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O N I N C - E X T E N S I O N S A N D P O L Y N O M I A L S 
W I T H U N I T C O N T E N T 

BY 

D A V I D E. D O B B S 

ABSTRACT. It is proved that if u is an element of a faithful 
algebra over a commutative ring R, then u satisfies a polynomial 
over R which has unit content if and only if the extension R <= R[u] 
has the imcomparability property. Applications include new proofs 
of results of Gilmer-Hoffmann and Papick, as well as a characteriza
tion of the P-extensions introduced by Gilmer and Hoffmann. 

1. Introduction and summary. Each ring considered in this note will be 
assumed commutative, with unit. We also understand by an inclusion (exten
sion) of rings that the smaller ring is a subring of the larger and possesses the 
same multiplicative identity. Our use of the inclusion symbol will not preclude 
the possibility of equality. 

The principal motivation for our work arises from the following unpublished 
characterization of integrality in terms of the lying-over (LO) and incompara-
bility (INC) properties. One proof of this result follows readily from Zariski's 
main theorem (as formulated, for example, in [3]); a simpler proof is available 
by pursuing the reasoning in [6, Exercise 19, p. 42]. We first learned of this 
result in May, 1970, and believe that it should be attributed to Graham Evans. 

FOLKLORE THEOREM. For rings R <= T, the following are equivalent: 
(1) T is an integral extension of R; 
(2) For any inclusions of rings i? c: A <= £ c T, the extension A^B satisfies 

both LO and INC; 
(3) For any inclusions of rings RczA^T and any element ueT, the exten

sion A c A [ w ] satisfies both LO and INC. 

It seems natural to ask which weakening of integrality (condition (1) above) 
is characterized by the condition(s) obtained by deleting references to LO in 
(2) and (3) above. As detailed in Corollary 4 in Section 3, the answer is: the 
notion of P-extension recently introduced by Gilmer and Hoffmann [4]. To 
review and expand upon the terminology in [4], given rings R^T and an 
element ueT, we say that u is primitive over R in case u is a root of a 
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polynomial feR[X] with unit content, i.e. such that the coefficients of / 
generate the unit ideal of JR; if each element of T is primitive over R, then 
R c T is said to be a P-extension. It is useful to record the following consequ
ence of [4, Theorem 1]: u is primitive over JR (if and) only if u is a root of a 
polynomial geJR[X] such that at least one coefficient of g is a unit of R. 

Corollary 4, the above-mentioned analogue of Evans' result, is an easy 
consequence of our main result, which may now be stated. 

THEOREM. For any rings R^T and any element ueT, u is primitive over R if 
and only if the extension R<^R[u] satisfies INC. 

Section 2 is devoted to proving the result just stated. Included among its 
applications, which are collected in Section 3, are a characterization of integral
ity in terms of primitivity (see Remark 8(c)) and new proofs of some results of 
Gilmer-Hofïmann [4] and Papick [9]. Of these, we mention here only Corol
lary 5, which uses INC to recapture the connection, established in [4, Theorem 
5], between P-extensions and (integral closures being) Priifer domains. 

2. Proof of theorem. The "only if" half may be proved by modifying one of 
the standard proofs that integral extensions satisfy INC. Indeed, if u is 
primitive over .R but ,RcijR[u] does not satisfy INC, then the failure of INC 
supplies distinct comparable prime ideals Q ^ Q2 of R[u] such that Q1HR = 
Q2C\R ( = , say, P). Note that OiK[w]RXP and Q2R[u]R\P are then distinct 
comparable prime ideals of i?[u]R \P which each meet RP in PRP; that is, 
KP<= JR[u]R\p also fails to satisfy INC. If v is the image of u in JR[M]RXP, then 
^ [ W 1 R \ P

 =
 ^ P M ; moreover, v is primitive over JRP since u is primitive over R. 

Hence, R may be assumed quasilocal, with maximal ideal P. Now, the integral 
domain B = JR[W]/QI is generated as an algebra over A = R/P by w = u + Qt. 
As w is primitive over the field A, it follows that w is integral over A and so B 
is integral over A, whence B is a field (cf. [6, Theroem 44]). This contradicts 
the presence of the nonzero prime ideal Q2IQ\ in B, and completes the proof 
of the "only if" half. 

Conversely, suppose that R c R[u] satisfies INC; our task is to show that u 
is primitive over R. We first treat the case in which R is quasilocal, with 
maximal ideal M. Let h be the K-algebra homomorphism K[X]—>K[w] 
sending X to u. If the assertion is false, then ker(h)c=MR[X], since any 
polynomial in R[X]\MK[X] has unit content. By the second isomorphism 
theorem, h induces an JR-algebra isomorphism between K [ X ] / M J R [ X ] and 
R[u]/MR[u]. As the former is isomorphic to the ring of polynomials in one 
variable over the field R/M, it follows that MR[u] is a non-maximal prime 
ideal of R[u]. The desired contradiction (to the hypothesis that R<^R[u] 
satisfies INC) arises since MR[u]C\R = M= NC\R for each maximal ideal N 
of R[u] which contains MR[u]. 
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If JR is not necessarily quasilocal, then for each maximal ideal M of R, let uM 

denote the image of u in K[W]R\M- AS in the proof of the "only if" half, the 
extension RM <= R[u]R\M = RM[uM] inherits INC from R c R[u]. Consequently 
by the quasilocal case treated in the preceding paragraph, there exists / M e 
jRM[X], with unit content, such that /M("M) = 0e^M["M]- Hence, for each M, 
there exists gM e R[X] such that gM(") = 0e R[U] and at least one coefficient of 
gM lies in R\M. If J is the content of u, that is the ideal of .R generated by the 
coefficients of all the polynomials over R which u satisfies, the preceding 
argument gives 1+ M for each M. Thus, 1 = R. The proof may now be 
completed by appealing to [4, Corollary 1]; for completeness, we provide the 
remaining detail. As l e i , we have 1 = Sr^ , where r^eR and ct is the 
coefficient of Xki in some feR[X] such that ft(u) = 0. Set k ^ m a x k ; and 
f = LrifiX

k~ki. Since f(u) = 0 and the coefficient of Xk in / is XrtCi = 1, the proof 
is complete. 

3. Applications. If JR <= T are rings and X is an indeterminate over T, it is 
easy to see that RczT will inherit any of the properties going-up (GU), 
going-down (GD), LO and INC from -R[X]<= T[X]. The converses in the first 
three cases have each received attention. Indeed, if R c= T satisfies GU (resp., 
GD), then R[X]c=T[X] need not satisfy GU (resp., GD). The assertion 
regarding GU was established by Kaplansky [5] who actually proved that T is 
integral over R whenever R[X]<= T[X] satisfies GU; building on [5], Dawson 
and Dobbs [1, Example 3.9] established the assertion about GD. However, 
R[X]aT[X] will inherit LO from R^T: this was shown by McAdam [7, 
Proposition 1] for integral domains, and was noted in [5] for the general case. 
The next result and remark treat the case of INC. 

COROLLARY 1. Let R<^T be rings, such that T= R[u] for some ueT. Let X 
be an indeterminate over T. Then .R[X]c=T[X] satisfies INC if (and only if) 
RaT satisfies INC. 

Proof. If JR <= T satisfies INC, our theorem implies that u is primitive over 
R; a fortiori, u is then primitive over J^[X]. As T[X] = (K[X])[w], another 
application of the theorem shows that R[X]c:T[X] also satisfies INC, as 
desired. The parenthetical assertion was observed above, but may also be 
proved using the theorem. 

REMARK 2. One cannot remove the hypothesis in Corollary 1 that T may be 
generated as an JR-algebra by one element. For example, let R c T be distinct 
fields, such that R is algebraically closed in T. Then R c T satisfies INC, by 
default (and n o u e T satisfies T=R[u]). Showing that K [ X ] c T[X] does not 
satisfy INC amounts to proving that PDK[X] = 0 for some non-zero prime 
ideal P of T[X]. Take P to be the ideal of T[X] generated by X - t, where t is 
a chosen element of T\R. If there exists non-zero gePDR[X], then factoring 
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g in the ring of polynomials over an algebraic closure of T reveals that t is a 
root of g; that is, t is algebraic over R, a contradiction. Thus, PDR[X]^ 0, as 
claimed. 

The next result is the analogue, for INC, of a result for GD established by 
Dobbs [2, Theorem 2.6]. 

COROLLARY 3. Let R^T be rings, and let u be a unit (i.e. invertible element) 
of T. Then R<^R[u] satisfies INC if and only if R^R[u'x] satisfies INC. 

Proof, By the theorem, out task is to show: u is primitive over R if and only 
if u~x is primitive over R. This, however, is apparent, for if u satisfies an nth 
degree polynomial 2rjX le.R[X], then u~x satisfies Srn_jXl. 

We next give the promised analogue of Evans' result. 

COROLLARY 4. For rings JR <= T, the following are equivalent: 
(1) T is a P-extension of R; 
(2) For any inclusions of rings R c A c f i c T , the extension A^B satisfies 

INC; 
(3) For any inclusions of rings R c A c T and any element u e T, the exten

sion A C A [ M ] satisfies INC; 
(4) For any element ueT, the extension R <= R[u] satisfies INC. 

Proof. Our theorem yields (1)<£>(4). Moreover, (2)^>(3) and (3)=$>(4) tri
vially. 

Finally, if (2) fails, there exist distinct comparable prime ideals Qx <= Q2 of B 
such that Q 1 n A = Q 2 f ïA ( = , say, P). If ueQ2\Qu then Q1C\R[u] and 
Q2r\R[u] are distinct comparable prime ideals of R[u] which each meet JR in 
Pr\R\ thus, R a R[u] does not satisfy INC, and (4) fails. Hence, (4)=>(2), and 
the proof is complete. 

We next turn to the connection between F-extensions and Prufer domains. 

COROLLARY 5. (Gilmer-Hoffmann [4, Theorem 5]). Let R be an integral 
domain, with quotient field K. Then the integral closure of R is a Prùfer domain 
if and only if R^ K is a P-extension. 

Proof. As noted by Papick [8, Proposition 2.26], the integral closure of R is 
a Prufer domain if and only if JR <= A satisfies INC for each overring A of R 
(that is, for each ring A between R and K). By Corollary 4, the latter 
condition is equivalent to the requirement that JR <= K be a P-extension, which 
completes the proof. 

The next result, which generalizes a comment in [9], shows that any 
"coherent pair" (to use the terminology recently introduced by Papick) must be 
a P-extension. 
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COROLLARY 6. Let RczT be integral domains, such that R is not a field. If 
each ring contained between R and T is coherent, then R^T is a P-extension. 

Proof. By [9, Proposition 1], R <= A satisfies INC for each ring A contained 
between R and T. An application of Corollary 4 completes the proof. 

COROLLARY 7 (Papick [9, Corollary 10]). Let R be an integral domain. If 
each overring of R is coherent, then the integral closure of R is a Prufer domain. 

Proof. We offer two proofs. The first merely amounts to combining Corol
laries 5 and 6 (with T= K, the quotient field of R). Another proof, which does 
not rely on Corollary 5, proceeds as follows. Without loss of generality, R may 
be taken integrally closed and quasilocal. As Corollary 6 shows that R <= K is a 
P-extension, the celebrated lemma of Seidenberg (cf. [10, Theorem 6], [6, 
Theorem 67]) guarantees that R is a valuation domain, to complete the proof. 

We close by examining some possible analogies between primitivity and 
integrality. 

REMARK 8. (a) By Corollary 4, any P-extension satisfies INC. However, the 
converse is false. For example, if R is any integral domain whose integral 
closure is not a Prufer domain and T is the quotient field of JR, then R c= T 
satisfies INC by default, although (by Corollary 5) R c T is not a P-extension. 

(b) It is well known that an extension R c T is integral if (and only if) T is 
generated as an R-algebra by integral elements. The analogue of this result for 
P-extensions and primitive elements is, however, false. For an example, let R 
be a G(oldman)-domain whose integral closure is not a Prûfer domain. (For an 
explicit example, consider distinct fields F c L , with F algebraically closed in L, 
and set R = F + YL[[Y]].) As R is a G-domain, its quotient field T may be 
expressed as T = R[u], where ueT satisfies u"1 e R. (In the example, Y - 1 is a 
suitable value for u.) Now, u is primitive over R since u satisfies the linear 
polynomial u~1X- 1, but as in (a), JR c T is not a P-extension. 

(c) In view of the preceding remarks, it is of some interest to note that 
primitivity figures in a characterization of integrality, as follows. An extension 
R <= T is integral if and only if the following two conditions hold: (1) T may be 
generated as an R -algebra by a set of elements each of which is primitive over 
R ; ( 2 ) A c A[u] satisfies GU whenever K <= A <= T and ueT. 

Of course, the "only if" half is immediate. Conversely, to prove that (1) and 
(2) imply integrality: since GU=£>LO [6, Theorem 42], Evans' result reduces 
our task to proving that A c A [ u ] satisfies INC whenever JRczAciT and 
ueT. By Corollary 4, it is enough to show JR c= R[u] satisfies INC for each 
ueT. By (1), for any such u, there exist ul9..., un such that ueR[ut,..., un] 
and each ut is primitive over R. As ui+1 is primitive over R[ul,..., ut], our 
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theorem shows that R[uu ..., ut]^ R[uu . . . , ub ui+l] satisfies INC; then the 
extension JR <= R[u1,..., un~\ satisfies INC, as it is obtained by n successive 
extensions which each satisfy INC. It therefore is enough to prove that the 
extension R[u]<^ R[uu . . . , un] satisfies GU (and hence, LO), for then R c 
R[u] will indeed satisfy INC, as required. However, this is immediate from (2), 
by considering the tower 

R[u] c R[u, u j c R[u, uu u2] c • • • c R[u, uu . . . , un] = R[uu . . . , un] 

of n going-up extensions, to complete the proof. 

COROLLARY 9 (Gilmer and Hoffmann [4, Theorem 4]). Let R^S^T be 
rings. If R^S is integral and S^T is a P-extension, then R^T is a P-
extension. 

Proof. For each ueT, the extension R[u]c:S[u] inherits integrality from 
Re: S and, hence, R[u]^S[u] satisfies GU and INC. Accordingly, it suffices to 
prove the next result. 

COROLLARY 10. Let R^S^T be rings. If R c S satisfies INC, if S^T is a 
P-extension, and if R[u]<^ S[u] satisfies GU for each ueT, then R c T is a 
P-extension. 

Proof. By Corollary 4, it is enough to prove that R a R[u] satisfies INC for 
each u e T. Since S <= T is a P-extension, our theorem yields that S <= S[u] 
satisfies INC. Then the extension R <= S[u] satisfies INC, as it results from the 
tower K c S c S [ u ] . As JR[w]c:S[w] satisfies GU (and LO), consideration of 
the tower R <= R[u]^ S[u] leads to JR<=K[u] satisfying INC, as desired. 
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