
Preface

This monograph is devoted to geometric inverse problems, with emphasis
on the two-dimensional case. Inverse problems arise in various fields of
science and engineering, frequently in connection with imaging methods
where one attempts to produce images of the interior of an unknown object by
making indirect measurements outside. A standard example is X-ray computed
tomography (CT) in medical imaging. There one sends X-rays through the
patient and measures how much the rays are attenuated along the way. From
these measurements one would like to determine the attenuation coefficient of
the tissues inside. If the X-rays are sent along a two-dimensional cross-section
(identified with R

2) of the patient, the X-ray measurements correspond to the
Radon transform Rf of the unknown attenuation function f in R

2. Here, Rf

just encodes the integrals of f along all straight lines in R
2. The easy direct

problem in X-ray CT would be to determine the Radon transform Rf when f

is known. However, in order to produce images, one needs to solve the inverse
problem: determine f when Rf is known (i.e. invert the Radon transform).

One can divide the mathematical analysis of the Radon transform inverse
problem in several parts, including the following:

• (Uniqueness) If Rf1 = Rf2, does it follow that f1 = f2?
• (Stability) If Rf1 and Rf2 are close, are f1 and f2 close in suitable norms?

Is there stability with respect to noise or measurement errors?
• (Reconstruction) Is there an efficient algorithm for reconstructing f from the

knowledge of Rf ?
• (Range characterization) Which functions arise as Rf for some f ?
• (Partial data) Can one determine (some information on) f from partial

knowledge of Rf ?

xv
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xvi Preface

In this monograph we will study inverse problems in geometric settings. For
X-ray type problems this will mean that straight lines are replaced by more
general curves. A particularly clean setting, which is still relevant for several
applications, is given by geodesic curves of a smooth Riemannian metric. We
will focus on this setting and formulate our questions on compact Riemannian
manifolds (M,g) with smooth boundary. This corresponds to working with
compactly supported functions in the Radon transform problem.

We will now briefly describe the main geometric inverse problems studied in
this book. Our first question is a direct generalization of the Radon transform
problem.

1. Geodesic X-ray transform. Is it possible to determine an unknown function
f in (M,g) from the knowledge of its integrals over maximal geodesics?

This is a fundamental inverse problem that is related to several other inverse
problems, in particular in seismic imaging applications. A classical related
problem is to determine the interior structure of the Earth by measuring travel
times of earthquakes. In a mathematical idealization, we may suppose that the
Earth is a ball M ⊂ R

3 and that wave fronts generated by earthquakes follow
the geodesics of a Riemannian metric g determined by the sound speed in
different substructures. If an earthquake is generated at a point x ∈ ∂M , then
the first arrival time of that earthquake to a seismic station at y ∈ ∂M is the
geodesic distance dg(x,y). The travel time tomography problem, originating in
geophysics in the early twentieth century, is to determine the metric g (i.e. the
sound speed in M) from the geodesic distances between boundary points. The
same problem arose much later in pure mathematics and differential geometry.
It can be formulated as follows.

2. Boundary rigidity problem. Is it possible to determine the metric in (M,g),
up to a boundary fixing isometry, from the knowledge of the boundary distance
function dg|∂M×∂M?

The geodesic X-ray transform problem is in fact precisely the linearization
of the boundary rigidity problem for metrics in a fixed conformal class. If
one removes the restriction to a fixed conformal class, the linearization of
the boundary rigidity problem is a tensor tomography problem. To describe
such a problem, let (M,g) be a compact Riemannian n-manifold with smooth
boundary, and let m be a non-negative integer. The geodesic X-ray transform
on symmetric m-tensor fields is an operator Im defined by

Imf (γ ) =
∫
γ

fj1···jm(γ (t))γ̇ j1(t) · · · γ̇ jm(t) dt,
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where γ is a maximal geodesic in M and f = fj1···jm dxj1 ⊗ · · · ⊗ dxjm is a
smooth symmetric m-tensor field on M . Here and throughout this monograph
we employ the Einstein summation convention where a repeated lower and
upper index is summed. In the above case this means that

fj1···jm dxj1 ⊗ · · · ⊗ dxjm =
n∑

j1,...,jm=1

fj1···jm dxj1 ⊗ · · · ⊗ dxjm .

If m ≥ 1 the operator Im always has a non-trivial kernel: one has
Im(σ∇h) = 0 whenever h is a smooth symmetric (m − 1)-tensor field with
h|∂M = 0, ∇ is the total covariant derivative, and σ denotes the symmetrization
of a tensor. Tensors of the form σ∇h are called potential tensors. If m = 1,
this just means that I1(dh) = 0 whenever h ∈ C∞(M) satisfies h|∂M = 0.
Any 1-tensor field f has a solenoidal decomposition f = f s + dh where f s

is solenoidal (i.e. divergence-free) and h|∂M = 0. Thus it is only possible to
determine the solenoidal part of a 1-tensor f from I1f . This decomposition
generalizes to tensors of arbitrary order, leading to the following inverse
problem.

3. Tensor tomography problem. Is it possible to determine the solenoidal part
of an m-tensor field f in (M,g) from the knowledge of Imf ?

A variant of the geodesic X-ray transform, arising in applications such as
SPECT (single-photon emission computed tomography), includes an attenua-
tion factor. In this case, f ∈ C∞(M) is a source function and a ∈ C∞(M) is
an attenuation coefficient, and one can measure integrals such as

Iaf (γ ) =
∫
γ

e
∫ t

0 a(γ (s)) dsf (γ (t)) dt, γ is a maximal geodesic.

This is the attenuated geodesic X-ray transform of f , and a typical inverse
problem is to determine f from Iaf when a is assumed to be known. Clearly
this reduces to the standard geodesic X-ray transform when a = 0. Similar
questions appear in mathematical physics, where the attenuation coefficient is
replaced by a connection or a Higgs field on some vector bundle over M . This
roughly corresponds to replacing the function a(x) by a matrix-valued function
or a 1-form.

4. Attenuated geodesic X-ray transform. Is it possible to determine a
function f in (M,g) from its attenuated geodesic X-ray transform, when the
attenuation is given by a connection and a Higgs field?

This question also arises as the linearization of the scattering rigidity
problem (or the non-Abelian X-ray transform) for a connection/Higgs field.
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One can ask related questions for tensor fields and also for more general
weighted X-ray transforms.

Finally, we consider a geometric inverse problem of a somewhat different
nature. Consider the Dirichlet problem for the Laplace equation in (M,g),{

�gu = 0 in M,

u = f on ∂M .

Here �g is the Laplace–Beltrami operator on (M,g), given in local coordinates
by

�gu = |g|−1/2∂xj
(|g|1/2gjk∂xku

)
,

where (gjk) is the inverse matrix of g = (gjk), and |g| = det(gjk). This is a
uniformly elliptic operator, and there is a unique solution u ∈ C∞(M) for any
f ∈ C∞(∂M). The Dirichlet-to-Neumann map �g takes the Dirichlet data of
u to Neumann data,

�g : f 
→ ∂νu|∂M,

where ∂νu|∂M = du(ν)|∂M with ν denoting the inner unit normal to ∂M .
The above problem is related to electrical impedance tomography, where

the objective is to determine the electrical properties of a medium by mak-
ing voltage and current measurements on its boundary. Here the metric g

corresponds to the electrical resistivity of the medium, and for a prescribed
boundary voltage f one measures the corresponding current flux ∂νu at the
boundary. Thus the electrical measurements are encoded by the Dirichlet-to-
Neumann map �g . There are natural gauge invariances: the map �g remains
unchanged under a boundary fixing isometry of (M,g), and when dimM = 2
there is an additional invariance due to conformal changes of the metric. This
leads to the following inverse problem.

5. Calderón problem. Is it possible to determine the metric in (M,g), up to
gauge, from the knowledge of the Dirichlet-to-Neumann map �g?

In this monograph we will discuss known results for the above problems,
with an emphasis on the case where (M,g) is two dimensional. One reason
for focusing on the two-dimensional setting is that the available results and
methods are somewhat different in three and higher dimensions. This is also
suggested by a formal variable count: in the questions above we attempt to
determine unknown functions of n variables from data given by a function of
2n − 2 variables. Thus the inverse problems above are formally determined
when n = 2 and formally overdetermined when n ≥ 3. This indicates that
there may be less flexibility when solving the two-dimensional problems. On
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the other hand, the possibility of using methods from complex analysis will
give an advantage in two dimensions.

Another reason for focusing on the two-dimensional case is that the two-
dimensional theory is at the moment fairly well developed in the context
of simple manifolds. A compact Riemannian manifold (M,g) with smooth
boundary is called simple if

• the boundary ∂M is strictly convex (the second fundamental form of ∂M is
positive definite),

• M is non-trapping (any geodesic reaches the boundary in finite time), and
• M has no conjugate points.

Examples of simple manifolds include strictly convex domains in Euclidean
space, strictly convex simply connected domains in non-positively curved
manifolds, strictly convex subdomains of the hemisphere, and small metric
perturbations of these.

In this book we will show that questions 1–4 above have a positive answer
on two-dimensional simple manifolds, and question 5 has a positive answer on
any two-dimensional manifold. In particular, this gives a positive answer in two
dimensions to the boundary rigidity problem posed by Michel (1981/82). The
original proof of this result in Pestov and Uhlmann (2005) employs striking
connections between the above problems: in fact, it uses the solution of the
geodesic X-ray transform problem and the Calderón problem in order to solve
the boundary rigidity problem.

We will also see that there are counterexamples to questions 1–4 if one
goes outside the class of simple manifolds. However, it is an outstanding
open problem whether questions 1–4 have positive answers in the class of
strictly convex non-trapping manifolds (i.e. whether the no conjugate points
assumption can be removed).

While the emphasis in this monograph is on the two-dimensional case, a
large part of the material is valid in any dimension ≥ 2. In Chapters 1–8 the
results are either presented in arbitrary dimension, or they are first presented
in two dimensions and there is an additional section describing extensions to
the higher dimensional case. However, the methods in Chapters 9–14 involve
fibrewise holomorphic functions and holomorphic integrating factors, and
these are largely specific to the two-dimensional case.

The field of geometric inverse problems is vast, and the present monograph
only covers a selection of topics. We have attempted to choose topics that have
reached a certain degree of maturity and that lead to a coherent presentation.
For the chosen topics, we have tried to give an up-to-date treatment including
the most recent results. However, there are several notable omissions such
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as results specific to three and higher dimensions, the case of closed man-
ifolds, further geometric inverse problems for partial differential equations,
inverse spectral problems, and so on. Some of these are briefly discussed in
Chapter 15.

As for the references, we have not aimed at a complete historical account
of the results presented here. In the main text we have cited a few selected
references for each topic, and in Chapter 15 we give a number of further refer-
ences on related topics. We refer to the bibliographical notes in Sharafutdinov
(1994) for an account of results up to 1994. The survey articles Paternain et al.
(2014b); Ilmavirta and Monard (2019); Stefanov et al. (2019) contain a wealth
of references to further results.

We assume that readers are familiar with basic Riemannian geometry
roughly at the level of Lee (1997). We also assume familiarity with elliptic
partial differential equations and Sobolev spaces in the setting of Rieman-
nian manifolds, as presented e.g. in Taylor (2011). There are numerous
exercises scattered throughout the text and the more challenging ones are
marked with a ∗.

Outline

One intent of the present text is to provide a unified approach to the questions
1–4 while exposing the main techniques involved. Having this in mind we have
structured the contents as follows.

Chapter 1 considers basic properties of the classical Radon transform in
the plane and discusses briefly the Funk transform on the 2-sphere. These
homogeneous geometric backgrounds are particularly amenable to the use of
standard Fourier analysis and provide a quick introduction to the subject. Chap-
ter 2 studies rotationally symmetric examples and the well-known Herglotz
condition that translates into a non-trapping condition for the geodesics.

Chapter 3 discusses at length the necessary geometric background. The
starting assumptions on compact Riemannian manifolds is that they have
strictly convex boundary and no trapped geodesics. This combination produces
an exit time function that is smooth everywhere except at the glancing region,
where its behaviour is well understood. This setting is good enough to define all
X-ray transforms arising in the book (standard, attenuated, and non-Abelian),
and it is also good enough to study regularity results for the transport equation
associated with the geodesic vector field as it is done in Chapter 5. As
we mentioned above when we add the condition of not having conjugate
points we obtain the notion of simple manifold; this is also discussed in
Chapter 3.
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In Chapter 4 we introduce the geodesic X-ray transform and we establish
the important link with the transport equation. This link gives in particular that
the geodesic X-ray transform I0 is injective if and only if a uniqueness result
holds for the operator P = VX, where X is the geodesic vector field and V the
vertical vector field. This brings us to the first core idea in this book. To tackle
this uniqueness problem for P we use an energy identity called the Pestov
identity, which emerges from studying the commutator [P ∗,P ]. The absence
of conjugate points gives a way to control the sign of the terms that arise from
this commutator. Variations of this identity will be used to study attenuated and
non-Abelian X-ray transforms in Chapter 13.

Chapter 6 provides some tools that are specific to two dimensions. Here we
follow the approach of Guillemin and Kazhdan (1980a), and we take advantage
of the fact that there is a Fourier series expansion in the angular variable (i.e.
with respect to the vertical vector field V ) and that the geodesic vector field
decomposes as X = η+ + η−, where η± maps Fourier modes of degree k to
degree k±1. The Fourier expansions make it possible to consider holomorphic
functions and Hilbert transforms with respect to the angular variable, and a
certain amount of ‘vertical’ complex analysis becomes available. On the other
hand, the operators η± are intimately connected with the Cauchy–Riemann
operators of the underlying complex structure of the surface determined by
the metric. These tools get deployed right away in Chapter 7 where we study
solenoidal injectivity and stability for the geodesic X-ray transform under the
stronger assumption of having non-positive curvature.

Chapter 8 contains the second core idea in the book. This is based on the
central fact that when the manifold (M,g) is simple, the normal operator I∗

0 I0

is an elliptic pseudodifferential operator of order −1 in the interior of M . The
ellipticity combined with the injectivity of I0 gives a surjectivity result for the
adjoint I ∗

0 . It is this last solvability result that plays a key role in all subsequent
developments, and it may be rephrased as an existence result for first integrals
of the geodesic flow with prescribed zero Fourier modes.

Chapter 9 discusses inversion formulas up to a Fredholm error and the range
of I0. The description of the range is possible, thanks to the surjectivity of
suitable adjoints following the outline of Chapter 8. Chapter 10 deals with
tensor tomography, but also explains how to obtain the important holomorphic
integrating factors from the surjectivity of I ∗

0 . Here, the holomorphicity is in
the sense of Chapter 6, i.e. in the angular variable.

Chapter 11 is devoted fully to question 2 above on boundary rigidity and
its relation to the Calderón problem. Chapter 12 proves injectivity for the
attenuated X-ray transform using holomorphic integrating factors and finally
Chapters 13 and 14 discuss the non-Abelian X-ray transform and attenuated
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X-ray transform for connections and Higgs fields. The book concludes with
Chapter 15 including a brief summary of the most relevant open problems and
a discussion on selected related topics.

The results presented in this monograph are scattered in research articles,
and we have aimed at giving a unified presentation of this theory. Some
arguments may appear here for the first time. These include a detailed proof
of the equivalence of several definitions of simple manifolds in Section 3.8, a
direct proof of a basic regularity result for the transport equation in Section 5.1,
a relation between the Pestov–Uhlmann inversion formula and the filtered
backprojection formula in Section 9.5, and a proof that the scattering relation
determines the Dirichlet-to-Neumann map in Section 11.5 based on boundary
values of invariant functions.
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