x3 minors of a 4x4 matrix of linear
forms in P’, which contain a pencil of (1,8)-polarized Abelian surfaces, see
Definition 6.11.

e Calabi—Yau threefolds defined by the 3x3 minors of a 5x5 symmetric matrix of
linear forms in P°, which contain a pencil of (1,10)-polarized Abelian surfaces,
see Theorem 7.4.

The reader may note that there is a gap corresponding to the partial smoothing of
the secant variety of a degree 9 elliptic normal curve, which should contain a pencil of
(1,9)-polarized Abelian surfaces. This does not mean that such a Calabi-Yau
threefold does not exist, but we have not been able to find it! There is also a nice
analogy between the sequence of Calabi-Yau threefolds described above and
Del Pezzo surfaces. Del Pezzo surfaces of degree 2 through 6 can be described
as a double cover of P2, a cubic hypersurface in P?, a complete intersection of
two quadrics in P*, a surface defined by the 4x4-Pfaffians of a 5x 5 skew-symmetric
matrix of linear forms in P°, and a surface defined by the 2x2 minors of a 3x3
matrix of linear forms in P®, respectively. Furthermore, the Del Pezzo surface of
degree 8 in P® isomorphic to P! x P! can be described by the 2x2 minors of a
4 x4 symmetric matrix of linear forms. While we do not explore this analogy further,
it is a curious one! From this perspective the missing Calabi—Yau, which should
contain a pencil of (1,9)-polarized Abelian surfaces, would be a ladder determinantal
variety of degree 27 defined by those 3 x 3-minors of a 5x 5 symmetric matrix of linear
forms in P® which do not involve the lower right corner of the matrix.

Partial smoothings of the join of two elliptic curves naturally occurring in this
paper are described as

e Complete intersections of two cubics in P°, containing a pencil of (1,6)-
polarized Abelian surfaces.

e Complete intersections of 4 quadrics in P’, containing a pencil of (1,8) and a
pencil of (2,8)-polarized Abelian surfaces, see Theorem 6.5, Theorem 6.9
and Remark 6.10.

e The proper intersection of ‘two copies’ of the Pliicker embedding of the
Grassmannian Gr(2, 5) € P°, containing a pencil of (1,10) and a pencil of
(3,15)-polarized Abelian surfaces, see Theorem 7.4 and Remark 7.5.

Further examples of such Calabi-Yau threefolds will appear in [GP3].

1. Preliminaries

We review our notation and conventions concerning Abelian surfaces; more details
can be found in [GP1].

Let (4, £) be a general Abelian surface with a polarization of type (1, d). If d = 5,
then |£| induces an embedding of 4 c P~! = P(HY(L)") of degree 2d. The line
bundle £ induces a natural map from A4 to its dual A, ¢p: A —>A, given by
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Xi—=> LY £7!, where t,: A —> A is the morphism given by translation by x € 4. Its
kernel K(£) is isomorphic to Z,; x Z,, and is dependent only on the polarization
c1(£).

For every x € K(£) there is an isomorphism fi£ = £. This induces a projective
representation K(£) —PGL(H’(L)), which lifts uniquely to a linear representation
of K(L) after taking a central extension of K(£)

1 —C* —G(L£) — K (L) —>0,

whose Schur commutator map is the Weil pairing. G(£) is the theta group of £ and is
isomorphic to the abstract Heisenberg group H(d), while the above linear represen-
tation is isomorphic to the Schrodinger representation of H(d) on V = C(Z,),
the vector space of complex-valued functions on Z;. An isomorphism between
G(L£) and H(d), which restricts to the identity on centers induces a symplectic
isomorphism between K(£) and Z; x Z;. Such an isomorphism is called a level
structure of canonical type on (A4, ¢1(£)). (See [LB], Chapter 8, §3 or [GP1], §1.)

A decomposition K(£) = K1(L) ® K>(L), with K{(L) =2 K»(L) =2 Z, isotropic sub-
groups with respect to the Weil pairing, and a choice of a characteristic ¢ ([LB],
Chapter 3, § 1) for £, define a unique natural basis {3|x € K;(£)} of canonical theta
functions for the space H°(L) (see [Mu2] and [LB], Chapter 3, §2). This basis allows
an identification of H°(£) with V via §1—x,, where x; is the function on Z, defined
by

|1 y=9, .
xv(é)_{o )£ for y,0 € Zy.

The functions Xo, ..., xs_; can also be identified with coordinates on P(H°(L)").
Under this identification, the representation G(£) — GL(H(L)) coincides with
the Schrodinger representation H(d) — GL(V). We will only consider the action
of Hy, the finite subgroup of H(d) — GL(V') generated in the Schrodinger represen-
tation by ¢ and 7, where

o(x;) = Xi-1, w(x;) = &'y,

for all i € Z,, and where éze% is a primitive root of unity of order d. Notice that
[e,7]=¢&, thus Hy is a central extension

| —ug—H; —7Z,; x Z;—0.

Therefore, the choice of a canonical level structure means that if 4 is embedded in
P(H(L)") using as coordinates Xy, = 95, y € Z4, then the image of 4 will be invariant
under the action of the Heisenberg group H, via the Schrédinger representation. (See
[LB], Chapter 6, §7 for details.)

If moreover the line bundle £ is chosen to be symmetric (and there are always
finitely many choices of such an £ for a given polarization type), then the embedding
via |L£] is also invariant under the involution i, where 1(x;) = x_;, i € Z,;. This
involution restricts to 4 as the involution xi+— —x. We will denote the P, and
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P_ the (+1) and (—1)-eigenspaces of the involution 1, respectively. We will also
denote as usual by H; := H,, x(1).

We also recall a key result from [GP1]: In that paper, on P>*~! x P?*~!  we have
introduced a matrix

Ma(x, p) = (XitYiej + XitjrdViejrd)o < i,j < d—1

where the indices of the variables x and y above are all modulo 2d. This matrix has
the property that if 4 € P**~! is a Heisenberg invariant (1, 2d)-polarized Abelian
surface, then M, has rank at most two on 4 x 4 C P41 x p2-1, Similarly, if
A C P* is a Heisenberg invariant (1, 2d+1)-polarized Abelian surface, then the
(Moore) matrix

4
M2d+1(x’ y) = (xd(fff)yd(f—./))i62251+1,j€Z2¢1+1 ’

on P x P2? has rank at most four on 4 x 4 € P* x P2, These matrices will prove
to be ubiquitous!

We include a brief discussion of Abelian surface fibrations on Calabi-Yau
threefolds at the end of this section. Throughout this paper we will use the following
terminology:

DEFINITION 1.1. A Calabi-Yau threefold is a nonsingular projective threefold
satisfying wy = Oy and h'(Oy) = 0.

LEMMA 1.2. Let X be a Calabi—Yau threefold, and let A C X be a minimal Abelian
surface. Then A is a member of a base-point free linear system of Abelian surfaces
which induces a fibration m: X — P! with A as a fibre.

Proof. On X, we have 0 — Oy — Ox(4) — w4 —> 0, from which we obtain
dim|A4| = 1. It then follows from [Og] that | 4| must be a base-point free linear system
inducing an Abelian surface fibration X — P'. O

The Calabi-Yau threefolds we will consider in this paper will be partial
smoothings of two types of singular threefolds. Recall first [GP1], Proposition 5.1:

PROPOSITION 1.3. Let E C P""! be an elliptic normal curve of degree n. Then
(1) Sec(E) is an irreducible threefold of degree n(n—3)/2.
(2) Sec(E) is nonsingular outside E.
(3) WSec(E) = OSCC(E) and hl(OSec(E)) =0
Thus, form a numerical point of view, Sec(E) is a degenerate ‘Calabi-Yau’

threefold, containing a pencil of type II degenerations of (1, n)-polarized Abelian
surfaces. Namely, assume that E C P"~! is Heisenberg invariant under the
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Schrodinger representation. Then Sec(E) contains the pencil of Heisenberg invariant
translation scrolls Sg ,: = Upcp(P, P+ p), where (P,P+p) denotes the line spanned
by P and P+p and p € E is not a 2-torsion point. The fibers of the pencil for p
a 2-torsion point on E are multiplicity two structures on the corresponding smooth
elliptic scrolls S,.

A second series of degenerate ‘Calabi-Yau’ threefolds is given as follows:

PROPOSITION 1.4. Let Ly, L, € P> be two disjoint linear subspaces of dimension
n—1, and let E\ C L, E; C L, be two elliptic normal curves of degree n. Put
Join(Ey, E>): = UeleEl,ezeE2 (e1, e2), where (ey, e2) denotes the linear span of e; and
er. Then

(1) Join(Ey, E») is an irreducible threefold of degree n* in P!
(2) Join(E), E,) is nonsingular outside of E; and E,.
() Oyoin(Ey.B) = Oloin(Ey By and W (Ojoin(, 1)) = 0.

Proof. (1) Irreducibility is obvious. The degree of Join(E}, E») is the product of the
degrees of E| and E,, hence the join is of degree n’.

(2) Let Y C E; x E; x P! be defined by 'Y = {(e1, e2, ) | ¥ € (e, e2)}.

The projection pj2: ¥ — E; x E, clearly gives Y the structure of a P'-bundle,
while the projection p3: ¥ — P! gives a resolution of singularities of Join(E, E»).
Note that p3: Y\ p3'(E1 U E») —P?~! is an embedding. Indeed, ps3 is one-to-one
away from p3 Y(E| U E>); otherwise there exist distinct points ey, ey € Ey and
e, ¢, € E» such that (e, e2) N (e}, ;) # . But then these two lines span only a
P2, so that (e, e)) N ey, ) # &, contradicting the assumption that
LiNLy,=¢. To see that p3 is an immersion, a local calculation suffices. Consider
an affine patch C1 of P!, with coordinates V1s .-, Vau—1, in which L; is defined
by yu=---=yy3_1 =0 and L, is defined by yj=---=y, 1 =0, and y, =1. If
E, is locally parametrized by ti— (o (¢), ..., 0,_1(£),0,...0) and E, is parametrized
by u—(0,...,0,1, B,(w), ..., B,_;(w)), then Y has local coordinates (#,u,s) in which
p3 is given by

(t, u, $)1— (s (1), . .., s%—1(1), 1 — ), 1 —9)B(w), ..., (1 —9)p,_1 ().

Computing the differential of this map, one sees easily that it is injective for s #0,1,
given that E| and E, are nonsingular. Thus ps: Y\p;l(El UE,) —P> ! is an
embedding, and so Join(Ej, E>) \ (E] U E») is nonsingular.

(3) First note that Join(E], E>) is normal. Indeed, locally the singularities of
Join(E}, E>) look like curvex(cone over elliptic normal curve), hence are normal.
Now the map p3: Y —Join(E), E;) contracts two sections ¢; and g; of the P'-bundle
pi2: Y —E| x E> to E; and E», respectively. Since p;» is a P!-bundle, we can write
Ky = —0 — 0, + pj,D for some divisor D on E| x E,. But ¢; and o, are both
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isomorphic to E; x E; and are disjoint, so by adjunction

0= Km = (KY + Ul)'al
= (_0—2 +PTzD)|a]
=D.

Thus Ky = —a1 — 03. On the other hand, on Join(E], E;), both E} and E; are curves
of simple elliptic singularities, so Join(E;, E;) is Gorenstein and

Ky = p3KioinE, Ey) — 01 — 02,

from which we conclude that p3 Kjoin(g, ) = 0. Since p}: Pic(Join(E), E)) —> Pic(Y)
is injective, this shows Kjoin(g, ) = 0, as desired.

Just as in the proof of [GP1], Proposition 5.1, to show that hl(OJoin(El,Ez)) =0, it
is enough to show that Pic’(Join(E), E,)) is discrete. Note that the image of
pt: Pic’(Join(Ey, E;)) —>Pic’(Y) is contained in the subgroup P of Pic’(Y) given
by

P ={L € Pic’(Y) | Ll, =piMi and L], = p3M, for some M; e Pic(E;)}.

Thus it is enough to show P is discrete. Suppose D € P is a divisor algebraically
equivalent to zero. Then we can write D ~no| +pj,C for some neZ,
C € Pic(E; x E;). Then n=0 and C is algebraically equivalent to zero on
E\ x E5. Since pj,C € P, it follows by restriction to ¢; and o, that in fact
C =piF, and C = p3F, for divisors F| and F, on E; and E,, respectively. Thus
Fi=F,=C=0, so D=0 in Pic(Y). Thus P is a discrete group, as is
Pic’(Join(E), E)), allowing us to conclude that h'(Ojoin(s, . £y)) = 0. O

In fact, in a suitable context, these degenerate ‘Calabi—Yau’ threefolds contain a
pencil of degenerate Heisenberg invariant (1,2n)-polarized Abelian surfaces. Fix
the standard Schrodinger action of Hy, on P*~!, and consider the subgroup
H” C H,, generated by ¢* and 7. Then H” /(") = H,, acts as the Schrodinger rep-
resentation of H,, on the subspaces L, L, C P>~ where

le{x():xz:--~:xzn_2:0} and LQZ{X]ZX3:--':)C2”_1:0}.

Let E C L, = P"! be an H,-invariant elliptic normal curve (under the Schrodinger
representation). Then &(F) C L, is also an H,-invariant elliptic normal curve.
Let 0 € E denote the origin of E. Define, for n € E,

Sy:=(J(P. o(P +n)) < Join(E, o(E)) C P~
PeE

PROPOSITION 1.5

(1) S, is a nonsingular elliptic scroll of degree 2n in p>-l,
2) A,;:=S8,Ua(S;)=S,US_s 18 an Hy,-invariant surface of degree 4n and
I I n 1 ()
sectional arithmetic genus 2n+1. Moreover, A, = A, if and only if n=n" or
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N = —a*(n). Thus the set {4,ln € E} forms a linear pencil of surfaces in
Join(E,, E»).

(3) For n€E general, there exists a flat family A—A, a point 0 € A, along with a
H,,-invariant embedding A C Pi”’l such that Ay =2 A, and A, is a nonsingular
(1,2n)-polarized Abelian surface for t € A, t #0.

Proof. (1) Nonsingularity of S, is straightforward and can be proved in much the
same way as the non-singularity of Join(E;, E;) away from E; and E,, see Prop-
osition 1.4. To compute the degree of S,, choose a general hyperplane H, C L,
and let H = Join(Hi, Ly). Then HN S, =o(E)U L U-.-Ul,, where /;,...,], are
lines passing through the points of £ N H;. From this we see that S, is of degree 2n.

(2) Straightforward.

(3) The elliptic curves E and o¢(E) are two disjoint sections of S,, thus
S, =2S=PO®L), with L ¢ Pic’(E). This isomorphism can be chosen so that
the section E of S; corresponds to the 0-section of S, i.e. the section corresponding
to the subbundle O of O @ L, while the section ¢(E) of S, corresponds to the
oo-section of S, i.e. the section corresponding to the subbundle £ of O & L. Then
Os,(E)|p = L and O, (6(E))|g) = £7'. Since E maps to an H,-invariant elliptic nor-
mal curve in L;, the identification of S with S, is induced by the complete linear
system |6(E) +n - f,|. Now o(E)+n-f, ~ E+n-f, for some p € E, and restricting
both of these divisors to E, we see that

L = Op(=n([p] — [o])).

Now as an abstract surface 4, is a type II degeneration, namely a 2-cycle of elliptic
ruled surfaces as in the following figure:

glue without shift

Sy ST T TTTTTTTTTTToTTToT oo m e ~ g (Sn)
: oo-section L 0-section
- 0-section - oo-section
1
N glue with shift o2(2n) J

One starts with the surface S, with £ and ¢(FE) as its 0 and oco-sections, respectively,
then glues with no shift the oco-section of S, to the 0-section o(E) of the surface
o(S;) 2 P(O@ L), and then finally glues with shift 6%(2n) the oo-section E of
a(Sy) to the 0-section of the So.. The restrictions of O, (1) and Oy s, )(1) to E coincide
after a shift by ¢2(2y), which yields n([o] — [p]) = n([6>(217)] — [0]). In other words
peE is such that nmp=—no*(2y) in the group law of E, and L=
Og(—n(p] — [0])). As in [HKW], part II, especially Theorem 3.10 and Proposition
4.1, and [DHS], §3, one may show that such type II degenerations actually occur,
and in fact all elliptic curves E and all general shifts # can be realized. O
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2. Moduli of (1,4)-Polarized Abelian Surfaces

Even though the geometry of the moduli space of (1,4)-polarized Abelian surfaces is
well understood (see [BLvS], we wish to partially review it here as this will lead to
another example of a Calabi-Yau threefold with an Abelian surface fibration.
However, we will not provide many details, leaving further investigations to the
interested reader.

The moduli space Afv was studied in [BLvS]. Let (4, £) be an Abelian surface with
L an ample line bundle of type (1,4). It is proved in [BLvS] that if 4 is sufficiently
general, then the morphism i, : 4 —P? induced by |£] is birational onto its image,
an octic surface. Furthermore, [BLvS] give explicitly the defining equation of such an

Heisenberg group Hy acts via the Schrodinger representation
o xit—>xi—1 and T x;—E7x,
where ¢ is a fixed primitive fourth root of unity. We now change coordinates to

zp = Xo + X2, z; = X3 + X1,

Z1 = Xo — X2, Z3 = X3 — X].

Then the image of Y, is defined in P’ by the equation f=0, where
f(z0s...,23) = AN'Z, with N =

zéz%z%z% 0 0 0
0 L, (Z§z;l1 + Z%Z;; L, (zgz% + Z%z%)(fzf)z‘% + Z%Z%) (zézi — zézé)(zézg — Zizé)
o Gprranantin L &atran) 0 wasn)En )
0 (2071 = 2323)(5573 — 2173) (2573 + 2123)(2573 + 2173) (2075 +2172)
and for some value of the parameter A = (lg:...:43) € P°.
For a fixed value of 4 we will denote by A, the octic surface defined by
{f =0} c P,

Note that (Ag:...:43) and (—4¢: 41: 42: A3) give the same equation f=0 and, con-
versely, two points 4, 2’ € P? yield the same equation only if they are related in this
manner. Thus, if Z, acts on P? via

(/102 ceet )v3) I—>(—ﬂ.02 Al Ao )v3),

then there is a birational map

O A - -» P2 /Z,.

This latter quotient is isomorphic to the cone over the Veronese surface in P°.
We recall briefly from [BLvS] the structure of the singularities of 4; ¢ P? for gen-
eral 1. The singular locus of A4, is contained in the union of the coordinate planes
{zoz1z2z3 = 0}. In fact, Sing(A4;) N {z; =0} is a quartic curve with double points
at the three coordinate vertices on the plane {z; = 0}. Now 4, has generically ordi-
nary double points along this curve, with 12 pinch points in the smooth locus of
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the quartic, while 4, has quadruple points at the coordinate vertices (with tangent
cone a union of four planes).

DEFINITION 2.1. Let / € P? be a line. Define V4, to be the normalization of the
hypersurface X; € P* x I € P? x P3 given by the equation

o233 00, 73) =0 Gy ey J3) € 1)

second P*. Let X; — Y;—P? be the Stein factorization of the projection
X; —>P? on the first factor, and define Va4, to be the normalization of Y.

Because this case is not of great relevance to the main thrust of the paper, we state
basic properties of these threefolds and only sketch their proof.

THEOREM 2.2. For a general line [ in P,

(1) Vs, is a double cover of P> branched over an octic surface B C P3.
(2) The singular locus of B consists of 148 ordinary double points, all of which are
contained in A,, 1 €l. These are of three types:

(A) 128 of them are contained in the smooth locus of A,

(B) 16 others are contained in the double point locus of A; for A€l general,

(C) Theremaining four occur at the coordinate vertices (at the quadruple points of
A)).

(3) The map ': VJ,, —> Va1 induced by the map \: X; — Y; is a small resolution of
Vai. In particular, Vj,, is a nonsingular Calabi— Yau threefold which contains
a base-point free pencil A ) of nonsingular (1,4)-polarized Abelian surfaces map-
ping to the pencil A;, )€l

) ;{(Vj’,) =0 and hl’l(VjJ) = hl’z(Vj’,) =38.

Proof (Sketch). (1) Let / C P* be parametrized by 4; = agjpty + aii, j€{0,1,2,3},
where (po: 1) € P!, and 4 = (@) <, < 1,0 <j<3 1s @ 2x4 matrix. Then

f (2o, ..., z3, agoty + arofty, - - -, o3y + A13fiy)

is a quadratic polynomial in p,, u; whose Hessian is the 2x2 matrix 24 N’ 4. Thus the
discriminant of this quadratic polynomial is det(4N’A4). By inspection, one finds that
every 2x2 minor of the matrix N is divisible by z3z2z323, and thus so is det(4N'A4),
being a linear combination of minors of N. Hence, one can view Y; as the double
cover of P? branched over {det(4N'A4) =0} Since this determinant contains the

factor z3z3z3z3, we see Y; is not normal. Now the surface

B:= {(detAN'A4)/z3222323 = 0} C P

can be seen to have only 148 ordinary double points. One may essentially check this,
for a random choice of /cCP? via a straightforward computation in
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Macaulay/ Macaulay2. Thus V4, the normalization of Y;, can be obtained by taking
a double cover branched over the octic surface B.

The claims in (2) can be verified directly via Macaulay/ Macaulay?.

(3) Let f: V4,1—>P3, gy —>P? be the double covers. For i€/, the surface
A; x {4} € X; maps isomorphically to 4; C P? via the first projection, and hence
g '(4;) splits as the union of two surfaces, each being isomorphic to A4;. Thus
f~1(4;) also splits as S; U S’, where S; is the proper transform of 4; x {4}.

A local analysis now shows that for general A, S; is nonsingular except at the
ordinary double points of types (B) and (C). At nodes of type (B), S; has an improper
double point (i.e. the tangent cone is the union of two planes meeting at a point),
while at the nodes of type (C) the surface S; has tangent cone a union of four planes
meeting at a point. Let V},, —> V4, be the blow-up of V4, along S;. Then Vi, is
a small resolution of V4, and if all exceptional curves are flopped simultaneously,
we obtain a small resolution Z; — V4 ; in which the family of surfaces S; forms
a base-point free pencil, thus yielding an Abelian surface fibration Z; —P!. This
map along with the natural map Z;, —P? yields a map ¢: Z; — P> x P! whose
image is clearly the hypersurface X;. Hence, via the universal property of the
normalization, we get a map ¢’ in the diagram

Z
¢ ¢
Vi Xy
Y’ ¥
Vi, Y;

The morphism ¢’ is a birational map between normal varieties, and it is also clear
that it doesn’t contract any positive dimensional components. Thus it is an
isomorphism, and (3) follows, with A ; the proper transform of S; in Vi’ I

(4) Now X(Vé},,) =0 follows from the fact that the Euler characteristic of a
nonsingular double cover of P? branched along a smooth octic is —296, and that
V4, has 148 ordinary double points (each ordinary double point increases by
two the Euler characteristic with respect to that of a double solid branched over
a smooth octic). The calculation of the Hodge numbers may be done in a general
example via Macaulay/ Macaulay?2 using standard techniques (see [Scho] and [We],
or Remark 4.11 below for details). O

Remark 2.3. We note here that X4, can be viewed as a partial smoothing of the

secant variety of an elliptic normal curve in P3, in the sense that through the general
point of P? pass precisely two secants of an elliptic normal curve, so we can think of
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the secant variety as a double cover of P>. The branch locus is in fact the union of the
four quadric cones containing the elliptic curve.

3. Moduli of (1,5)-Polarized Abelian Surfaces

We review here certain aspects of the geometry of (1,5)-polarized Abelian surfaces.
We will see in many ways that this case is a paradigm for many of the higher-degree
cases. We first review briefly the well-known description of Alsev. See [HKW] and
references therein for proofs and details.

The main result of [HM] is that every (1,5)-polarized Heisenberg invariant Abelian
surface in P* is the zero locus of a section of the (twisted) Horrocks—Mumford
bundle Fym(3), and conversely, when the zero locus is smooth. Here,
H°(Fum(3)) is a four-dimensional vector space. Thus, if U € A¥" is the open set
consisting of triples (4,H,o) with « the level structure and H very ample on A4,
we obtain a morphism @s: U — P(H(Fum(3))) defined by

(4, H, o) —>[s] € P(H(Fum(3))),

where s is a section (uniquely determined up to scalar multiple) of Fy(3) vanishing
on A. The results of [HKW] then show that this morphism extends to a morphism
(denoted exactly as the previous one)

Os: Tg —P(H(Fum(3))).

where ATSev is the Igusa toroidal compactification of Alsev. ;5 is a birational morphism,
and [HKW] gives a complete description of its structure, as well as a description of
Alsev c Alse". In theory, for many of the cases in this paper, one could produce a
similar fine structure theory, and thus provide a biregular description of A}fv,
but we shall not even begin to attempt this. See also the introduction for comments
regarding the (1,7) and (1,11)-polarizations.

DEFINITION 3.1. Paraphrasing [Moo], (see also [Au], [ADHPR 1] and [ADHPR2])
we define for y € P* the Horrocks-Mumford quintic Xs o= {det(M(x, y)) = 0}
C P*, whenever this determinant does not vanish identically, where Mi(x,y) =

(X34 3(—))i jezs S in Section 1.

This is not the usual definition of the Horrocks—Mumford quintics: more standard
is to choose two independent sections s, s’ € H(Fum(3)) and consider the vanishing
locus of sAs € H'(A?Fum(3)) = H(Ops(5))". However, these two definitions
coincide. An argument is given in Remark 4.1 and preceding discussion of
[ADHPR2]. Summarizing that argument, we define a rational map

O: P - -» P(H(Ops(5)) = P(A2H(Frum(3)))

by taking y € P* to the Hs-invariant quintic det(Mi(x, y)). This map is defined
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outside of the so-called Horrocks—Mumford lines, the Hs-orbit of P! . The image of
this map is the Pliicker quadric of decomposable tensors in P(A2H?(Fm(3))). This
is worked out explicitly for instance in Remark 4.1 of [ADHPR2].

THEOREM 3.2. For a general y € P*,

(1) Xs, is a quintic hypersurface in P* whose singular locus consists of 100 ordinary
double points.

(2) There is a small resolution X. 51} —> X5, such that Xsl,y is a Calabi— Yau threefold
with y(X3,) =0, h"'(X3 ) = h'2(X3 ) = 4. In addition, X3, is fibred in (1,5)-
polarized Abelian surfaces.

3) X Slqy also contains a pencil of Abelian surfaces with a polarization of type (2,10),
blown up in 25 points.

Proof. These are all well-known. Sketching the ideas here, for (1), two general
sections of the Horrocks—Mumford bundle Fypm(3) vanish along two smooth
Abelian surfaces that meet transversally in 100 points, the nodes of the correspond-
ing quintic (see [HM], [Au] and [Hu2] for details). For (2), first note that if
A CP*is an Abelian surface and y € 4, then Mi(x, y) has rank at most 4 on A
by [GP1], Corollary 2.8. Thus 4 € X5 ,. Blowing up 4 produces a small resolution,
and flopping the 100 exceptional curves, we obtain Xslyy, in which 4 moves in a
base-point free pencil, by Lemma 1.2. The invariants of Xg’y are well known, see
[Au] for details.

For (3), it is well known thatif 4 C X5, as above, and X’ is another general quintic
hyper-surface containing 4, then X5, N X" = AU A’, where 4’ C P* is a nonsingular
surface of degree 15, in fact an Abelian surface with a (2,10)-polarization blown up in
25 points (Ellingsrud—Peskine unpublished, see [Au] or [ADHPR1, ADHPR?2] for
details). It follows from Lemma 1.2 that there is a pencil of such surfaces on X5 ,.[]

Remark 3.3. (1) The Horrocks-Mumford quintics X5, can be viewed as partial
smoothings of the secant varieties of elliptic normal curves in P4, as [GP1], Theorem
5.3 or [Hul], p. 109 shows that such secant varieties are also Horrocks—Mumford
quintics.

(2) The Kiler and moving cones of X. 511 are well-studied: see [Borl1], [Bor2], [Scho],
[Scho2] and [Fry]. In particular there are an infinite number of minimal models, and
X. 51’y contains an infinite number of pencils of (birationally) Abelian surfaces, of both

types.

We now collect a number of results about Horrocks—Mumford quintics and
(2,10)-polarized Abelian surfaces we will need later which do not appear to be
in the literature. We first describe a certain family of Horrocks—Mumford (HM)
quintic hypersurfaces X5, C P*, where the parameter point y lies in Pi C P*. This
result will be needed for understanding the singularity structure of Calabi-Yau
threefolds arising in the (1,10) case (see Theorem 7.4):
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PROPOSITION 3.4. Let M(x, y) = (X3(i1)V3(i—)))iczs» @nd let X5y, be the (symmetric)
HM-quintic hypersurface given by {detM;(x, y) = 0} € PX(x), for a parameter point
y € P%r (here and in the proof of the proposition + are again with respect to the
Heisenberg involution 1 acting in P*).

() If yeBC Pﬁ_, where B is the Brings curve (the curve swept by the nontrivial
2-torsion points of Hs invariant elliptic normal curves in P*, see [BHM]), then
X5, is the secant variety of an elliptic normal curve in P4

2 IfyeC,cC Pi, where Cy = {y3 + 4y1y2 = 0} is the modular conic ¢f [BHM)),
then Xs, is the trisecant variety of an elliptic quintic scroll in P

(3) Forageneraly € P2+ \ (C4 U B), the singular locus of X ,, is the union of two elliptic
curves of degree 10, meeting along the Hs-orbit of the parameter point y. See (5)
below for the nature of the singularities.

@) Let X5, € P*(x) x P*(2) be defined by

Xs, = {(x,2) € P* x P* | M(x, y)z = 0}.

Then for general y € P2+ \ (C+ UB), X’iy has 50 ordinary double points, and
Sing(j( s,y) maps to the Heisenberg orbit of y under projection to P*(x).

(5) For general y € P2+ \(CLUB), Xs, has only cAy singularities away from the
Heisenberg orbit of y, while at a point of the Heisenberg orbit of y, X5, has a
cAj singularity.

(6) If p1, p2: P* x P*—P* are the two projections, then X5, :pz(i’sqy) CP'isa
Hs-invariant quintic which, for general y € P2+ \ (Cy N B), has singular locus a
union of two elliptic quintic normal curves in P*. Furthermore, X5, C P4(z) is
defined by the equation {det L(z,y)=0}, where L(z,y) is the 5x5 matrix given
by L(z,y): = (z2i-jYi-))i jezs

Proof. First we note that (1) follows immediately from [GP1]. Theorem 5.3. On the
other hand, (2) follows from [ADHPR1], Proposition 24.

For the rest, recall that T' = A2H*(Fum(3)) = H'(Ops(5))™ is the six-dimensional
space of Hs-invariant quintics in P*. The decomposable vectors in I" correspond to
the Horrocks—Mumford quintics, namely the quintic hypersurfaces in P* whose
equations are the determinants of matrices of type Mj, see Definition 3.1 and
the discussion thereafter. We will need the following standard facts concerning
HM-quintics and H§ =H »(1)-invariant elliptic quintic scrolls in P*, most of which
can be found in [BHM]:

(I)  There exists a one-dimensional family X;, 7 € P!, of H¢-invariant elliptic quintic
scrolls in P* the smooth ones correspond to ¢e P!\ {(0:1),(1:0),
((1 £ v/35)&:2), k € Zs}, the singular are cycles of planes. The ruling of a smooth
elliptic scroll X, over the origin of the base curve maps to aline/ C Pi, which is
tangent to the conic C, at a point which corresponds to the point € X(5) = C;
via the standard identification [BHM], or [ADHPR2], Proposition 4.3. The scroll
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X, is embedded in P* by the linear system |Cy + 21|, where Cj is the (unique)
section of the scroll with self-intersection 1 meeting P!,

(IT) For any smooth elliptic scroll X;, there exist exactly three pairs (E;, t;), i=0,1,2,
of Hé-invariant elliptic normal curves in P* and 2-torsion points, such that X is
the 7;-translation scroll of E;, see the discussion after Proposition 1.3 and [Hu2]
for exact definitions.

(III) The linear system [2E;| = | —2Ky,| = [4Cy — 2/| is a base-point free elliptic
pencil, whose only singular fibres are the double curves 2E;.

(IV) The linear system |Cy+ 2E;| = |5Cy — 2I| on X,, which has as base locus
the three origins (on P!) of the elliptic normal curves E;, defines a
2:1 rational map from X, onto P> The map is branched along / and
the three exceptional lines (over the base points), it contracts Cy and
the elliptic normal curves E; to p and p;, respectively, and maps the other
elements of the pencil | — 2Ky,| to the pencil of lines through p (cf. [BHM],
Propositions 5.4 and 5.5).

(V) By [BHM], proof of Proposition 5.9, the restriction of I', the space of
Hjs-invariant quintics, to a Ht-invariant elliptic quintic scroll X, C P* s
always three-dimensional. Furthermore, the kernel of this restriction is
si A HY(Fum(3)), where s, € H(Fum(3)) is the unique section of the
Horrocks—Mumford bundle vanishing on a double structure on the elliptic
scroll X;. The sections s, € H*(Fum(3)) vanishing on a double structure on
the elliptic scroll X; are parameterized by a smooth rational sextic curve
Cs C P? = P(H*(Fum(3))) (cf. [BM], 1.2).

(VI) The linear system I induces a rational map @: P* - -» Q c P°, where Q is a
smooth quadric, which is 100:1 and is not defined exactly on the so called
Horrocks—Mumford lines (the Hs orbit of P'). In this setting, Horrocks—
Mumford quintics correspond to pullbacks via ® of the tangent hyperplanes
to the Pliikker quadric Q.

(VII) O restricted to X, factors as ®: X, — X,/Zs x Zs = X, - -» Q, and the latter
map is induced by the linear system |Cy + 2E;|, and thus by (IV) above, maps
the scroll onto a linear subspace P> ¢ Q ¢ P°.

Next we identify the quintics in part (3) of the statement of Proposition 3.4:

LEMMA 3.5. Symmetric HM-quintics X, C P, for a parameter y € P%r \ Cy UB,
correspond to wedge products s; A 52, where s; € H(Fum(3)), i=1,2, are two sec-
tions of the Horrocks—Mumford bundle each vanishing on a Hé-invariant elliptic
quintic scroll X; C P*. Such quintic hypersurfaces can also be characterized as
the unique quintics in P* containing the union of the two elliptic quintic scrolls
X;: If [; are the rulings over the origin of X;, i=1,2, then we may take as parameter
v of the matrix Mi(x,y) the point {y}=5LNh e P2+. In particular, this allows us
to identify Sym?(Ce) with P2.

Proof. Let y € Pi \ (C4+ U B), and let /; and /, be the two tangent lines to the
modular conic C; that pass through the point y. By fact (I) above /; and /; are each

https://doi.org/10.1023/A:1012076503121 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012076503121

186 MARK GROSS AND SORIN POPESCU

rulings over the origin for two distinct H¢-invariant quintic elliptic scrolls X; C P,
i=1,2. On the other hand, for a fixed point xeB, the quintic
{detM(x,y) =0} C P*(y) is the secant variety of the elliptic normal curve in
P*(y) passing through x. Now if Ei, E}, E} C X; are the three elliptic normal curves
of fact (II) above, then E]’ N1l consists of two distinct points, and thus
BNl = U_;ZI(E} N [;) consists of six distinct points (see [BHM], §6). Thus /; is a
secant to each E;, and thus detM(x, y) vanishes at each x € BN/;. By Bézout’s
theorem, it follows that X5, must vanish along both rulings /; and L,. Further,
by Heisenberg invariance, X5, must then vanish on the Hs orbits of /; and b,
and thus on both elliptic scrolls X7 and X; again by Bézout’s theorem. The first
claim in the lemma follows now from fact (V) above. For the second claim, observe
that by fact (VII) above, the map @: P* - -» Q maps the two scrolls X; onto
two planes in P> meeting at a point, and thus spanning a unique hyperplane in
P°. This concludes the proof of the lemma. O

Proof of Proposition 3.4 continued. Suppose that y € Pi \ (C; U B), and thus that
Xs, = {s1 A sy =0} C P*(x), with s; € H*(Fum(3)) vanishing doubly on elliptic
quintic scrolls X; ¢ P*(x). The elliptic quintic scrolls X; and X, meet only in 25
points, namely the Hs orbit of y € Pi. Moreover, since rank Ms(y, y) < 3, it follows
that all the Hs translates of y are in the singular locus of the quintic X .

By fact (III) above, on each scroll X;, the linear system | — 2Ky, | is a base-point free
pencil, with general member a smooth elliptic curve of degree 10. We denote by D;
the unique degree 10 elliptic curve in the pencil | — 2Ky,| which passes through
the parameter point y. Each curve in the pencil | — 2Ky, | is Heisenberg invariant,
since at least three curves in the pencil (the doubled elliptic quintic curves) are
Heisenberg invariant, and only the identity automorphism on | — 2Ky | = P! has
> 3 fixed points. Thus D; N Dy = X; N X; is the Hs orbit of y.

We show now that rank Mj(x, y) < 3 for all x € D; U D>, and thus that Xs, is
singular along the union of these two elliptic curves. The space of Heisenberg
invariant quintics containing the elliptic curve D; (the elliptic scroll X;) is
4-dimensional (respectively, three-dimensional), so D; is linked on X; to a Hs-
invariant curve G; of degree 15. The elliptic curve G; is a section of the scroll
X;, described in [ADHPR?2], Proposition 4.10 (iii), and is the unique Hs x-invariant
curve of class Cy + 12/ on X;. By [ADHPR2], Proposition 4.12 (ii), for a fixed point
z € G;, not on a Horrocks—Mumford line, the quintic {detMi(x,z) =0} C P4(x)
is the trisecant variety of the elliptic scroll X;. It then follows, as in [ADHPR1],
Proposition 24, that rank Mj(x, y) < 3 for all x on the unique curve of numerical
equivalence class 4Cy — 2/ passing through z. However, if z € D;, this curve is
precisely D;. On the other hand the matrices M(x, y) and Mi(y, x) coincide up
to a permutation of their columns, and so do their collection of 4x4 minors. Thus
it follows that rank M{(x, y) < 3 for all x € D; N G;. Now on the scroll X; we have
D; - G; =50, and since both these curves are Hs-invariant, D; N G; must consist
of at least 25 distinct point. By [ADHPR?2], Proposition 4.8, G; N G, = &, and since
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rank Mi(x,y) <3 for all x € D; N Dy, it follows that each 4x4 minor of Mi(x,y)
vanishes in at least 50 points along D;, and thus by Bézout’s theorem, vanishes
identically on the curve D;. It follows that rank M;(x, y) <3 for all x € Dy U D,,
which means that the quintic X5, C P* is singular along the union of the two elliptic
curves D;.

One checks now in Macaulay/ Macaulay? that for a general y € Pi \ (C4 U B) the
quintic X5, is singular only along the union D; U D>.

To show (4) and (5), note that it is well-known that for general y e P*,
X’S,y C P* x P* has precisely 50 ordinary double points. (See, for example, [Au]
or [Borl].) Thus, if this is also the case for one y € Pi, it will be the case for
general such y. But this can be checked using Macaulay/ Macaulay2. Now
pl:X’S,y —> X5, is an isomorphism away from pl‘](Sing(XSJ,)), since rank
Mi(x,y) <3 only for points of Sing(Xs,). Furthermore, p;'(Sing(Xs,))—>
Sing(Xs,) is a P!-bundle, since rank Mj(x,y) =3 on Sing(Xs,). Since generically
pi1 resolves the singularities of Xs,, X5, must generically have cA4; singularities.
Because X’iy has only ordinary double points, it is then clear that X5, has only
¢DV singularities, and by deformation theory of du Val singularities, y must be
at least cA43, and at least two ordinary double points of j’s,y are sitting over y.
By Heisenberg invariance, there are precisely two ordinary double points over each
point in the Heisenberg orbit of y, and thus each of these points is a c¢A43 point,
while away from the Heisenberg orbit of y, points of Sing(Xs ) are cA4; points.

Finally, to show (6), first note that the equation M5(x, y)z = 0 of X. 5,y 1s equivalent
to the equation 'L(z, y)x = 0, given that y € Pi. Thus the equation of X5, = (X 5.)
is given by {det L(z,y) =0}. Now let N(x,y) be a 4x5 matrix of linear forms whose
rows are general linear combinations of the rows of M5(x, y), and let

A = {x € P* | rankN(x, y) < 3}.

Then it is well known (see [Au] or [Borl]) that the linear system |[4H—A| on X5,
indL~lces a birational map ¢: Xs,--» X5 which lifts to the projection
P2 Xsy —> X5 ) Now X5, contains the elliptic quintic scrolls X; and X>. Each scroll
X; is embedded via |Cy + 2/| by fact (I) above, and hence ¢|y, is induced by a sub-
system of [4Cy + 8/ — (AN X;)|. But A certainly includes the curve D;, which is
of class —2Ky, = 4Cy — 2/. Furthermore, for a general (1,5)-polarized Abelian sur-
face 4 € Xs,, AN A is degree 20. It then follows from the intersection theory on
a resolution of X5, that AN X; = D;U l,'1 U-.-u ll.5, where l’lj are lines of the ruling
on X;, and thus ¢|y, is induced by a linear system numerically equivalent to 5/. Thus
¢lx, maps X; to an elliptic normal quintic curve in X, C P*, and Sing(Xs ,)
contains at least two elliptic normal curves. However, checking for general
y e P2+ \ (C; U B), one finds via Macaulay/ Macaulay?2 precisely this singular locus,
so this describes the singular locus for Xg’y for general y € Pi. O

Next we study (2,10)-polarized Abelian surfaces in P*.
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PROPOSITION 3.6. Let A be a general Abelian surface with an ample line bundle
L= (L)% of type (2,10), and let xy € A. Let m: A—>A be the blow-up of A at
the 25 points _ of the set xo+ K(L'), and suppose there exists elements
foreofre HA, L ® w3 ') inducing amorphism f = (fo, ..., fa): A— P4 Suppose
furthermore this map is equivariant with respect to the action of K(L') on A and the
Schrodinger action of Hs on P*, and is also equivariant with respect to negation
on A and the Heisenberg involution 1 on P*. Then, possibly after changing the origin
on A, we can take xo = 0, L a line bundle of characteristic O with respect to some
decomposition. Furthermore, [ is an embedding, and for any y ef(Z) the quintic
hypersurface {det M(x, y) =0} contains AA).

Proof. The fact that negation on A4 lifts to negation on A tells us that xo is a
two-torsion point. Furthermore, (—1)*£ = £, so £ is a symmetric line bundle. Since
Xo is two-torsion and 4, € K(£), we have #; £ = £, and in particular if we change
the origin of A to be xo, £ will still be a symmetric line bundle. Indeed, if (—1)
denotes negation on A with origin xp, then (=1)* =1r* wo(=D"ots, so
(=1)*L = (=1)"£ = L. In addition, the action of (—1) on sections of L is the same
as that of the negation (—1), so changing the origin to xy does not affect the
hypotheses of the proposition.

Now let HC P*bea hyperplane containing P ,let D= f*H be the corresponding
divisor on A and set D = . D. Let

A5 (D) = {x € 4y | mult(D) = 1 mod 2}.

By [LB], IV, (7.6), if L is of characteristic zero with respect to some decomposition,
then #45(D) is 0 or 16, while if £ is not of characteristic zero, then
#Ag(D) = 8. We claim the latter does not occur. Indeed, since D? = 15, we expect
f- (P ) to consist of 15 points with D vanishing to order 1 on each point, ruling
out the latter case. To show that f— (P ) in fact consists of 15 distinct points,
we proceed as follows. We have n( f~ (P )) € A, 80 f~ 1(Pz) consists of 2-torsion
points and possibly a number of copies of E; = n~!(0). Now if p is an isolated point
inf’l(Pi), then 1 acts on the tangent plane 74, to 4 at p as negation. In particular,
Jf«T4p must intersect Pi transversally, so that p occurs with multiplicity one in
/7Y (P%). Similarly, if E; € f~'(P%), then E; must occur with multiplicity one. Thus
either Ey Z f~'(P%), and then f~'(P2) consists of 15 distinct points, or
E Cf- 1(P ), and we also have a residual (D — E;)* = 12 points. In either case,
we have #4;5 (D) > 8 and, hence, #45(D) = 16 and L is of characteristic 0.

Now consider the map ®: P*- -» Q C P° introduced in fact (VI) of the proof of
Proposition 3.4. Recall from [Au] (see also [ADHPR1], Remark 37) that if L is
an g-plane in Q, then ® (L)) is a (1,5)-polarized Abelian surface union the base
locus of ®. Moreover, if L, is linked to a f-plane L, via a hyperplane section of
Q, then ®!(L,) must be a degree 15 nonminimal (2,10)-polarized Abelian surface
(see [ADHPR1], pg. 898). In particular, there is a three-dimensional family of such
Hs and i-invariant surfaces. These surfaces are embedded in P* by a linear system
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of the type given in the hypotheses of this Proposition, and since these surfaces are
linearly normal, the embedding is given by a complete linecar system
|H (n* L ® a)il)|, where L is of characteristic zero with respect to some
decomposition.

Now the moduli space of (2,10)-polarized Abelian surfaces along with a choice of
symplectic basis is the Siegel upper half-space H,. This is three dimensional. There
is a universal family A —>H, with a zero section, and a line bundle £ on A such
that for any Z € H;, L| 4, is the line bundle of type (2,10) and of characteristic zero
with respect to the decomposition on Ay induced by the choice of symplectic basis
(see [LB], Chapter 8, (7.1)). Furthermore, we can blow up the submanifold
Uzen, 2K(L] 4,) € A to obtain a three-dimensional family of non-minimal (2,10)-
polgriied Abelian surfaces A —H,, along with the line bundle 7*£ ® w=! . Here
n: A—> A denotes the blow-up map. This defines the universal family of pozlarized
non-minimal Abelian surfaces of precisely the sort we are interested, and every such
surface appears in this family. Now the point is that this is a three-dimensional
family, and further for each Z € H,, there are only a finite number of bases of
H(m"'L ® a);\; ,,14,) for which the induced map f: Az - -» P* is equivariant with
respect to translation by elements of 2K(L| 4,) on Az and the Schrodinger represen-
tation of Hs on P*. Indeed, all such bases are related by an element of SL»(Zs) acting
on H'(n*L ® w3!  |4,). Since we already have a three-dimensional family of such
Abelian surfaces embedded in P*, these two families must coincide. Thus for a gen-
eral Z e H,, |HY(w*L ® cujl 4, 14,) is very ample, while the embedded surface
f(;lz) is of the form (*3_1(52)2 for some f-plane L, € Q ¢ P°. Now if y ef(.:lz),
and H is a hyperplane in P’ tangent to Q at ©(y), then O® '(H) is the
Horrocks-Mumford quintic {detM}(x, y) = 0}, and clearly f (:tz) C O~ !(H), since
I, CH. O

4. Moduli of (1,6)-Polarized Abelian Surfaces

We will show that the general Abelian surface 4 C P°> with a (1,6) polarization is
determined by the cubics containing it, and this will allow us to define a rational
map g, essentially taking A to the set of cubics containing it. In fact, we will find
out in addition that through a general point y of P> passes exactly one (1,6)-polarized
Abelian surface! The strategy for determining this Abelian surface is to consider the
cubics passing through the Hg-orbit of a given y € P°. These cubics (or a specific
subspace of these cubics) will also contain the unique Abelian surface passing
through y.

We first need to discuss the representation theory of Hg acting on the vector space
H°(Ops(3)), the space of cubic forms on P°. There are no Heisenberg invariant cubic
forms on P3; however if H' C Hg is the subgroup generated by ¢2 and 72, then there
are H’-invariant cubic forms. We denote the space of such forms by
HYOpsB)H. 1t is easy to see that HO(Ops(3)" has as a basis fy.....fs
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afo, - - -, 0f3, where

3
fo=x+x3+x3, fi = xIxq + X3x0 + x3x2,

J2 = X1X2X3 + X3X4X5 + X5X0X], 3 = X0X2X4.

Furthermore, HO(OP5(3))H/ is a representation of Hg, which splits up into four
isomorphic representations

3
H(Ops O 2= Q) 1. af).
i=0

We will identify H 0((9,,5(3))“ with Vy ® W, where V} is a two-dimensional represen-
tation of Hg and W is a four dimensional complex vector space with basis e, ey, €3, 3
so that Vo ® (e;) = ( f3, af).

The importance of HO(OP5(3))H’ comes from the following key lemma:

LEMMA 4.1. Let A C P° be a (1,6)-polarized Abelian surface which is invariant
under the action of HS = Hg x (1). Then dim HYZ ,(3)" > 4.

Proof. This is a very similar argument to that in [HM], bottom of page 76. We
consider the restriction map

HY(Ops O — HO(LHY,

where L is the line bundle on 4 inducing the embedding. Let A’ = 4/2K(L), and =
A —> A’ the quotient map. Then 2K(£) acts on £, and there exists a bundle M
on A’ such that £3 = n*(M). Furthermore, H(£) = H'(M). Now ¢;(M)* =
e1(£3)? /deg(m) = 12, so M is a line bundle inducing a polarization of type (1,6)
on A’. Thus 1 acts on H'(M) = C® in the usual way so that it has two eigenspaces,
one of dimension four and one of dimension two. Now H 0((9,,5(3))“ is 1-invariant,
so that it must map to one of these two eigenspaces. Hence the kernel of the above
restriction map is at least four dimensional. O

Remark 4.2. Note that the Riemann-Roch theorem tells us that we should only
expect H(Z 4(3)) to be two dimensional. Thus 4 C P° is not cubically normal.

Eventually we will show that for a general Abelian surface 4 € P°, dim
HYZ 4(3))" = 4. This will allow us to define a rational map O: AS - - Gr(2,W)
by taking A to the two-dimensional subspace V' € W such that Vy® V =
H(Z A(3))H’. (See Definition 4.6 for the precise construction.)

DEFINITION 4.3. Define a rational map ¢: P° - -»Gr(2, W) by taking a point y € P°
to a subspace VC W such that Vy;® V is the largest Hg-subrepresentation of
H°(Ops(3) vanishing at y.

Equivalently, we first identify Gr(2, W) with Gr(2, W) by identifying a subspace
VC W with its annihilator V° C WV, and then we can define the map ¢:
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P°- -» Gr(2, W")in coordinates, using the dual basis to ey, . . ., e3, as follows: a point
yeP® is mapped to the subspace spanned by (fo(y),...,f2(»)) and
((afo)@), - ... (af3)(») € W.

We note also that Vy® V' is the subspace of HO(OP5(3))H/ vanishing on the
Hg-orbit of y € P°.

We will use Plicker coordinates for Gr(2, WYV): the coordinates for a 2-plane
spanned by (xo,...,x3) and (yo, ..., y3) will be p; = x;; — x;y;. These satisfy the
Pliicker relation py3p1o — poap13 + po1p23 = 0, which gives the equation of the Pliicker
embedding Gr(2, W) € P3. Thus, more explicitly, ¢ is defined in Pliicker
coordinates by

yeP = (oW DM =i/, - LN —f0Naf2) (1) € Gr2, ).

Remark 4.4. Another way to obtain the Hg-subrepresentation of HO(OPs(S))H’
vanishing at a general point y € P° is to take the four cubics det(Ms(x, y)),
det(M3(a3(x), y)), det(M3(73(x), »)), and det(M3(a373(x), )); see Section 1 and [GP1]
for their explicit form. As observed in [GP1], Remark 2.13, these four cubics do
not always span a four-dimensional space, e.g. when y is contained in an elliptic
normal curve.

LEMMA 4.5. Let A C P be a general Hg-invariant Abelian surface. Then the map ¢
in Definition 4.3 is defined at the general point of A, dimHO(IA(3))H/ =4, and the
cubics in H'(T 4 (3))H, cut out a scheme of dimension < 2.

Proof. First, let X(I's) € P> be the hexagon of [GP1], § 3. Then ¢ is defined on an
open subset of Sec(X(I's)) = X(3C(6, 4)), with notation as in [GP1]. Indeed, ¢ is
defined for instance at the point (1: 1: 2: 1: 0: 0) € Sec(X(I's)), as one checks by explicit
evaluation. Since X(I's) C P° is a degeneration of a general Hg-invariant elliptic
normal curve, ¢ must be defined on a non-empty open subset of the secant variety
of a general such curve. Thus ¢ is defined generically on a general translation scroll,
and thus also on the general (1,6)-polarized Abelian surface by [GP1], Theorem 3.1.

Let 4 C P’ be such an Abelian surface. Let y €4 be a general point of the
Abelian surface, let V' € WY be the subspace corresponding to ¢(y), and let ¥°
be its annihilator. Then 7, ® V' is a four-dimensional space of cubics whose
zero-locus contains the orbit of y under Hg, and no other cubic of HO(OP5(3))H’
vanishes along this orbit. Hence, Vo® V° 2 H%Z,(3))'. On the other hand,
dim H(Z A(3))H/ >4, by Lemma 4.1, so equality holds.

Finally, suppose that 4 C P’ is a general translation scroll, so that AC Sec(E) for
some nonsingular elliptic normal curve E C P°. As before, dimH"(Z A(3))H’ =4,
and by [GP1], Theorem 5.2, two of these cubics cut out Sec(E), which is irreducible.
It follows that the cubics of H%(Z A(3))H’ must cut out a surface, and the same holds
for the general (1,6)-polarized Abelian surface, again by the degeneration
argument. [
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DEFINITION 4.6. Let U C P° be the largest open set on which ¢ is defined. We
define a rational map @6:A16‘“’- -»Gr(2, W) by sending the general Heisenberg
invariant (1,6)-polarized Abelian surface 4 € P° to ¢(A4 N U). We note that ¢(4 N U)
is the single point in Gr(2, W") whose annihilator corresponds to H(Z A(3))H/.

Now in the diagram

X C P5 x Gr(2, W)

A

P’ Gr(2, W)

let X be the closure of the graph of ¢, so that if 7; and 7, are the projections to P° and
Gr(2, W), respectively, then 7;: X — P’ is birational and 7, = ¢ o m; on the open
set of X where ¢ o m; is defined.

We now define another subvariety C C P’ x Gr(2, WY)asfollows: If V C WV isa
two-dimensional subspace, and V° C W is its annihilator, then Vo ® V° is a
subrepresentation of Vy ® W, which, by the above discussion, may be identified with
a four-dimensional space of cubics. Let C € P> x Gr(2, W) be the universal family
defined by these cubics: i.e., if V' € Gr(2, W), then Cy is the scheme of zeros in
P> of the ideal generated by the cubics in V, ® V°.

Finally, let O € Gr(2, W) be the quadric defined by the hyperplane section
{po3 + p12 = 0} in the Pliicker embedding.

Note first that X C C. Indeed, if y € P° is a point where ¢ is defined, and
¢(y) =V C WY, then the cubics in ¥y ® V' necessarily vanish at y.

We will now show the following

THEOREM 4.7. (1) n(X) = Q, the nonsingular hyperplane section of the Pliicker
embedding of Gr(2, WY) given by {po3 + p1» = 0}.

(2) B4: Algv - -»Q is a birational map, and 7y: X —> Q is birational to a twist of the
universal family over AY. In particular, AS" is a rational threefold.

Proof. (1) First note, by direct calculation, that

Jo(af3) — f3(afo) + fi(af2) — fa(afi) =0,

which means exactly my(X) € Q. To show that n,(X) = Q, we will find a fibre of ;:
X —> Q which is non-empty and has dimension < 2. Then since dim(X) = 5 and
dim(Q) =3, n, must be surjective, and have generic fibre dimension 2.

To show that 7y » has nonempty fibres of dimension 2, let 4 C P° be a general
Heisenberg invariant (1,6)-polarized Abelian surface. As observed in Definition 4.6,
$(A N U) consists of exactly one point, say, V € Gr(2, WY). If A C X is the proper
transform of 4 in X, then nz(;l) = V. Furthermore, Xy € Cy and by Lemma 4.5,
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Vo® V0 = HYZ,3)" and Cy is a scheme of dimension < 2. Hence X is
nonempty of dimension 2.

(2) To prove the first part, it is enough to show that for general V' € Q, the fibre Cy
of m: C—>Q is a scheme whose two-dimensional component is of degree 12. Then
there cannot be two distinct Abelian surfaces 4, A" C Cy, and so ®g must be gen-
erically 1 to 1.

To check this claim about Cy, we choose one specific V' € Q spanned by (1,0,0,0)
and (0,—1,1,0) in W, so that V° € W is spanned by (0,1,1,0) and (0,0,0,1). Then
Cy is the subscheme of P° defined by the equations

i +f2=f3=0dfi +afa=0af3 =0},
or explicitly

XoX2X4 = X1 X3X5 = X%X4 + x%xo + x%xz —+ X1X2X3 + X3X4X5 + X5X0X1

= xle1 + X3X(% + xsxg + X2X3X4 + XaX5X0 + Xox1 X2 = 0.

The first two equations yield the degree 9 (Stanley—Reisner) threefold X(9C(6,4)) (see
[GP1], Proposition 4.1) consisting of the union of linear subspaces L;;, i € {0,2,4},
Jje{1,3,5}, with L;j ={x; =x; =0} If i # j+3 mod 6, then L;NCy is given by
the equations

{0 = %) = XpXk43 + Xkm2Xkm1 Xk + Xk Xp 1 X2

= kalzcﬂ F X1 X2 Xk43 + Xp—3Xk—2X5—1 = O},

where 2k—3 =i+j mod 6, and k € {1,3,5}. This is a quadric surface

{X;i = Xj = XpXp43 + Xk—2Xk—1 = 0}
or

{xi = Xj = XiXk+3 + XiXp1 = 0},
together with a line, depending on the value of i and j. If i =j+3 mod 6, then L; N Cy

is given by the equations

2 2
Xi=Xj = Z X Xpk43 = Z XkXjiy3 =0,

/ceg(o;.zz) keﬁgﬁ.é))
which is easily seen to be a curve. Thus Cy is a union of 6 quadric surfaces and a
number of (possibly embedded) curves. This verifies the claim, and thus by the above
discussion the general fibre of n,: XY — Q is a (1,6)-polarized Heisenberg invariant
Abelian surface. If V' = ©¢(A), then X' = A. This shows the last part of (2) in
the theorem. O

Remark 4.8. (1) A more careful analysis of the specific set of cubics studied
in the proof of Theorem 4.7, (2) shows that in fact the scheme Cj they define
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consists of the union of the six quadric surfaces S, a(S),...,d°(S), where

S ={xo =x1 =xx5 + x3x4 =0} C PS,

and the Hg-orbit of the involution :(—1)-eigenspace P'. This orbit consists of
exactly nine lines. Conversely, if 4 is a Hg-invariant (1,6) Abelian surface,
P! N4 consists of four points, namely the odd two-torsion points of A,
and so P! (and all its Heisenberg translates) are contained in any cubic
hypersurface containing 4 C P°. This shows that for a general (1,6)-polarized
Abelian surface 4 C P°, the cubics containing it cut out the union of 4 with
the Hg-orbit of P,

(2) Furthermore, one may directly calculate the ideal of Ufzo ¢'(S), and one finds
that the ideal is generated by the four cubics f; + f>, of1 + df2, f3, of3, and six
additional quartics. However, we have seen that for an arbitrary (1,6)-polarized
Abelian surface 4, dim H°(Z 4(3)) > 4. Thus we see that for the general such A4,
dim H%(Z 4(3)) = 4, and that Z 4 is generated by quartics.

We next study the complete intersections of type (3,3) arising in this construction.
They turn out to be partial smoothings of the degenerate ‘Calabi-Yau’ threefolds
described in Proposition 1.3 and Proposition 1.4.

DEFINITION 4.9. For a point p € P(W) corresponding to a one-dimensional sub-
space T C W, let Vg, C P° be the complete intersection of type (3,3) determined
by the cubic hypersurfaces in Vo ® T C H' O(OP5(3))H/. Notice that, by construction,
Vs, C P is Hg-invariant.

THEOREM 4.10. For general p e P(W) corresponding to T C W we have

(1) Vs, contains a pencil of (1,6)-polarized Abelian surfaces, parametrized by a pencil
of two-dimensional subspaces contained in the annihilator of T.

(2) Vs, is an irreducible threefold whose singular locus consists of 72 ordinary double
points. These 72 ordinary double points are the base locus of the pencil in (1).

(3) There is a small resolution VGIJ7 —> Vs, of the ordinary double points, with Vél_p a
Calabi— Yau threefold, and such that there is a map m: Vélqp — P! whose fibres
form the pencil of Abelian surfaces of part (1).

) ;{(Vélqp) =0 and h“(Vé,p) = hl*z(Vg‘p) =6.

Proof. (1) The choice of Vs, is given by p e P(W), with p =P(T), while the set of
(1,6)-polarized Abelian surfaces contained in Vg, is parametrized by
Ve QcCGr(2, WY) such that T C V°. Now as is well known, the lines in a
nonsingular hyperplane section of Gr(2, W) correspond to pencils of lines in P(1¥),
and each point of P(W) is the center of exactly one of these pencils. Hence, for
p eP(W), with p=P(T), the set {VV € Q| V° D T} is a line in Q. Each such V gives
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rise to an Abelian surface in Vs ,, and hence we obtain a pencil of Abelian surfaces in
Ve-

(2) That V5 , is irreducible for general p € P(W) follows, for example, from the fact
that for a Heisenberg invariant elliptic normal curve E C P°, Sec(E) is of the form
Vs, for some p. This is part of [GP1], Remark 2.13 and Theorem 5.2.

To prove that in general Vs, has only 72 ordinary double points seems difficult
without resorting to computational means. First note that if f; and f5 are two cubic
hypersurfaces in P> containing a (1,6)-polarized Abelian surface A, and defining
a threefold X = {f; = f, = 0}, then f; and f, induce sections of (IA/IEI)(S), which
are linearly dependent precisely on the set Sing(X)NA. Now c(Z A/Ii)(:&)) =
72, so we would expect to have exactly 72 singularities of X on 4, counted with
multiplicities. On the other hand, 72 ordinary double points can be easily accounted
for. Namely, in the pencil Vi ® T C HO(OP5(3))H/ defining V5 ,, there are exactly 4
cubic hypersurfaces which are determinants of 3x3-matrices M3(x, y), for certain
values of the parameter y. Such a cubic hypersurface is singular along the locus
where its 2x2-minors vanish, which is an elliptic normal curve in P°. In particular,
Vs, has 18 ordinary double points at the points of intersection of such an elliptic
curve with (any) other cubic in the pencil Vo ® T. Using Macaulay/ Macaulay?2,
one can easily find examples of threefolds V¢ , which do have precisely 72 ordinary
double points. Thus Vs , for a general p € P(W) possesses exactly 72 ordinary double
points.

Now, blowing up a smooth Abelian surface 4 € Vs p in the pencil, we obtain a
small resolution Vé » — Vs, Flopping simultaneously the 72 exceptional P'’s gives
a small resolution Vél’p —> Vs, which is a Calabi-Yau threefold containing a pencil
of minimal Abelian surfaces. Thus by Lemma 1.2, Vg‘p has an Abelian surface
fibration. In particular, the base points of the pencil of Abelian surfaces on V)
consist precisely of the 72 nodes. This completes the proof of (2) and (3).

For (4), the Euler characteristic computation follows immediately from the fact
that the Euler characteristic of a nonsingular (3, 3) complete intersection in P’
is —144. See Remark 4.11 below for the Hodge numbers. O

Remark 4.11. We sketch here a method of computing the Hodge numbers of Vg,p.
An effective method of computing the Hodge numbers of nodal quintics in P* is
well known (see [Scho] and [We]); we essentially generalize this to nodal type (3,3)
and (2,2,2,2) complete intersections in P° and P’, respectively.

Let X be a complete intersection Calabi-Yau threefold in P"*3 with only ordinary
double points as singularities, and assume that X is given by equations
fi=---=f, =0, with all equations being of the same degree d. We assume also
that there exists a projective small resolution X — X, for instance obtained by
blowing up a smooth Weil divisor passing through all the nodes, which is the case
for Vs, in Theorem 4.10.

Let S be the homogeneous coordinate ring of X, that is S = C[xy, ..., Xu3]/
(fi,....fn). Let T = Ext'(QL, Oy) be the tangent space to the deformation space
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of X. It is easy to see that there is a natural isomorphism

T' S
- \{OA/0xi, ... 0f/0x) |0 <i<n+3})

where the subscript d refers to the degree  homogeneous part. Let 7} . be the tangent
space of the deformation space of the germ of the singular locus of X. There is a
natural map 7' — 7]} . and we wish to compute the dimension of the kernel of this
map, which is the tangent space of the deformation space of X. Thus, we need

to know when (gi,...,g,) € S" representing an element of T! yields a trivial
deformation on the ordinary double points. This is precisely when the matrix

g1 9f1/9xo f1/0Xn43

gn  Ofn/0xg fn/0X43

has rank < 7 at the singular points of X. Thus the nxn minors of this matrix must be
contained in the ideal of the singular locus of X. This is a calculation which can be
easily performed using Macaulay/ Macaulay2. One thus determines the dimension
of the kernel of 71 — T} , and this dimension is precisely h'2(X). From the knowl-
edge of the topological Euler characteristic of X, we can then compute the Picard
number of X.

We also note that even if X € P"” is not a complete intersection, but the homo-
geneous ideal of X is generated by elements fi, ..., f, all of the same degree d, then
T' can be computed as a subspace of

Sn
<{(8f1/8x1-, oL Of/Ox) 10 <0 < m})d'

See, for example, [Tei]. This makes it possible to compute Hodge numbers even in
this case. We omit the details, but will make use of this on occasion to compute
Hodge numbers of other Calabi—Yau threefolds.

Remark 4.12. Because the Picard number of V. , 18 fairly large, it would be difficult
to understand all details of the geometry of Vs ,! However, it is already interesting to
identify several different minimal models, by focusing only on the subgroup of
Pic(Vg,p) generated by H, the pull-back of a hyperplane in P>, and 4, the class
of a (1,6)-polarized Abelian surface, that is a fibre of the Abelian surface fibration
Ty V(},p —P!. There are several curves of interest in Vélyp also. Let [e] be the class
of one of the 72 exceptional lines. (Caution: these lines are not all in the same hom-
ology class, but their homology classes cannot be distinguished using intersection
numbers with only H and 4.) By Remark 4.8 we have P! C Ve p; let [[] be the class
of P! Vsp. It is not difficult to check that, for general p, P! is disjoint from
the singular locus of Vs ,, and hence the proper transform of P! is disjoint from
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all of the exceptional curves. With these preparations, in VGI_p, we find the following
intersection numbers:

H3 =09, H?A =12, A* =0,
H-e=0, H- =1, A-e=1, A-1=4.

Here A - 1 =4 since, by Remark 4.8, P! intersects 4 C P° in the four odd two-torsion
points of 4.

As in the proof of Theorem 4.10, by flopping simultaneously the 72 exceptional
curves we obtain the model V62, ,- There is still a map Vg’ »— Ve which is obtained
by blowing up a general 4 € Vs ,. In Vg,p, we now have the intersection numbers

H? =9, H*A=12, HA*=0, A3 =72,
H-e=0, H-l=1, A-e=—1, A-1=4.

Now, since the ideal of a general Abelian surface 4 is generated by cubics
and quartics, the linear system |[4H—A| is base-point free on Vép. How-
ever, (4H—A) -[/=0, and hence |[4H—A| induces a contraction Vg’p—>V62,p,
contracting, by Remark 4.8, (2), only / and its Heisenberg translates, thus a total of 9
lines. Furthermore, the normal bundle of / can be easily computed to be Opi(—1)®

Opi(—1). These 9 lines can be simultaneously flopped to obtain a model Vg,p. In

this model,
H? =0, H’A=-24, HA>=—144, 4> =648,
H-e=0, H.-[=-1, A-e=—1, A-l=—4.
Now in ngp, the linear system |3H—A| had the union of / and its Heisenberg

translates as base locus, by Remark 4.8. Thus in Vg’.p, |3H—A]| is base-point free,
and dim [3H—A| > 1. Hence two distinct elements of |3H—A| are in fact disjoint,
and thus [3H—A| gives rise to a fibration 7y: Vg’p —P! whose (general) fibres
are then nonsingular surfaces. A calculation shows that (3H — A4) - ¢»( Vap) =0 and,
hence, m; is an Abelian surface fibration. Let 4’ be the proper transform in
Ve, C P’ ofa nonsingular fibre of 7,. Then 4’ C P’ is a nonminimal Abelian surface,
containing nine exceptional lines, precisely P! and its Heisenberg translates. In
addition, we compute from the above tables that deg 4’ = 15. Thus the linear system
embedding A’ in Pis |L— Z?:l E;|, where E| ..., Ey are the exceptional curves and
L is a polarization on the minimal model A4/ ., either of type (1,12) or (2,6).

To see that this polarization is in fact of type (2,6), first note by inspection that all
cubics in H' O(OP5(3))H’ are in fact invariant under the Heisenberg involution i. Thus :
acts on the Abelian surface A’. The fixed points of this action are exactly 4’ N Pi and
A'NP! = P! Intersection theory shows that #4’' N Pi = 15. On the other hand 1
descends to the involution x1— —x on the minimal model 4/, of 4. In particular,
if H is a hyperplane in P> containing Pi, then H N A’ descends to a symmetric divisor
D on A{; vanishing with multiplicity 1 at all 16 two-torsion points of A; . . There-
fore by [LB], Proposition 4.7.5, L must be of type (2,6) rather than (1,12).
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Remark 4.13. The general cubic hypersurface containing a (1,6)-polarized Abelian
surface is smooth. An interesting question is whether it is rational. See also [Has] for
a detailed discussion of such rationality issues.

5. Moduli of (1,7)-Polarized Abelian Surfaces

The rationality of the moduli space A17°V of (1,7)-polarized Abelian surfaces was
proved by Manolache and Schreyer [MS], who show that this moduli space is
birational to a special Fano threefold of type V7, of index 1 and genus 12. Their
approach is based on a detailed description of the minimal free resolution of the
ideal sheaf of a (1,7)-polarized Abelian surface in P°.

We will give in the following a somewhat different proof of their result, by using
the fact that the general Abelian surface 4 with a (1,7) polarization is determined
by the Pfaffian cubics containing it. This will focus attention on certain Pfaffian
Calabi-Yau threefold containing a pencil of (1,7)-polarized Abelian surfaces which
were first discovered by Aure and Ranestad (unpublished). We will also show in
[GP3] the existence on such Pfaffian Calabi-Yau threefolds of a second pencil of
(1,14)-polarized Abelian surfaces.

Let N(H57) denote the normalizer of the Heisenberg group Hy inside SL(V’), where
as in Section 1 the inclusion H; < SL(V) is via the Schrodinger representation.
We have a sequence of inclusions

(I) € Z(H7) = i € Hy S N(Hy),

and as is well-known, N(H;)/H7 = SL,(Z7), and in fact N(H7) is a semi-direct prod-
uct H; x SLy(Z7) (see [HM], §1 for an identical discussion for the group Hs).
Therefore the Schrodinger representation of H; induces a seven-dimensional rep-
resentation p;: SLo(Z7) —SL(V). In terms of generators and relations (see for
example [BeMe]), one has

PSLy(Z7) = (S, T | S" =1,(ST)’ = T? = 1,(S*’TS*T)’ = 1),

where

1 1 0 -1
S:(O 1) and T:(1 0),

while the representation p, is given projectively by

i 1 i
p7(S) = (£20y); jez,» p7(T) = ﬁ(fy)i,jez7v
see [Ta] and [Si] for details. Here ¢ is a fixed primitive 7th root of unity.
The center of SLy(Z7) is generated by T2, and p,(T?) = —1. Thus the represen-
tation p, is reducible. In fact, if V; and V_ denote the positive and negative
eigenspaces, respectively, of the Heisenberg involution : acting on V, then V.,
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and V_ are both invariant under p;, and p; splits as p, @ p_, where p_. is the rep-
resentation of SL,(Z;) acting on V.. Note that p_ is trivial on the center of
SL,(Z7), so in fact it descends to give an irreducible representation p_:
PSLy(Z7) —GL(V_).

For the reader’s convenience, we reproduce from the Atlas of Finite Groups
[CNPW] the character table for PSL,(Z7):

Size of

conjugacy class | 1 21 42 56 24 24
representative | 1 S T>ST2ST* ST T !
Characters

1 1 1 1 1 1 1
1 3 ~1 1 0 B ]
13 3 -1 1 0 B B
T 6 2 0 0 -1 -1
s 7 -1 -1 1 0 0
%6 8 0 0 -1 1 1

where f = %(—1 ++/=7). We will denote in the sequel the corresponding
representations by their characters. The representation p_ is irreducible and has
character y,. The polynomial invariants of this representation are classical and they
have first been determined by F. Klein, see [KI1, KI2]. It turns out that there
are no invariants of degree <4, and the quartic

3 3 3
fa = X{x2 — X3X3 — X3X1,

is the unique invariant in degree 4. The smooth quartic curve defined by this
invariant X(7) = {f4 = 0}  P? is in fact an isomorphic image of the modular curve
of level 7, and has PSL,(Z7) as its full automorphism group. (See for instance [GP1],
[KI1], and [Ve] for details.) The other primary invariants of this representation are a
sextic fs, which is the determinant of the Hessian matrix of f4, and fi4 a polynomial of
degree fourteen which is obtained as the determinant of a bordered Hessian of f;.

We will also need a number basic facts concerning apolarity and polars of
hypersurfaces, and we recall them briefly here.

Let V' be an n-dimensional vector space, and fix a basis for it. For a point ¢ with
coordinates a = (ay,...,a,) € V, and a homogeneous polynomial F € S4(V'¥) of
degree d, one defines

1< OF
Pa(F)-_E;aia_xi»
where x1,...,x, € V'V form the dual of the chosen basis. It is easy to see that the
previous definition is independent of the choice of basis, and so if we further set

Palu.ak(F): = Pal(Paz(' .. Pak(F)) .- -):
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and then extend by linearity Po(F) to all ® € S¥(V), we have defined a pairing
between S(VY) and S(V), called the apolarity pairing (see [DK] for a modern account
and for details). The resulting form P (F) is called the polar of F with respect to ®.
Two homogeneous forms ® and F are called apolar if Pp(F) =0 = Pr(®) (cf. [Sal]
who says that the term was coined by Reye). One says that ® € S %(V) is a k'
antipolar of a hyperplane H with respect to F if Po(F) = H.

Finally, if ,...,/; € V¥ are linear forms such that F = I{’ + o+ If, then
Pyp(F)=0 for all ®elr Cc S(V), where Ir is the homogeneous ideal of
I'={H,, H,,...,Hj} C P(VY), the collection of hyperplanes H = {/; = 0}. Con-
versely, if Pp(F) =0 for all ® € I, with I' = {H, H», ..., H,} a collection of points
in the dual space, then F'is a sum of powers F = [¢ + ...+ /¢, for suitably rescaled
linear forms. One says that /i, ..., [; (or more precisely that the corresponding points
H, Hy, ..., Hyin P(VY)) form a polar s-polyhedron to Fif F = Xllf 4.4 )vslf, for
suitable scalars 4; (see [DK] and [RS] for modern accounts of apolarity).

We start by looking at the equations of an Abelian surface in P°:

PROPOSITION 5.1. Let A< P be a (1,7)-polarized Abelian surface. Then
(T 4(2)) = 0, KT 4(3)) = 21, and the ideal of A is generated by these 21 cubics.

Proof. The first claim is proved by a direct argument in [MS], Lemma 2.3.
Alternatively, [La] or [MS], Lemma 2.4, show that a (1,7)-polarized Abelian surface
A C P® is projectively normal, and hence Riemann—Roch gives 4°(Z 4(2)) = 0 and
(T 4(3)) = 21.

Projective normality, together with Kodaira vanishing, imply also that 7, is
4-regular in the Castelnuovo-Mumford sense. The obstruction to being 3-regular
is that A3(Z,4) = h*(O4) = 1. However, h(Z 43 —i)) =0 for i#3, and the co-
multiplication map

H (T 4(—1)) — H(Ops(1))* @ H*(Z 4),

is dual to the natural multiplication H(Ops(1)) ® H(O4) — H°(O 4(1)) and thus is
an isomorphism. Therefore we may apply [EPW], Lemma 8.8, to see that Z 4 is gen-
erated by 21 cubics, and in fact to determine all Betti numbers in the minimal res-
olution of this ideal sheaf. An alternative however partly incomplete argument
may be found in [MS], Corollary 2.4. O

Recall from [GP1], Corollary 2.8 that the 7x7-matrix
Mi(x,y) = (x@y‘%“)i,jeb
has rank at most 4 on an embedded H; invariant (1,7)-polarized Abelian surface in
P®. On the other hand, for any parameter point y = (0: yi: ya: y3: —p3: —Va: —p1)

e P>, the matrix M’ is alternating. We will denote in the sequel by
I;(y) C C[xp, ..., xs] the homogeneous ideal generated by the 6x6-Pfaffians of
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the alternating matrix M7(x, ), and by V7, C P® the closed subscheme defined by
this ideal.

PROPOSITION 5.2.

(1) Fory e X(7) = {fs = 0} C P>, the scheme V7., is the secant variety of an elliptic
normal curve in P° (the level 7 structure elliptic curve corresponding to the point
y on the modular curve X (7)).

(2) For a general y € P*, the scheme Vs, is a projectively Gorenstein irreducible
threefold of degree 14 and sectional genus 15.

Proof. If V7, is of the expected codimension three, then it will be of the degree and
genus stated, and will be projectively Gorenstein, as any such Pfaffian subscheme has
these properties. On the other hand, [GP1], Theorem 5.4, shows that for y € P? the
origin of a Heisenberg invariant elliptic normal curve E C P®, we have
V3, = Sec(E). Thus for general y e P>, V; , is irreducible and of the expected
codimension. ]

PROPOSITION 5.3

(1) Forall y e P2\ X(7), the scheme V7, meets P? along a conic C, and the point y.

(2) The conic C, is defined by the second polar P( f3) with respect to y of the Klein
modular quartic curve X(7) = { fs = 0} C P2. Furthermore, C, = Cy ifand only
if y=y e€P?, and C, is a singular conic if and only if y e Hess(X (7)) =
{fo =0} c P2.

(3) The point y lies on Cy ifand only if y € X (7). Moreover, if y € X(7), then the conic
C, touches X(7) at the point y (with multiplicity 2, if y is not a flex of X(7)).

Proof. Let I' be the bihomogeneous ideal in C[x1, x3, x3] ® C[y1, y2, y3] generated
by the 6x6-Pfaffians of the alternating matrix M/(x, y), where this time both sets
of coordinates y = (0: y1: y2: y3: —y3: —y2: —y1) and x = (0: x1: X1 X3: —X3: —X2: —X1)
are chosen in P2,

We wish to show that the ideal I’ takes the form J - P (f4), where J is the
bihomogeneous ideal of the diagonal A in P> x P?, namely

Ji= (X1y2 — X2)1, X1Y3 — X3)1, X2)3 — X3)2),

and P (f3) is the second polar of the Klein quartic curve X(7) C P? with respect to y,
namely

Py(fa) = 3(0132XT — y2y3x3 — Y1V3x3 + ViX1X2 — Y3X2X3 — Y3X1X3).

While this can be shown by direct computation, it is easier to do so via representation
theory.

One may check by inspection that the bihomogeneous ideal I’ is equivariant with
respect to the diagonal action of PSL,(Z;) on P> x P? given by the representation
p_ introduced at the beginning of this section. In addition, the zero locus in
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P2 x P2 of I' contains the diagonal A, since the matrix M’(y,y) has rank at
most 4 for every y e P>. Thus I'CJ, and so the bihomogeneous (3,3)-part
(N33 S J- HO(Opgxpi(Z, 2)). Now

HOp 2 (1 D) 2 13 @ 74,

HOp 2 (2,2) = 11 @ 214, ©15 D 25,

HO(Opgxpg(i 3) =0 D20 D@ 13 D Sxs D 4xs D 4%,
as can be easily calculated from the given character table of PSL,(Z;). In particular,
as PSLy(Z7)-representations, J(1 1) = 73, and since dim (I') 3 5y < 7, because /' is gen-
erated by 7 Pfaffians there is then no choice but for (I')s 3, 2 3 ® ; = 3. This
means that (I')s 3y = Ja.1) - (f), where fis the unique PSLy(Z7)-invariant of bidegree
(2,2). This invariant is in fact Pj2(f3). Thus for a fixed y € P?, the scheme V7., meets
P? in the point y and the conic C, = {P)2(f4) = 0}. This proves part (1).

To finish the proof of (2) and (3) note that

P(fa)(y, 7) = ¥iv2 = y3v3 = ¥ini
which vanishes if and only if y € X(7) ¢ P*>. And in case y € X(7) C P2, the conic C,
is tangent to X(7) at the point y since

Ty(cy) = Ty(X(7))

= {x e P2 | Byiy2 — y)x1 + (] — 3y3y3)x2 — Byiyi + y3)x3 = 0},

Miele shows in his thesis [Mie] that the intersection multiplicity of C, and X(7) at y is
two when y € m is not one of the flexes, and that in this case all of the other
intersection points of X(7) and C, are in fact simple.

Finally, the conic C, is singular if and only if

2

rank(8 f4(y)> <3,
ayidy;

that is y € Hess(X (7)) = {fs = 0} by the definition of the Hessian locus. ]

PROPOSITION 5.4. Let A C P® be a general Heisenberg invariant (1,7)-polarized
Abelian surface, and let ANP: = {p1,ps,...,ps} be the odd 2-torsion points of
A. Then:

(1) The points p; form a polar hexagon to the Klein quartic curve X (7) in the dual space
(P2).

(2) The surface Ais contained in V7, foralli=1, ..., 6. Moreover, 21 cubic Pfaffians
defining three of the six V7 ,’s generate the homogeneous ideal 14 of A.

Proof. 1t follows from [GP1], Corollary 2.8, that for y = p; one of the odd
2-torsion points of A4, the matrix M/(x, y) is alternating and of rank at most 4 along
the surface 4, hence A4 is contained in the Pfaffian scheme V7 ,,, for alli=1,...,6.
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None of the points p; € A NP2 lie on the quartic X(7) C P? since otherwise, by
Proposition 5.3 (3), the corresponding scheme V7, would be the secant variety
of an elliptic normal curve in P, which in turn does not contain smooth Abelian
surfaces. Thus, from Proposition 5.3, we deduce that p¢C,,, for all i=1,...,6.
In particular, for all i #j, the point p; lies necessarily on the conic C,,, and the point
pi lies on the conic C),. The four remaining odd 2-torsion points of 4, namely
{prlk # i,j}, are then well determined as the four points of intersection of the
two (smooth) conics C,, and C,,. Now, [DK], Theorem 6.14.2, gives a criterion
for when 6 points in the plane form a polar hexagon for a plane quartic curve,
and the above description of {py, ..., ps} fits that criterion precisely. This proves
part (1).

We next show that 21 cubics given by the submaximal Pfaffians of three of the
skew-symmetric matrices M’(x, p;), i=1,...,6, are linearly independent, and thus
generate the ideal 7. Indeed, obviously any 14 such Pfaffians coming from two dif-
ferent matrices M7(x, p;) and M’(x, p;), are linearly independent. To show that a
third set of submaximal Pfaffians coming from M’(x, py), for some k #i,j, would
be linearly dependent on the first two it is enough to check this for a degenerate
Abelian surface 4 C P’. This may be checked directly for the Stanley—Reisner
degeneration in [GP1], Proposition 4.4. By Proposition 5.1, this proves (2). OJ

Remark 5.5. One may check that for a general (1,7)-polarized Abelian surface 4,
the 21 cubic Pfaffians defining any three of the six associated V77 ,,’s generate the
homogeneous ideal 1.

We have now obtained the same description of the moduli space as in [MS],
Theorem 4.9:

COROLLARY 5.6. The moduli space of (1,7)-polarized Abelian surfaces with
canonical level structure is birational to the space VSP(X(7), 6) of polar hexagons
to the Klein quartic curve X(7) C (P*)*. This is a smooth special Fano threefold
of type Va of index 1 and genus 12. In particular, Alfv is rational.

Proof. By Proposition 5.4 (2), the polar hexagon of odd two-torsion points of a
general (1,7)-polarized Abelian surface 4 with level structure uniquely determines
A. Mukai [Mukl, Muk2] has shown that the space of polar hexagons to a general
plane quartic curve is a smooth Fano threefold of index 1 and genus 12. On the
other hand, the analysis of [MS], Theorem 4.4 and (4.5), shows that the variety
VSP(X(7), 6) of polar hexagons to the Klein quartic X(7) c (P?)* is general in
Mukai’s sense and thus also a smooth Fano threefold. In particular, being of
the same dimension as the moduli space A the general polar hexagon to
X(7) ¢ (P*)* is the set of odd two-torsion points of some (1,7)-polarized Abelian
surface with canonical level structure.

A discussion of the properties (smoothness, type of Fano threefold) of
VSP(X(7), 6) can be found in [MS], see also [Schr] and [Muk2]. The rationality
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of such a Fano threefold appears to have been known to Mukai [Mukl], and
Ivskovskih [Isk]. See also [MS], Theorem 4.10, for the sketch of a proof. O

Remark 5.7. For a general y € P, the smooth conic C, parametrizes a pencil of
(1,7)-polarized Abelian surfaces contained in V7 ,. The conic C,, is in fact also a
conic in the anticanonical embedding of the special Fano threefold VSP(X(7), 6).
See [Schr] for a description of the conics on a Fano threefold of index 1 and genus
12.

PROPOSITION 5.8. Let y € P2, be a general point. Then

(1) Thethreefold V7, has as singularities 49 ordinary double points, which occur at the
Hj7-orbit of the point y.

(2) Thereis a small resolution V7l’p —> V7 of the ordinary double points such that V71’P
is a Calabi— Yau threefold, and such that there is a map m;: V}’p — P! whose fibres
form the pencil of (1,7)-polarized Abelian surfaces in Remark 5.7.

3) ;{(V71!y) =0 and hl*l(V{y) = hl’z(V}J,) =2

Proof. For (1), we know of no better proof than that given in Rodland’s thesis
[Rod]. One calculates the tangent cone of V7, at y and finds in general an ordinary
double point; thus the H;-orbit of the point y accounts for 49 ordinary double points.
On the other hand, a Macaulay/ Macaulay? calculation shows that one can find
y € P2, for which V7., has only 49 singular points. Thus for y € P? general, Vi,
has precisely 49 ordinary double points.

The small resolution in (2) is obtained, as in Theorem 4.10, by blowing up a
smooth (1,7)-polarized Abelian surface contained in }’7, to obtain a small resolution
V% , —> V7, and then by flopping the 49 resulting exceptional curves.

Part (3) follows from the fact that the general nonsingular Pfaffian Calabi—Yau
has Euler characteristic y =—98, while the calculation of the Hodge numbers
A1 and A'? is done via the techniques of Remark 4.11. m

Remark 5.9. We now discuss the Kéhler cone of various models of V7 ,. First note
that Hy( V71.V, 7)) contains two classes of interest: e, the class of an exceptional curve in
the small resolution, and c the class of the conic C, contained in V7, N P It is then
clear that in V7j , we have

H3 = 14, H?*A = 14, A* =0,
H-e=0, H-c=2, A-e=1, A-c=5.

This in fact shows that Pic( V71’ },)/ Torsion is generated by H and 4. Indeed, if not, first
note since A - e =1, A must be primitive in Pic( V717y)/Torsi0n, so A and aA+bH form
a basis for Pic( V71J,)/Torsi0n, where a,b € Q. But since (ad+bH) - e=a, a€Z, and
since H> = 14 is not divisible by a cube, we must have b € Z.

https://doi.org/10.1023/A:1012076503121 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012076503121

CALABI-YAU THREEFOLDS AND MODULI OF ABELIAN SURFACES 1 205

We next consider V72’y, the model obtained from V},y by flopping the above 49
exceptional curves. One sees easily that

H? = 14, H?A = 14, HA* =0, A3 =49,
H-e=0, H-c=2, A-e=—1, A-c=15.

We shall show in [GP3] that the Kéhler cone of V% » is spanned by H and SH—2A4,
and that |SH—2A| contracts the Hy-orbit of the conic C,. Flopping these curves
will then yield a third model V73!y with intersection table

H3 = —378, H?A = —966, HA?> = —2450, A> = —6174,
H.e=0, H- -c=-2, A-e=—1, A-c=-5.

The Kéhler cone of V%y will be seen to be spanned by SH—24 and 7H—3A4. Finally,
in this model |7H—3A4| is a base-point free pencil of Abelian surfaces with a
polarization of type (1,14).

Finally we will see in [GP3] that the linear system |SH—2A4| maps the threefold V72’ y
into P'* as a codimension 7 linear section of the Pliicker embedding of the Grasm-
manian Gr(2,7). This should potentially explain some of the numerical similarities
in the mirror symmetry computations in [Rod] and [Tjo].

6. Moduli of (1,8)-Polarized Abelian Surfaces

We start by determining the quadratic equations of a (1,8)-polarized Abelian surface
in P7.

Much as in the (1,6) case, let H' be the subgroup of the Heisenberg group Hg
generated by ¢* and 7. We can easily compute the space of H'-invariant quadrics,
HO((’)P7(2))H/, and we see that it splits up into three four-dimensional isomorphic
H;-representations

2

H(Op )" = P fi. ofi. i 1),

i=0

where
2 2
Jo = x5+ x5, f1 =x1x7+ x3x5, and f5 = xpx6.

Remark 6.1. For a point y € P2, we can, as in the (1,6) case, ask what is the largest
Hg-subrepresentation of HO(OP7(2))H/ vanishing at y, or equivalently, what is the
subspace of HO(OP7(2))H’ vanishing on the Hg-orbit of y. To determine this, for
y = (0:y1:p2: ¥3:0: —y3: —pp: —y;) € P2, consider the 4x3-matrix

0 -3 -

W (Woeses = | V13 0 ANE
@ (HOM<=s 2y3 2331 0

yi+)3 0 —)1)3
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Note that for any y € P?, this matrix has rank 2, and its kernel is spanned by
01yss =03, 07 + y%). Thus the representation of Hg spanned by

f=yfo—BA+i+3) A o(f), o(f), and & (f)

is the subspace of H(Op (2)" vanishing along the Hg orbit of y. We note that this
representation is also spanned by the 4x4 Pfaffians of the matrices My(x, y),
My(c*(x), y), My(t*(x), y) and M4(a*t*(x), y), though we will not need this fact in
what follows.

LEMMA 6.2. If A € P’ is an Abelian surface invariant under the Schrodinger rep-
resentation of Hs, then dim HY(Z ;)" = 4.
Proof. This is similar to Lemma 4.1. First consider the restriction map

H(Op @) — HO(LPHY,

where £ is the line bundle inducing the embedding of 4 in P”. Let A’ = 4/4K(L), and
let m: A —> A’ be the quotient map. Then 4K (L) acts on £22, and there exists a bundle
M on A’ such that £22=n*M, and H(LEHT =~ HOM). Now c¢;(M)* =
c1(£®2)2/deg(n) =16, so dim H°(M) = 8. Thus, the dimension of the kernel of
the restriction map is at least 4, so dim H°(Z 4 (2))H’ > 4. Equality then follows from
Remark 6.1, since AN P2 is nonempty. |

Note that H acts on P2_, and the quotient P2_/Z2 x Z, is easily seen to be
isomorphic to P?>. From [GP1], §6, we have a morphism

Os: A —>P2/Zy x Ly = P2,

that essentially associates to an (1,8)-polarized Abelian surface with canonical level
structure the class of its odd 2-torsion points. Note that this map is defined on
all of AiiYg), even for Abelian surfaces where the (1,8)-polarization is not very ample,
since one still has a concept of where the odd 2-torsion points are mapped.

THEOREM 6.3. The map ©s: A}?Yg) —>P? /7> x Z is dominant.

Proof. Let Z CP? be the inverse image of im(®g) under the projection
P2 —>P2_/Z2 x Z,; we wish to show that Z=P> Let AC PZ be a Heisenberg
invariant degeneration of a (1,8)-polarized Abelian surface with canonical level
structure to a translation scroll Sg. of an Hg invariant elliptic normal curve
E c P’, as given by [GP1], Theorem 3.1; see also the discussion after Proposition
1.3. Then Sg.. N P> C Z,and so Sec(E) N P2 CZfora general Heisenberg invariant
elliptic normal curve E in P’.

What is Sec(E) N P2 ? By the proof of [GP1], Lemma 6.1 (b), a secant line (x,y) of
E c P’ intersects P? if and only if x=—y on E. Thus Sec(E) N P? is the projection
of E from Pi to P2. Since EN Pi consists of the four two-torsion points of E (see
[LB], Corollary 4.7.6), this projection is a two-to-one cover of a conic in P?.
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Thus to prove that Z =P , it is enough to show that as E varies, Sec(E) N P2
sweeps out P2 . To do this, it is enough to find two (possibly degenerate) Heisenberg
invariant elliptic normal curves E; and E, such that Sec(E;) N P2 and Sec(E») N P2
do not coincide. We can take E; to be the octagon X (I'y), see [GP1], Theorem 3.2,
and E, to be any nonsingular Heisenberg invariant elliptic normal curve in P’. Then
using the equations of [GPI1], Proposition 4.1 and the fact proved there that
Sec(E)) = X(3C(8,4)), one finds that, with coordinates (xi:x»:x3) on PZ,
Sec(E)) N P2 = {x;x3 = 0}, a reducible conic. On the other hand, Sec(E>) N P’ is
an irreducible conic, so these two curves cannot coincide. This shows that ®g is
dominant, and concludes the proof. O

DEFINITION 6.4. For a fixed point y € P2, let Vg » denote the scheme in P’ defined
by the quadrics in HO((’)Pv(Z))H, vanishing on the Hg-orbit of y.

THEOREM 6.5. For general y € P, Vg C P’ is a (2,2,2,2)-complete intersection,
which is singular precisely at the 64 points which form the Hg-orbit of y, and each
of these singular points is an ordinary double point.

Proof. This can be checked computationally in much the same way as in Theorem
4.10, (2). However, in this case the calculation can be carried out by hand, and we do
this here.

It is easy to see that for general y, V3, C P’ is a threefold. Being a complete
intersection, Vg, is singular at xe Vg, if and only if there is a quadric
0 € P(H(Zy, (2))) which is singular at x. Thus, we need to identify all singular
quadrics in the web P(H(Z 1.,(2))) = P*. Now H(Zy, (2)) is an Hg-representation,
but since the subgroup H' acts trivially, it is in fact an Hg/H' = H, representation.
Using coordinates z = (zo: z1: z2: z3) on P* = P(H(Zy,,(2))) so that z corresponds
to the quadric Z?:o z:6'(f), the action of Hy on P? becomes the standard Schrédinger
representation of Hy. We will continue to write ¢ and 7 for the generators of Hy; this
should not create any confusion.

Put

w = (wo: wi:wy:ws) = 2y1y3: —y%:yf +y§: —y%),

so, with notation as in Remark 6.1, f = $wofo + wifi + wyfs. The point w is con-
sidered fixed.

To find the singular quadrics in the web, we compute the Hessian of the quadric
Z?:o z;6'(f) with respect to the variables xo, ..., x7. It is convenient to order these
variables in two blocks as xy, X2, x4, X6, and x;, x3, x5, x7, for then the Hessian

is a block matrix R(z, w) = <g g) with
A = (zZigjWij)ijez, and B =0(A4) = (Zij—1Wi—j)ijez,>

where ¢ acts only on the variables zy, ..., z3. Keeping in mind that w3 = w, one can
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further write 4 = (Al Az), with

Ay A
A = (ZOWO Z1w1 ) Ay = <22W2 Z3W1).
Z1IW1 2wy 3wy ZoWwp
Similarly, B = (g; gf) with B; = 6(4;). Then

det R(z, w) = det(A4; + 45) - det(A; — A,) - det(B; + B») - det(B; — B»).

If Q is the quadric in P3(zo, z1, 22, z3) given by the equation det(4; + 4>) = 0, then
the locus {detR(z, w) = 0} C P*(zq, z1, 22, z3) is given by QU a(Q)Ut(Q)Uat(Q).
In other words, this is the locus of singular quadrics in the web |H°(Z Ve, (D).

We note the following facts about the geometry of this discriminant locus, which
hold for general y € P2:

LEMMA 6.6. For general y € P,

(1)  Q is a quadric cone, singular at the point p = (0: 1: 0: —1) € P?, which is precisely
where A1 + A> = 0.

(2) p¢a(Q)UT(Q)Uat©).

(3) rank R(z,w)=8 if z¢ QU a(Q) Ut(Q) U a1(Q).

(4) rank R(z,w) =7 if z is contained in precisely one of Q, a(Q), 1(Q) and ot(Q), and
2 € {p.o(p)e(p).oT(p)}.

(5) rank R(z,w) = 6 if z € {p,o(p),1(p),0t(p)}, or z is contained in precisely two of the
quadrics Q, (Q),7(Q),a7(Q).

(6) rank R(z,w) =5 if z is contained in precisely three of Q,a(Q),7(Q),0t(Q).

(7) rank R(z,w) =5 forall z € P*.

(8) There are precisely 16 points z in P* such that rank R(z,w) =5, and they form the
Hy-orbit of the point (w32 wy: wi:wy).

Proof. (1) and (2) are easily checked. For (3)-(6), one notes that
rankR(z, w) = rank(A4; + A4») + rank(4; — A,) 4+ rank(B; + B,) + rank(B; — By),

from which (3)-(6) follow, using (2) to note that if at least two of these four
matrices drop rank, none have rank 0. For (7), one needs to check that
0Na(Q)N7(Q)Nat(Q)= for general y € P*>. It is sufficient to check this at
one y, say (yi:y2:y3) =(0:1:0), in which case w=(0:—1:0:—1) and Q=
{(z1 + z3)*> = 0}, in which case QN a(Q)N1(Q)Na1(Q)= .

For (8), one can check by hand that

(Aw! = 2wiwy — 2wow3)(zo 4 22)* 4 (wo + wa)*det(4; + A2)+
+ dwla(det(A; + A1) + (wo — wa)’t(det(4; + A3)) = 0. (6.1)

Thus the net of quadrics spanned by Q, a(Q) and ©(Q) contains the doubled plane
(zo + z2)> = 0, and hence QN a(Q)N1(Q) consists of at most 4 distinct points,

https://doi.org/10.1023/A:1012076503121 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012076503121

CALABI-YAU THREEFOLDS AND MODULI OF ABELIAN SURFACES 1 209

counted doubly. The same then holds true by symmetry for any other intersection of
three of the four quadrics, and hence there are at most 16 points contained in the
intersection of three of the four quadrics. On the other hand, the point
(w3:wp:wiiwg) 1s seen to be in QNt(Q)Not(Q), and the Hy-orbit of
(w32 wy: wy:wy) consists of 16 points (for general y), all contained in the intersection
of 3 of the four quadrics. Thus this accounts for all such points. One checks that
rank R(z,w)=>5 for z = (w3: wy: wi:wp). O

Proof of Theorem 6.5 continued. Having understood the discriminant locus of the
web, we now have to understand the loci of vertices of singular quadrics in the web.
For a given point z € P?, the corresponding quadric Z?:o z;6'(f) has vertex
P(kerR(z, w)) € P’.

Suppose z € Q, and z¢ a(Q)Uat(Q). Then rank (B)=4, and thus

P(k@I'R(Z, W)) C{x1 =x3 =x5=x7=0}.
Thus

VsyNPkerR(z,w)) C{x1 =x3=X5 =x7 = %wo(x% + xﬁ) + WaxoXg
= wi(XoXe + X2X4)
= Lwo(xg + x3) + waxoxs

= wi(Xex4 + Xox2) = 0}
the latter of which is easily seen to be empty for general y.
If ze Q, and z¢ ©(Q) Uot(Q), then rank(A4; — 43) = 2, rank(B; — By) = 2, and it
follows that
P(ker R(z, w)) C {xo — x4 = x] — X5 = x3 — x¢ = x3 — x7 = 0}.

Thus

Vg, NP(ker R(z, w)) € {xp — X4 = X1 — X5 = X2 — X6 = X3 — X7

woxé + 2wy x3x] + wzxg

2 2
= WoX3 + 2w X2Xg + WaX]

= wox% + 2wix1x3 + wzxé

wox% + 2wy x0Xx2 + wzx§ =0}
which again is seen to be empty for general w.
Finally, if z € Q, and z ¢ a(Q) Ut(Q), then rank(B| + B,) = 2, rank(4| — A>) = 2,

and

P(ker R(z, w)) C {xo — x4 = X1 + x5 = x3 — X6 = x3 + x7 = 0},
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and

Vs, NP(ker R(z, w)) C {xo — X4 = X1 + X5 = X2 — Xg = X3 + X7
= wox% —2wix1x3 + szg
= woxg + 2w XX — wzx%
= woxg + 2wix1x3 + wzxé

= wox% + 2w XX — wzxg =0}

which is again empty.

By the H, symmetry, it follows that for general y and any point z € P? such that rank
R(z, w) > 6, the singular locus of the quadric {)" z;6'(f) = 0} is disjoint from Vs ,,. Thus
the only contribution to the singularities of Vg, comes from the quadric
Z?:o wi_io'(f) = 0 and its Heisenberg translates. Now a(P(kerR((w3: wy: wi: wp), w)))
is easily seen to be P2, and Vs, NP> = {p,c*(»), t*(»), o*c*(»)} for general y.
Thus we see the singular locus of Vg, for general y € P?, is precisely the Hg-orbit
of y.

To figure out the nature of the singularities of Vg ,, we only need now to observe that
for general y € P2, Lemma 6.2 implies there is an Abelian surface 4 C Vs ,, and then f;
a(f), a*(f), a*(f) yield four sections of (Z4/Z%)(2) which are linearly dependent
precisely on Sing(V3,) N A. Now a Chern class calculation as in Theorem 4.10 shows
that one expects 64 such points. However, any such singular point which is not an
ordinary double point counts with some nontrivial multiplicity. Since we have identified
precisely 64 distinct singular points, these must all be ordinary double points. ]

THEOREM 6.7. The fibre of g over a general point y € P> /Z, x Z, corresponds to
a pencil of Abelian surfaces contained in the singular Calabi—Yau complete
intersection Vg, C P’. In particular @g gives Al(ﬁf’g) birationally the structure of a
Pl-bundle over an open set of P> /2, x Z, = P2,

Proof. By Theorem 6.5, there is an open set U C P2 /Z, x Z, = P? such that Vg, is
a singular Calabi-Yau threefold with 64 ordinary double points for y € U. For
y € UNim(®g) (which is non-empty by Theorem 6.3,) there is a (1,8)-polarized
Heisenberg invariant Abelian surface 4 for which y is the class of an odd two-torsion
point. In particular, 4 C V3 ,, and 4 contains Sing(V53 ), which is the Hg-orbit of y.
Thus we obtain a projective small resolution V82.y — Vg, which is a Calabi-Yau
threefold, by blowing-up 4. After flopping the 64 exceptional curves, we obtain
a small resolution VSIJ —> Vg, which, by Lemma 1.2, contains a base-point free
pencil of Abelian surfaces. On the other hand the fibre of @g is one-dimensional,
so we obtain in this way a one-parameter family of Abelian surfaces in Vsl, > If this
one parameter family of Abelian surfaces is connected, then it must coincide with
the pencil we have already constructed. However, if it were not connected, then
Vg, would contain at least two distinct pencils of Abelian surfaces. Let 4,
A’ C Vg, be Abelian surfaces in these two pencils. Then 4 N A’ necessarily contains
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a curve. Indeed, otherwise their proper transforms in Vsl,y meet only at points, hence
have an empty intersection as Vglyv is non-singular. But this is only possible if 4 and
A’ belong to the same pencil. '

Let C be the one-dimensional component of 4 N A’. If A, A’ are general, then their
Neron-Severi groups are generated by H, so C is numerically equivalent to nH for
some n. Furthermore, since 4 and 4’ are Heisenberg invariant, so is C. Now we
must have n < 3. Indeed, by Riemann-Roch, dim H%(Z,4(3))/H(Zv,,(3)) > 16.
If £ € H(Z 4(3)) is a cubic not vanishing on Vs », then certainly for general choice
of A" in the second pencil, f'does not vanish on A’, so A N A’ is contained in a divisor
of type 3H.

Finally, to rule out this possibility, we note there are no Heisenberg invariant
curves on A numerically equivalent to nH for n < 3; this follows from [LB], Ex.
(4), p. 179. Hence, there is only one component of the fibre of ®@g, and it is contained
in a P!, which concludes the proof. ]

The above theorem allows us to conclude that Aﬁg) is uniruled, but it does
not show it is rational or unirational. This is because the P'-bundle may not be
the projectivization of a rank 2 vector bundle. To determine rationality, one needs
to know the open set of P? over which the P!-bundle structure is defined. This
can be done through a careful analysis of the discriminant locus of the family of
(2,2,2,2)-complete intersection Calabi-Yau threefolds of type Vg,. This is quite
a tedious exercise, so we will only sketch the results below.

THEOREM 6.8. AI(?YS) is birational to a conic bundle over P* with discriminant locus
contained in the plane quartic D = {ZW‘I‘ — WSWQ - wowg = 0}. In particular .Al(eiYg)
is rational.

Proof. The basic idea is that the P'-bundle structure can only break down over
those points y € P> /4y x Z, for which V3 is degenerate, i.e. has worse than 64
ordinary double points. However, some of these degenerations may also contain
pencils of Abelian surfaces, so a more careful analysis of the discriminant locus
is required. To determine the discriminant locus of the family of Calabi—Yau three-
folds, one looks in detail at the proof of Theorem 6.5 and determines precisely where
each step breaks down.

Examining facts (1)—(8) in Lemma 6.6 above, one sees that (1) breaks down on the
locus L = {wi(wy + wy)(wy — wy) = 0}, which is a union of three lines. Outside of
these three lines, (2)—(6) continue to hold. However, for (7) to hold, we need to know
that QNao(Q)N1(Q)Nar(Q)= . Via a straightforward calculation, one can see
that this occurs precisely on the curve D = {2w] — wiws — wow3 = 0}. In fact, by
equation (6.1) in the proof of Lemma 6.6, one even sees that on this curve the four
quadrics Q, a(Q), ©(Q) and ¢7(Q) only span a pencil and, hence, intersect along
an elliptic curve. Now (8) holds off of C and L.
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Finally, in the last part of the proof of Theorem 6.5, one finds that
VsyN{xi=x3=xs=x7=0}#
if and only if wowiwa(w3 + w3) = 0, while
VeyNi{xo—Xxa=x1—xs=x—x¢=x, —x7=0} #J

if and only if

(wo — w2)(wo 4+ wa)* — 2w1)*) =0,

while
VeyN{xXo—xs=x1+xs=X2— X6 =X3+x7=0} # J

if and only if

(wo + w2)(wo — w2)* + (2w)*) = 0.

Putting this all together, one finds that V3, might have worse singularities than 64
ordinary double points only over the locus

A:=DU {wowlwz(wé + W%)(W% — w%)((wo + wa)—
— w)H((wo — wa)* + 2w1)*) = 0},

which is a union of the smooth quartic curve D and 15 lines.
To aid the further analysis, we need to bring in the additional SL,(Zsg) symmetry
present. Recall there is an exact sequence (see, for example, [LB], Exercise 6.14)

0 —"H(8) — N(H(8)) —SLy(Zg) —0

where N(H(8)) is the normalizer of the Heisenberg group H(8) € GL(H%(O4(1))) via
the Schrodinger representation. Letting ¢ = e?*/1¢ be a fixed primitive 16th root of
unity, let S and T be the 8 x8 matrices

_(i2 i
S)=E"Mcijcrn  T)=CENgcii<r

It is easy to check that S, 7 € N(H(8)), and give via conjugation an action on
H(8)/C* = Zs x Zs defined by the matrices () |) and (% §), respectively. In par-
ticular, S and T along with H(8) generate the normalizer N(H(8)), though we do
not need this fact. What is important for us is that for « € N(H(8)), we have
V3 u) = o(V3,,). Furthermore, one sees easily that S and 7 act on the components
of the discriminant locus A and there are three orbits of this action: the first being
D, which is an SLy(Zs) invariant, the second being L = {w;(w3 — w3) = 0}, and
the third being the remaining 12 lines in A. Thus to understand the generic degener-
ation of Vg, along each component, it is enough to study the components D,
{w; =0}, and {wy = 0}.

Looking at the equations for Vg, when w; = 0, it is immediate that Vg, is the join
Join(E1, E>) of two elliptic normal quartic curves as in Proposition 1.4, and these
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threefolds still have a natural pencil of Abelian surfaces by Proposition 1.5. Over
wo = 0, one finds a Calabi-Yau with 72 ordinary double points, and these too still
possess a pencil of Abelian surfaces. Thus it is only over the quartic D that the
P!-bundle structure may be lost. It then follows from [Bea] that Aﬁfv is rational.[]

The following summarizes information about the threefold Vg ):

THEOREM 6.9. For general y € P>, let V82,y—>Vg’y be the small resolution
obtained by blowing up a smooth (1,8)-polarized Abelian surface A C Vs ,, and
let Vg’y be the small resolution of Vs, obtained by flopping the 64 exceptional
curves on Vg . Then

(1) There exists an Abelian surface fibration my: Vgl,y —Pl;
) ;{(Vgl,y) =0 and h"'(VglJ,) = hl’z(Vgl,y) =2

Proof. (1) has already been proved in Theorem 6.7. (2) follows from calculations
similar to those in Remark 4.11, so in particular we may see P> /Z, x Z, as a com-
pactification of the moduli space of Vg ,. O

Remark 6.10. The structure of the birational models of V3 , is quite interesting and
can be completely determined. Let H denote the pullback of a hyperplane section of
Vg, to VglJ,. Let A4 be the class of a (1,8)-polarized Abelian surface in Vgﬁy. Classes
of curves in Vg include

e [/], the class of a line in Vg, disjoint from the singular locus and contained in a
translation scroll fibre of the fibration Véy —>P1, and
e [e], the class of an exceptional curve of the small resolution of Vg .

In general Vgl’y —P! has a translation scroll fibre because, as in the proof of
Theorem 6.3, there is a translation scroll containing a general point y € P>. Then
in the model Vg,y,

H? =16, H?4 = 16, A* =0,
H-e=0, H- =1, A-e=1, A-1=0.

Thus, in particular, Pic(Vg )/ Torsion is generated by H and A. In the model Vg ,

H? =16, H’4 =16, HA*=0, A% = —64,
H-e=0, H-I=1, A-e=—1, A-1=0.

The Kéhler cone of VSIJ, is spanned by H and 4. We will see shortly that in ngyy the
linear system |4 H—2A| is a base-point free pencil of Abelian surfaces, by Proposition
6.14 below, so the Kdhler cone of ngyy is spanned by H and 2H—A. Furthermore, it is
then clear that Vsl,y and ngy are the only minimal models of V3 ,. Computational
evidence leads us to speculate that the family of Calabi-Yau threefolds Vg, could
possibly be self-mirror!
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To determine the Kdhler cone of the model ngy in Remark 6.10 we first need to
determine the generators of the ideal of a (1,8)-polarized Abelian surface.

DEFINITION 6.11. If z € P/, let Ws.. be the vanishing locus of the three by three
minors of the matrix My(x, z); see Section 1 for notation.

Recall now the degenerations X%, A € C*, of (1,8)-polarized Abelian surfaces with
canonical level structure defined in [GP1], §4. For fixed 4 € C*, the surface Xg* is
the union of eight quadric surfaces Xé: = Ujez, Qf, with

Of i = {xiXipo + AXi1xi3 = x; =0, for jeZg\{i,i+2,i—1,i+3}}.

THEOREM 6.12

(1) The homogeneous ideaZI(Xé) is generated by the quadrics {c'(f{ + 1/5) | 0 < i < 3}
and the cubics

{XiaXixipo | 1 € Zg} U {xim1xixiq1 | 1 € Zs).

(2) ForallieZlg, xixii2Xxivs € I(Xgl).
(3) The family {X¢{|4 € C*} € C* x P’ extends uniquely to a flat family

(X5 | 2 e PLA {0} € (PT\ {0) x P,

and Xg° is the face variety of the triangulation of the torus

In particular, X¢ has the same Hilbert polynomial as a smooth (1,8)-polarized
Abelian surface.
Proof. This uses very similar combinatorics to the proof of [GP1], Theorem 4.6,
where we neglected to mention in that theorem that part (a) held only for n > 10.
We omit the details. O

THEOREM 6.13. Let A be a general (1,8)-polarized Heisenberg invariant Abelian
surface in P’. Then the embedding is projectively normal and the homogeneous ideal
of A is generated by the quadrics of HO(IA(Z))H’, and the 3x3 minors of a matrix
My(x,y), for ye A a general point.

Proof. This is a standard degeneration argument. Define Sy € P> x P’, with
coordinates yj, y», y3 on the first factor and z, ..., z; on the second as the locus
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cut out by the equations

SS:{Gy(yl!yz’y35205"'az7):0|l.:O,...,3}CP27XP7,

where /2= y133 fo — ¥3 /i + (0% + »3)f>. Though one can show that this scheme is
irreducible by using the analysis of Theorem 6.8, we will avoid this, so if necessary,
replace Sy with the irreducible component of Sy which dominates P?. Note that
if dim Vg, = 3, then {y} x V3, C Ss. Next consider the scheme S C Sy x P’ defined
in Sy x P’ by the equations o'f(yi, 2, 3, X0, ...,x7) =0, i=0,...,3, and the
3x3 minors of a matrix My(x, z). A general fibre of the projection S — Sg over
a point (y,z) € Sg is obviously contained in the Calabi-Yau threefold V3, and,
moreover, by Theorem 6.7, there is a unique (1,8)-polarized Heisenberg invariant
Abelian surface 4 C V3, containing the point z € Vg ,. By [GP1], Corollary 2.7,
the Abelian surface 4 is contained in the fibre S, ;). We show that 4 = S, ) for
the general (y,z), by checking equality for one special choice of (y,z), namely
y=(0:1:+/=7), with 10, and z = (1:1:0:0:0:0:0:0) € Vs ». For this choice dim
Vs, =3, and hence (y, z) € Sg. Moreover, for this choice, the ideal of the fiber
S(y.» is generated by the quadrics ¢/(f; + 4/2), and the 3x3 minors of the matrix

X0 0 0 X7
x1 x» 0 0
0 X3 X4 0
0 0 X5 Xg

Therefore, by Theorem 6.12, we deduce that S, ., = X¢, and so S, has the same
Hilbert function as a (1,8)-polarized Abelian surface and is projectively normal.
It follows that for general (y,z), we have 4 = §;,-), which concludes the proof.[]

PROPOSITION 6.14. For general y € P2, |AH—2A| is a base-point free pencil on
Viy, inducing a second Abelian surface fibration m,: ngy —P!'. A4 fibre A' of m,
is a (2,8) or (4,4)-polarized Abelian surface, mapped to P as a surface of degree 32.

Proof. By [GP1], Corollary 2.7, A C Wy for all z € A C P’, so in particular the
quartic hypersurface Q, = {detM4(x, z) = 0} vanishes doubly along the Abelian sur-
face A and, hence, defines an element of [4H—2A4]| on ngyy, for all z € A. One checks
for a special value of y, and therefore also for the general y, that the divisors
Q.s in |4H-2A| span at least a pencil. For example, one may take
y = (0:1:/=2) € P*> for some LeC* and 4 = Xé, so that Vg, is given by the
equations {c¢'(f; + Af2) =0}, and then take z; = (1:0:---:0), z; = (0:1:0: ---: 0).
Then Q., = {xox2x4x6 = 0}, while Q., = {x1x3xs5x7 = 0}, and one can check by hand
that 13, N 0., NQ., = Xg', at least set-theoretically. Thus Q., and Q., in particular
define two independent elements of [4H—2A|, and hence this linear system is at least
a pencil. In addition, this shows that |4 H—2A| has base locus contained in 4. Since A
could have been chosen to be any member of | 4], the base locus of |4 H—2A| must be
supported on the base locus of |4]|. In the model ng’y, this base locus is the union of
the 49 exceptional P"’s of numerical class |e|. On the other hand, from the
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intersection tables in Remark 6.10, we compute on Véy that (4H—2A4)-e=2, so
4H—-2A is nef.

Since (4H —2A4)* = (4H —24)°H = (4H —24)’4 =0 it follows by [Og] that
|4H—2A)| is base-point free and induces a map to P', with fibres either isomorphic
to a K3 or an Abelian surface. Since, moreover, [2H—A| is empty as the quadrics
containing 4 are precisely those containing F3,, we see that an element
A’ €|4H—-2A| is irreducible. It is in fact an Abelian surface: by [Og], it is enough
to note that (4H — 24) - cz(ng’y) =0, and this can be verified easily.

Fix now a general point z € 4 C P” and define i_: P” - -» P'° to be the rational
map induced by the 3 x3-minors of the symmetric matrix My(x, z). We regard here
., as the restriction to P’ of the Cremona involution ®: P'* - -» P!> which associates
to each 4x4 matrix its adjoint matrix. @ is not defined on the locus X, of rank <2
matrices (the secant variety to the Segre embedding of P? x P3 into P'), it contracts
the locus X3 of rank < 3 matrices (a quartic hypersurface defined by the
determinant) to the locus X; of rank < 1 matrices (the Segre embedding of
P? x P? into P'%), and it is one-to-one outside of the locus X3.

In particular . is birational onto its image and an isomorphism outside the
quartic hyper-surface Q.. Since O4(3H — A) = O4(H + D), where D is a 2-torsion
element, possibly zero, we also deduce that . maps any Abelian surface 4’ in
|[4H—2A| via a linear system induced by the restriction of |[H+D|. Let 4. be the
surface in |[4H—2A| corresponding to the quartic Q.. Then ., maps A, into the
intersection of the Segre embedding of P* x P? ¢ P!> and ( Vg,,); in other words
the restriction of H+D to A, decomposes as the sum L, + L,, where each L;
induces the map on one of the two P? components. Interchanging L; and L,
amounts to transposing My(x, z), and since M4(x, z)' = My(x, 1(z)), we deduce that
Ly and L, are numerically of the same type, and so on A’, we have H=2L,
where L induces a polarization of type (1,4) or (2,2). Hence H is of type (2,8)
or (4,4) on A'. O

Remark 6.15. A straightforward Macaulay/ Macaulay2 computation shows that
|L| induces a 2:1 map of A onto a quartic surfaces in P? which is singular along
two skew lines. Thus, by [BLvS], L must induce a polarization of type (1,4), and
thus the Abelian surfaces in the pencil [4H—2A| are in fact (2,8)-polarized.

Remark 6.16. By [GP1], Corollary 2.7, if 4 € P’ is a Heisenberg invariant
(1,8)-polarized Abelian surface and z € 4, then 4 € Ws .. The expected codimension
of the variety determined by the 3x3 minors of a 4x4 matrix of linear forms is 4. On
the other hand, by [GP1], Theorem 5.2, for special values of z, Wy is the secant
scroll of an elliptic normal curve in P’, so in general Ws. C P’ is a threefold of
degree 20, which is a partial smoothing of a degenerate ‘Calabi-Yau’ threefold,
by Proposition 1.3. It turns out that Wjs ;. is in fact a singular model of Calabi-Yau
threefold.
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We mention without proof interesting facts about Ws.:

Ws.. C P is invariant under the subgroup of Hg generated by ¢ and 7> and has,
in general, 32 ordinary double points. The (1,8)-polarized Abelian surface
A C Ws. moves in a pencil whose base locus contains the singular locus of the
threefold.

By blowing up W3 , along an Abelian surface 4 we obtain a small resolution Wg2 y
which is a Calabi-Yau threefold. A Calabi-Yau threefold in P’ defined by the
3x3 minors of a general 4x4 matrix of linear forms, has Hodge numbers
Al =2, K12 = 34, while for Wéy one has Al =4, h'2 = 4. Let H denote the
pullback of a hyperplane section of W3, to Wé ,- Classes of curves in Wé , includes
[c], the class of the conic in which Wj3, meets P? (see the proof of Theorem 6.3
for the fact that W3, intersects P? in a conic), and [e] the class of an exceptional
P' of the small resolution of Ws.,. Then on the model Wg2 y,

H? =20, H?4 =16, HA? =0, A3 = 32,
H-e=0, H- -c=2, A-e=—1, A-c=4.

The linear system |2H—A| is at least three-dimensional, having a subsystem defined
by the quadrics containing 4. This gives a morphism ¥: Wgz’y —P?, whose image
is in fact a smooth quadric surface and whose fibres are elliptic curves. ¥ maps
the exceptional lines of class e onto the rulings of the quadric Q, while the conics
of class ¢ are contracted. Each ruling of Q induces on Wg2 , @ K3-surface fibration.
A detailed analysis of the geometry of Wj, seems difficult due to the fairly large
rank of the Picard group, which is generated over Q by H, 4 and the fibres of
the above two K3-fibrations.

Remark 6.17. It is interesting to compare the structures described above with those
of a (2,4)-polarized Abelian surface 4 C P’, as studied in [Ba]. While numerically
such a surface A4 looks similar to a (1,8)-polarized Abelian surface, in fact it is
cut out by six quadrics. Any four of these quadrics defined a complete intersection
Calabi-Yau X in P’ containing 4, again in general with 64 ordinary double points.
A Calabi-Yau small resolution X — X exists, but now A"1(X) = h'2(X) = 10.
We will say nothing more about this threefold.

7. Moduli of (1,10)-Polarized Abelian Surfaces

We consider first the representation theory of Hjy on the space of quadrics
HO(OP9(2)). There are four types of five-dimensional irreducible representations
appearing in H°Ops(2)). Indeed, we can write H°(Op(2)) =3V @ 3V,®
313 @ 2Vy;. The three representations of type V; are given by the span of f,
o(f), ..., a*(f), where fzxé—i-x%, X1X9 + X¢X4, OF Xpxg + x7x3. Three represen-
tations of type V5, are given similarly with f = x¢x5, xgxg + X4X1, Or XgX7 + X3X3.

Three representations of type V3 are given by f :xé—xé, X|X9 — XgX4 OF
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Xxpxg — x7x3, and finally the two representations of type Vs are given by
f = X9Xg — X4X] O XgX7 — X3X2.

Note that for y € P?, the matrix Ms(x, y) is skew-symmetric, while for y € Pi,
Ms(x, y) is symmetric. For a general parameter point y € P?, the 4x4 Pfaffians
of Ms(x,y) cut out a variety G, C P’ which can be identified with a Pliicker
embedding of Gr(2,5) in P°. The corresponding varieties defined by the Pfaffians
of Ms(a°(x),y), Ms(a°t°(x),y) and Ms(c>(x), y) are then ¢°(G,), ¢°1°(G,) and
©°(G,), respectively.

Note that the subgroup (¢°, 7°) of Hjg acts on P?, and we denote the quotient of
this action by P /Z, x Z,. By [GP1], Theorem 6.2, we have a map

O10: A0y — P2 /22 x Zs

which essentially maps an Abelian surface to the orbit of its odd 2-torsion points.
The map @ is birational onto its image. Since both spaces are three dimensional,
we obtain the following result:

THEOREM 7.1. AYY is birationally equivalent to P* /7, x Z,. O

Remark 7.2. The quotient P3 /Z, x Z,, being a quotient of P by a finite Abelian
group, is rational by [Miya]. One can also compute explicitly the ring of invariants
of this action, and this ring is generated by quadrics and quartics. There are 11 inde-
pendent invariants of degree 4, and these can be used to map P3 /Z, x Z, into P'°,
where one finds the image to be a singular Fano threefold of index 1 and genus 9.

We also have

THEOREM 7.3. Let y € P* be a general point. Then

(1) The 20 quadrics defining the four Pliicker embedded Grassmannians G, ¢°(G,),
°t(Gy), ©(Gy) span only a 15-dimensional space of quadrics
R, C HO(OP«)(Z)), which as a representation of Hyg is of type V1 ® Vo, & V3;

(2) The subspace R, generates the homogeneous ideal of the (1,10)-polarized Abelian
surface corresponding to the image via @1 of y in P2 /2, x Z,.

Proof. By [GP1], Corollary 2.7, if 4 is a Hj, invariant Abelian surface in P° and
ye ANP? is an odd 2-torsion point, then 4 C G, Na*(G,)N(G,) N1 (G)),
so all quadrics in the subspace R, vanish on 4. In fact, Theorem 6.2 of [GP1] states
that 4 = G, Na°(G,) N7°(G,), and, moreover, the corresponding space of 15
quadrics generates the homogeneous ideal of 4 in P°. Thus we must have dim
R, =15.To see how R, decomposes as an H;o representation, it is sufficient to check
the isomorphism R, = V1 @ V> @ V3 for a special value of y. One may use the point
»=1(0:1:1:0:0:0:0:0: —1: —1) € P?, which in the notation of [GP1], §4, yields
the degenerate surface X, whose homogeneous ideal, by [GP1] Theorem 3.6, is
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generated by the quadrics
{XiXip2 + Xic1Xig3 | 1 € Zyo} U {xixiys | | € Zyo}.
This clearly decompose as V1 @ V, @ V3. O

THEOREM 7.4. (1) For general y € P*, Vioy = G, N(Gy) C P° is a Calabi-Yau
threefold with 50 ordinary double points, which is invariant under the subgroup gen-
erated by o and t. The singular locus of Vio, is the (a°,t)-orbit of {a>(»)}. If
A C Vi, is the Hyg-invariant (1,10)-polarized Abelian surface which has y as an
odd 2-torsion point, then the linear system |2H—A| induces a 2:1 cover from
Vi, to the symmetric HM-quintic threefold Xs, C P*, where

V' = (1y2 + y3pa —yayai yiva yiva: —yay3) € PL C P*

(see Proposition 3.4).

2 IfyeAdn Pi, let Wi, C P° be the variety defined by the 3x3 minors of the
matrix Ms(x,y). For general y, this is a Calabi—Yau threefold of degree 35 with
25 ordinary double points. Furthermore, Wi, is not simply connected, but has
an unbranched double cover birational to Xs, C P*, with

V' = Q3ys — Y1y2): Yoy1 — yaYsi ya¥s — Yoy3iYays — YoY3i VoY1 — Vays)
eP2 cPh

Proof: (1) To understand the singularity structure of V¢ ,,, we will first understand
the image of the map induced by the linear system |2H—A| in P*, and show that this
map expresses Vg, as a partial resolution of a double cover of X5, € P* branched
over its singular locus.

First we note that for general y € P, V10, 1s an irreducible threefold of degree 25.
To see this, we show it is true for special choice of y. Choose y € P? so that y; = ys,;.
Then Ms(x, y) = (x}+jy,-_j) where x;ﬂ = Xiyj + Xitj+5. Thus G, is just a cone over an
elliptic normal curve E in the P* given by {x; — x;.5 = 0}, with vertex the P* given
by {x; + xiys = 0}. G,y is a similar cone over ©(E), and then Vioy = Gy N Gy
is just the linear join of E and t°(E), which is an irreducible threefold of degree
25, by Proposition 1.4. For general y, G, and G5, have dimension 6 and degree
5in P%, so Gy, N Gy, 1s expected to be of dimension 3 and degree 25. Since this
holds for special y, it holds for general y.

Next we show that Vo, contains a pencil of Abelian surfaces. Let / be the line
joining y and t°(y), so that ¢°(/) is the line joining ¢°(y) and t°¢°(y). Let
z e a(l), such that z¢{c°(y) + (), 6°(y) — 6°t°(p)}. Then there is a linear
transformation TePGL(P°) of the form T =diag(a,b,...,a,b) such that
T%(z) = 6°(y). Note that ©°T = T1°, ¢°T = T~'¢® in PGL(P’), and that for any
w e P2, we have T(G,,) = Gr-1(4)- (The significance of these communtation relations
will be explained in more detail in §1 of [GP3].) Denote by A7) C P’ the Abelian
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surface determined by 7(z) € P?, i.e.
AT(Z) = GT(z) N GO'S T(z) N Gr5 T(z) N G<75r5 T(z)-
Then

T(A7rz) = G- N Gys 72() NV G5y N Gos sy
=G.N GTS(Z) NG, N GTS(),))
- VlO,y'

As z varies on ¢°(/), the point T( z) also varies on this line, and thus we obtain a pencil
of distinct (1,10)-polarized Abelian surfaces in V1o,,, filling up V1¢,, by irreducibility.
Note that in particular, 6°(z) = T(c°(T(2))) € T(A7()) moves along the line /. Thus
[ € Vio,y, and each Abelian surface in the pencil intersects the line /.

Now we will study the linear system [2H—A| on Vi ,. To do so, we must first
understand the equations of V¢, more deeply. The Pfaffian of the matrix obtained
by deleting the first row and column of Ms(x, y) is

p = — XoX5(y1y2 + ¥3y4) + (X1X4 + X6X9)y2y3 — (X2X3 4 X7X8)y1V4+
+ (3377 + X2x8p7) — (XaX6Y3 + X1X913) + (X2y13 + XZp2ya).
The ideal of Vi, is then generated by

(6%(p) |0 <i<4}U{’c¥(p)| 0 <i<4h

On the other hand, the ideal of A4 is generated by these ten quadrics plus the
additional quadrics {¢%*3(p) | 0 < i < 4}. Thus in particular, if we set

fi=30%((p +7(P) +p + ()

we see that

Ji = (X342iX742i + x2+2ix8+2i)0/% + J/zz;)‘i‘
+ (X35 + X5) 113 + Y2ya) — (Xas2iXe12iX142i%042) (V3 + 13)s

and that fy, . . ., fa are linearly independent quadrics which are still linearly indepen-
dent when restricted to Vig,. Furthermore, each f; vanishes on 4, and in fact
Jo,....facut out 4 on Vig,. Thus fo, ..., fs define a four-dimensional linear sub-
system of |H0(OV1(),),(2))| whose base locus is precisely the Abelian surface A4.

We now use fo, . .., f4 to define a rational map f: Vig - -» P*. We describe next its
image. The map fis induced by the linear system [2H—A| on Vlzo, » where the model
V120,y —> V10, is obtained by blowing up Vi, along 4. We also denote by f the
induced morphism ¥, , —P*.

Let z be a general point on the line ¢°(/) joining ¢°(y) and ¢°7°(y), and T as before.
Let us consider the restriction of f to the surface A’ = T(Ar()). There are two
alternatives. First if AN A’ is an isolated set of points, then the number of these
points is divisible by 50, since 4 and A’ are invariant under the action of t and
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2. Since 6°(y) € AN A', we have at least 50 such points, and the degree of f: 4’ - -»P*
is4 - 20—a - 50, for some a > 1, which is nonnegative only if a = 1. Thus 4 N A’ can
only consist of one (62, 7)-orbit of ¢°(y), and 4 must intersect A transversally. Thus
the proper transform of A4’ in V,zo,y, which we denote by A', is A’ blown up in
50 points.

The second alternative is that 4 N A’ contains a curve C. In this case, since A4 is
general, the curve C can only be numerically equivalent to nH on A’, for some
n. Since A is cut out by quadrics, n < 2. On the other hand, since 4 and A’ are
invariant with respect to ¢> and 1, so is C. However, by [LB], Ex. (4), p. 179, this
is impossible. Thus this case does not occur!

Next observe that for x € Vig,, f(x) = f(t°(x)), since each f; is t°-invariant. Thus
factors via V19, — Vi9,,/(7°) - -»P*. Now ° acts on 4’. The (1,10) polarization £ on
A’ descends to a (1,5) polarization £ on 4’/7°, and fy, . .., f4 descend to sections of
L£'®?. The map f: A'/75- -»P* lifts then to a morphism f: A'/t° —P*. It is easy
to see that f satisfies all the hypotheses of Proposition 3.6. Thus f maps
T (A7), for z general, to a Heisenberg invariant Abelian surface 4” C P* of degree
15, and A” is contained in a quintic X5, C P* for any )’ € 4”. If we find a point
' which is contained in f(7 (A7) for all z € 6°(l), then f(V19,,) € Xs,. A simple
calculation shows that

S() = (2 4 y3yai —yay3i yiva: yiya: —yays) =y

Since T'(Ar(;)) intersects / for each z, y’ is the desired point, and so (Vi) € X5,. To
show that f maps two-to-one onto Xs ., we observe thaton V'j, , Hand 4 are Cartier
divisors, with H?® =25, H*4 =20, HA*> =0 and A = —50, (the latter holds since
(2QH — A)* - 4 =30, as f maps A two-to-one to a degree 15 surface in P*). From
this we see that (2H — A)’ = 10. Thus S (Vo) = X5, and f maps two-to-one
generically.

To compute the branch locus of the double cover f Vlzo’y —> X5, we need to
identify the fixed locus of the involution 7> acting on Vjg,. This is easily done:
the fixed locus of 7° acting on P’ consists of

Ly = {x0 = X2 = x4 = X¢ = xg = 0}
and
Ly = {x1 =x3 =x5 = x7 =x9 =0}
Note we can write
Ms(x, y) = (X6(i)V6(i—i) T X6(i-4)+5V6(—j)+5)0 < ij < 4>

making it clear that

Ms(x,9)|1, = —Ms(T°(x), V)1, = (Xe(i/)+5V6(—)+5)0 < <4
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and
Ms(x, y)|1, = Ms(T(x), )|, = (Xe() V)0 < i, < 4-

Each of these are skew-symmetric Moore matrices on P*. Thus by [Hul] and
[ADHPRZ2], Proposition 4.2, each of these matrices drops rank on an elliptic normal
curve. Thus (Lo U Ly) N Vip, = Ey U E, the disjoint union of two elliptic normal
curves. This is the fixed locus of 7° acting on Vjg,. It is now clear that f must
map Ey and E; to the two singular curves of X5, of Proposition 3.4, (3).

We can now understand from this the singularity structure of Vlzo’ ,- First note that
the exceptional locus of 7;: Vlzo.y —> V1o,y consists of 50 P"s. 4 is a Cartier divisor on
Vo ,» S0 in particular Vi, , is nonsingular along any nonsingular element of the linear
system |A|. But the exceptional locus of 7, is contained in the base locus of | 4], hence
Vlzoqy is nonsingular along the exceptional locus. In particular, since 7, is the small
resolution of 50 ordinary double points and wy,,, is trivial, so is oy

Let VIZOJ, N Xs.y BN X, be the Stein factorization of f: Vlzo’y —> Xs,s. Then s,
is branched precisely over Sing(Xs /), and is a double cover. From the description of
the singularities of X5, of Proposition 3.4, (5), one sees that sz(Sing()A( 5,)) is the
Heisenberg orbit of )’, and shows that 5(5’},/ has one ordinary double point sitting
over each point of the orbit of y'.

Next consider s;: Vlzo,y —X 5. We have already seen that f{/) =)’; thus s; must
contract / and its (¢?, t)-orbit (25 lines) to the 25 ordinary double points of
X. 5,y Since oy and o %, are trivial, s; must be crepant, and the only possibility
then is that s; only contracts these 25 lines, while V120,y is nonsingular. Thus
V1o, itself has 50 ordinary double points obtained by contracting the exceptional
locus of ;.

(2) Fix any point y € Pi. Consider first P(Sym?(C°)) = ProjC[{x;|0 <1i,j < 4,
x;j = x;;}]. The generic symmetric matrix M = (x;) has rank 2 precisely on
Sym?(P*) € P(Sym?(C%)). One computes that Sym?(P*) has degree 35 in this
embedding and thus Wj, can be described as i(P%) N Sym?(P*), where i:
P’ —P(Sym?*(C?)) is the linear map given by Xij = XijViej + Xigj+5Yijt+5. Thus,
if the intersection is transversal, Wjo, has dimension 3 and degree 35.

To understand W, further, consider it embedded in Sym?(P*) via the map i. Let
. P* x P4—>Sym2(P4) be the quotient map, and let zg,...,z4, Wy, ..., ws be
coordinates on the first and second P*s, respectively. The map = is given by
Xjj = ziw; + zjw;. Let us determine the equations of n‘l(Wloyy), which is a double
cover of Wjg,. One checks easily that the equations of i(P?) are

{3ps — y1v)xii + oyt — Yays)Xi—i,iv1 + (2ys — yoy3)xi—aiva =01 0 < i < 4).
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Hence n~!(Wjq,) is given by the five bilinear equations

{(v3ya — y1y2)2ziwi) + Voy1 — Yays)(ziciWwi1 + Zipiwiz1)+
+ (12ys — yoy3)(Zi—aWiga + zZigawi—2) = 0}.

If we write

Vo = 2(3ys — y1¥2)s Y1 = Vi = yoy1 — yays, Yy = V5 = ya¥s — Yoy,

then we can rewrite the above set of equations as L( z,y”)w =0, where L(z,)") is the
5x5 matrix L(z, ") = (z2ipi_))- If p1,pa2: P* x P* —P* are the first and second
projections, then X; ,, = pl(n*I(Wloqy)) is given by the equation {det L(z,)”)=0}.
Thus it is clear that Wy, is of dimension three and hence of degree 35. Note that
this argument shows that a generic intersection of Sym?(P*) and P’ is a nonsingular
threefold (since the singular locus of Sym?(P*) has codimension 4) and has an
unbranched covering which is a Calabi—Yau threefold. We conclude that the generic
section of Sym?*(P*) is a nonsingular Calabi-Yau threefold, and hence also
Ow, = OWI[),y'
Now note that

"L(z,y")w = Myw, y")z

given that y”ePi. Thus, if 5’5,},// C P*z)x P*w) is given by the equation
"L(z,y")w = 0, then p;: X’iyw —> X5, is a birational map andpz(j’syy//) = Xs 7, where
X5, is the (symmetric) Horrocks-Mumford quintic given by »”. Then
p2: Xs,» —> X5 is also birational. Thus we see that n~'(W)o,) is birational to
Xs». In addition, by Proposition 3.4, (4), j@,yu has 50 ordinary double points.
Now pi: n={(Who,) —> X5, is also a crepant partial resolution, and fails to be
an isomorphism where rank L(z,)”) < 3. However, rank L(z, ") = rank’L(z, "),
so p1: )~(5,y~ —>X§’y/, and py: n*I(Wm,y) —>X§,y,, fail to be isomorphisms on the same
set, which by Proposition 3.4, (6), is a union of two degree 5 elliptic curves
E| U E,. Furthermore, py '(E;) € Xs,» and py'(E;) € n~! (W1, are both P!-bundles.
It follows from this description that while j’s’y,, and n*I(Wlo,y) are not necessarily
isomorphic over X3 ,, they must have the same singularity structure, both being
partial crepant resolutions of curves of cA; singularities with 50 ¢4, points. In
particular, n_l(Wlo,y) has 50 ordinary double points.

Finally, it is easy to see that for a general choice of y, n=!(W),) is disjoint from
the diagonal in P* x P*, so that n_l(Wlo,y) —> Wio,, 1s an unbranched covering.
To see this, one can check for one point, e.g. a point of the form
y=00,---»¥s5,...) =(0,y1,2,3,4,0,...), in which case y" = (2(y3ys — y1)2),
0,...,0), and it is particularly easy to see that n~!(Wj,) is disjoint from the

diagonal.
Thus, for general y, Wy, must be a Calabi—Yau threefold with 25 ordinary double
points. [
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Remark 7.5. We discuss the structure of the Kéhler cones of minimal models of
Vioy.

First consider V110,ya obtained by flopping the 50 exceptional curves of
Vi, »—>Vi0,y. Then |4] is a base-point free pencil on V1lo,y- Let H be the pullback
of a hyperplane section. Let e be the class of an exceptional curve of the small res-
olution, and let / be the proper transform of the line / joining y and 7°(y) as in
the proof of Theorem 7.4. Then

H3 =25, H?4 = 20, 4> =0,
H- =1, H-e=0, A-1=2, A-e=1.

One can compute that i"!'(Vj, )= h2 (v, ,)=2, and then it is clear that
Pic( Vll(),y)/ Torsion is generated by H and 4, and the Kédhler cone of V1lo,y is spanned

by H and A.

InVIZOJ,,

H? =25, H?A4 = 20, HA?> =0, A® = =50,
H-1=1, H-e=0, A-1=2, A-e=—1.

The Kéhler cone of V120,y is spanned by H and 2H—A; indeed, it follows from the
proof of Theorem 7.4 that |[2H—A| on V120,y is base-point free and induces the
map V7, , —>X;,,/, and the Stein factorization of this map contracts the (o2, 7) orbit
of [. Thus these 25 lines can be flopped, to obtain a new model V130,y' In this model,

H>=0, H?*4 = 30, HA? = —100, A = 250
Hl:—l’ He:(), Al:—Z, Aez—l

Now |2H—A| induces the morphism f: VIO} —> X5/, and X5, contains a pencil |4'|
of minimal (1,5)-polarized Abelian surfaces. Furthermore, if X!, » C P* x |A'|
defined by

Xi, ={x.9|xeSel4]}

isa part1a1 resolution of X1 5., in which the pencil |4'| is base-point free, then ffactors
throughf VlO} —>X5 ” It is then easy to see that if S is a general element of this
pencil, then /~1(S) is of class 10H—6A4 on V130 Also f 1(S) —> S is a two-to-one
unbranched cover. Thus either f 1(S) is 1rredu01ble or f 1(S) splits as a union
of two (1,5) Abelian surfaces. However, it is not difficult to see that the divisor
SH—-3A4 is effective. For example, choosing a general point z € A, det Ms(x, z) is
a quintic vanishing triply along A. Since a pencil of Abelian surfaces on a
Calabi-Yau threefold cannot have a multiple fibre, we conclude that |SH—3A4| must
be a pencil of Abelian surfaces, and f~ ~1(S) splits. Hence |SH—3A| yields a base-point
free pencil of (1,5)-polarized Abelian surface, and the Kéhler cone of V130, , 1s spanned
by 2H—A4 and SH—3A4.

We will not address the Kédhler cone structure of W), here. Because W'l > 3fora
small resolution of this Calabi-Yau threefold, we in fact expect Wig, to inherit a
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rather complicated Kéhler cone structure from its double cover, a Horrocks—
Mumford quintic. See [Fry] for an analysis of the moving cone of the general
Horrocks—Mumford quintic.
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