TWO-SIDED ESTIMATES FOR POSITIVE SOLUTIONS OF SUPERLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

KENTARO HIRATA

(Received 1 February 2018; accepted 24 July 2018; first published online 30 August 2018)

Abstract

We give two-sided estimates for positive solutions of the superlinear elliptic problem $-\Delta u=a(x)|u|^{p-1} u$ with zero Dirichlet boundary condition in a bounded Lipschitz domain. Our result improves the wellknown a priori L^{∞}-estimate and provides information about the boundary decay rate of solutions.

2010 Mathematics subject classification: primary 35B45; secondary 35J91.
Keywords and phrases: a priori estimate, semilinear elliptic equation.

1. Introduction

Let Ω be a bounded Lipschitz domain in $\mathbb{R}^{n}(n \geq 3)$. We investigate the boundary behaviour of positive weak solutions of the superlinear elliptic boundary value problem

$$
\left\{\begin{align*}
-\Delta u & =a(x)|u|^{p-1} u & & \text { in } \Omega, \tag{1.1}\\
u & =0 & & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $p>1$ and $a(x)$ is a nonnegative function in $L^{\infty}(\Omega) \backslash\{0\}$. A weak solution of (1.1), or simply a solution of (1.1), is a function $u \in W_{0}^{1,2}(\Omega)$ satisfying $|u|^{p-1} u \in$ $\left(W_{0}^{1,2}(\Omega)\right)^{*}$ and

$$
\int_{\Omega} \nabla u(x) \cdot \nabla \phi(x) d x=\int_{\Omega} a(x)|u(x)|^{p-1} u(x) \phi(x) d x \quad \text { for all } \phi \in W_{0}^{1,2}(\Omega) .
$$

First, let us recall some results concerning a priori estimates for this problem. The well-known result due to Brezis-Turner [4] states that all positive weak solutions of (1.1) are bounded in $L^{\infty}(\Omega)$ when $\partial \Omega$ is smooth and $1<p<p_{\mathrm{BT}}:=(n+1) /(n-1)$ (see also [13, Section 11]). Later, the validity of this statement for $1<p<p_{\mathrm{S}}:=$ $(n+2) /(n-2)$ was shown by Gidas-Spruck [6] and de Figueiredo-Lions-Nussbaum [5] under some additional assumptions on $a(x)$. For bounded Lipschitz domains, the a priori L^{∞}-estimate was obtained by McKenna-Reichel [12] who introduced a new

[^0]critical exponent corresponding to the Brezis-Turner exponent p_{BT} (see Remark 1.2). They actually discussed positive 'very' weak solutions and the optimality of the range of p. Note that these results show that every positive (very) weak solution has a continuous representative that belongs to $C^{1}(\Omega)$. If Ω has a C^{2}-boundary, $a(x) \equiv 1$ and $1<p<p_{\mathrm{S}}$, then it is known that every positive (very) weak solution u of (1.1) belongs to $C^{2}(\bar{\Omega})$, that is, u and its first and second partial derivatives on Ω have continuous extensions to $\bar{\Omega}$, and therefore, by the mean value theorem,
\[

$$
\begin{equation*}
u(x) \leq C \delta_{\Omega}(x) \quad \text { for all } x \in \Omega \tag{1.2}
\end{equation*}
$$

\]

where $\delta_{\Omega}(x)$ stands for the distance from a point x to the boundary $\partial \Omega$. Note here that the constant C may depend on u itself because a priori bounds of $\|\nabla u\|_{\infty}$ are unknown. We can see its actual dependence from a result of Bidaut-Véron and Vivier [2], where it is shown that (1.2) holds with a constant C depending only on p, n and Ω if we restrict the range of p to $1<p<p_{\mathrm{BT}}$. However, a lower estimate and an alternative upper estimate in a nonsmooth domain are unknown. We are interested in studying how positive continuous solutions of (1.1) behave near $\partial \Omega$. By developing the a priori L^{∞}-estimate, we give two-sided estimates, including information about the boundary decay rate of solutions. Let $x_{0} \in \Omega$ be fixed and let

$$
g_{\Omega}(x):=\min \left\{G_{\Omega}\left(x, x_{0}\right), 1\right\}
$$

where G_{Ω} is the (Dirichlet) Green's function on Ω for the Laplacian. Our main result is the following theorem.

Theorem 1.1. Let Ω be a bounded Lipschitz domain in $\mathbb{R}^{n}(n \geq 3)$, let a(x) be a nonnegative function in $L^{\infty}(\Omega) \backslash\{0\}$, let $p>1$ and let $M>0$. Then there exists $C=C\left(p,\|a\|_{\infty}, M, n, \Omega\right)>1$ such that, for any positive continuous solution of (1.1) with $\|u\|_{\infty} \leq M$,

$$
\frac{1}{C} g_{\Omega}(x) \leq u(x) \leq C g_{\Omega}(x) \quad \text { for all } x \in \Omega
$$

Moreover, the ratio u / g_{Ω} can be extended continuously up to $\partial \Omega$.
Remark 1.2. As stated above, McKenna-Reichel [12] showed the existence of a priori bounds for all positive very weak solutions of (1.1) when Ω is a bounded Lipschitz domain and

$$
1<p<\frac{n+\alpha_{\Omega}}{n+\alpha_{\Omega}-2}
$$

where

$$
\begin{equation*}
\alpha_{\Omega}:=\inf \left\{\alpha>0: \inf _{x \in \Omega} \frac{g_{\Omega}(x)}{\delta_{\Omega}(x)^{\alpha}}>0\right\} . \tag{1.3}
\end{equation*}
$$

Therefore, for such p, the conclusion of Theorem 1.1 holds for all positive continuous solutions of (1.1).

Remark 1.3. Theorem 1.1 shows that every positive continuous solution u of (1.1) vanishes continuously on $\partial \Omega$ with the same speed as g_{Ω}. This suggests that $u \in C^{1}(\bar{\Omega})$ does not always hold, unlike in the case of smooth domains. Namely, the gradient of u is not necessarily continuous up to $\partial \Omega$. For example, let ω be an open connected subset of the unit sphere in \mathbb{R}^{n} that is strictly bigger than a unit hemisphere and assume that $\Omega \cap B=\left\{x \in \mathbb{R}^{n} \backslash\{0\}: x /\|x\| \in \omega\right\} \cap B$, where B is some ball centred at the origin in \mathbb{R}^{n}. Then $g_{\Omega}(x)$ vanishes more slowly than $\delta_{\Omega}(x)$ as $x \rightarrow 0$ nontangentially. Therefore we see from the mean value theorem that $\|\nabla u\|$ blows up at the origin.

Using an estimate in [7, pages 37-38], we can obtain the following gradient estimate from Theorem 1.1.

Corollary 1.4. The assumptions are the same as in Theorem 1.1. Then there exists $C=C\left(p,\|a\|_{\infty}, M, n, \Omega\right)>0$ such that, for any positive solution $u \in C^{2}(\Omega)$ of (1.1) with $\|u\|_{\infty} \leq M$,

$$
\|\nabla u(x)\| \leq C \frac{g_{\Omega}(x)}{\delta_{\Omega}(x)} \quad \text { for all } x \in \Omega .
$$

If Ω has a $C^{1,1}$-boundary, then g_{Ω} is comparable to the distance function δ_{Ω} and the ratio $g_{\Omega} / \delta_{\Omega}$ has a positive and finite nontangential limit at each boundary point. Theorem 1.1 and a priori estimates obtained by Gidas-Spruck [6] and McKennaReichel [12] yield the following corollary.

Corollary 1.5. Let Ω be a bounded $C^{1,1}$-domain in $\mathbb{R}^{n}(n \geq 3)$ and let $a(x)$ be a nonnegative function in $L^{\infty}(\bar{\Omega}) \backslash\{0\}$. Assume either:
(a) $1<p<p_{\mathrm{S}}$ and $a(x)$ is a continuous function on $\bar{\Omega}$ with $\min _{\bar{\Omega}} a>0$; or
(b) $1<p<p_{\mathrm{BT}}$.

Then there exists $C=C(p, a(x), n, \Omega)>1$ such that, for any positive solution $u \in C^{1}(\Omega)$ of (1.1),

$$
\frac{1}{C} \delta_{\Omega}(x) \leq u(x) \leq C \delta_{\Omega}(x) \quad \text { for all } x \in \Omega
$$

Moreover, the ratio u / δ_{Ω} can be extended continuously up to $\partial \Omega$.
In Section 3, we give a proof of Theorem 1.1 based on the integral representation of (1.1), careful estimates of the Green's function and iteration arguments.

2. Preliminaries

In the rest of this paper, we suppose that Ω is a bounded Lipschitz domain in \mathbb{R}^{n} $(n \geq 3)$. As in the previous section, we use the symbol C to denote an absolute positive constant whose value may vary at each occurrence. Writing $C(a, b, \ldots)$ means that the constant C may depend on the parameters a, b, \ldots In particular, $C(\Omega)$ means that C depends on Lipschitz constants of functions defining $\partial \Omega$, the diameter of Ω and $\delta_{\Omega}\left(x_{0}\right)$, where x_{0} is a fixed point in Ω. Also, for two positive functions f and g, we write $f \lesssim g$ if $f(x) \leq C g(x)$ for some positive constant C independent of x. If $f \lesssim g$ and $g \lesssim f$,
then we write $f \approx g$. A constant appearing in this relation is called a constant of comparison. We recall some estimates for the Green's function $G_{\Omega}(x, y)$. As stated in [8], there exists $C=C(\Omega)>1$ such that, for any pair of points $x, y \in \Omega$, the set

$$
\mathcal{B}(x, y):=\left\{b \in \Omega: \frac{1}{C} \max \{\|x-b\|,\|y-b\|\} \leq\|x-y\| \leq C \delta_{\Omega}(b)\right\}
$$

is nonempty. The following estimate can be found in $[3,8]$.
Lemma 2.1. For all $x, y \in \Omega$ and $b \in \mathcal{B}(x, y)$,

$$
G_{\Omega}(x, y) \approx \frac{g_{\Omega}(x) g_{\Omega}(y)}{g_{\Omega}(b)^{2}}\|x-y\|^{2-n}
$$

where the constant of comparison depends only on n and Ω.
To estimate the Green's function, the following well-known facts are useful.
Lemma 2.2. There exist positive constants α, β and C, depending only on n and Ω, with the following properties:
(1) $\beta \leq 1 \leq \alpha$;
(2) for all $x \in \Omega$,

$$
\frac{1}{C} \delta_{\Omega}(x)^{\alpha} \leq g_{\Omega}(x) \leq C \delta_{\Omega}(x)^{\beta} ;
$$

(3) for each $x, y \in \Omega$ and $b \in \mathcal{B}(x, y)$,

$$
\max \left\{g_{\Omega}(x), g_{\Omega}(y)\right\} \leq C g_{\Omega}(b)
$$

(4) for each $x, y \in \Omega$ and $b \in \mathcal{B}(x, y)$,

$$
g_{\Omega}(x) \leq C\left(\frac{\delta_{\Omega}(x)}{\|x-y\|}\right)^{\beta} g_{\Omega}(b)
$$

Proof. The existence of α and β satisfying (1) and (2) was proved by Maeda-Suzuki [11]. Statement (3) follows from the Carleson estimate (see [10, Lemma 4.4]) and the Harnack inequality for harmonic functions (see the argument below). Also, (4) can be proved easily by the use of [10, Lemmas 4.1 and 4.4]. For the reader's convenience, we sketch a proof of (4). Let $x, y \in \Omega$ and let $b \in \mathcal{B}(x, y)$. Take $\xi \in \partial \Omega$ with $\|x-\xi\|=\delta_{\Omega}(x)$. If $\delta_{\Omega}(x) \geq r_{0}$, then $\delta_{\Omega}(b) \geq \delta_{\Omega}(x)-\|x-b\| \geq \delta_{\Omega}(x)-C \delta_{\Omega}(b)$, and so $\delta_{\Omega}(b) \gtrsim r_{0}$. Therefore $g_{\Omega}(x) \approx g_{\Omega}(b)$ by the Harnack inequality. Since Ω is bounded, we can obtain (4) in this case. Consider the case $\delta_{\Omega}(x)<r_{0}$. If $\|x-y\| \leq \delta_{\Omega}(x)$, then the Harnack inequality yields $g_{\Omega}(x) \approx g_{\Omega}(b)$, and so the conclusion follows. If $\|x-y\|>\delta_{\Omega}(x)$, then by [10, Lemmas 4.1 and 4.4],

$$
g_{\Omega}(x) \lesssim\left(\frac{\delta_{\Omega}(x)}{\|x-y\|}\right)^{\beta} g_{\Omega}\left(\xi_{\|x-y\|}\right),
$$

where $\xi_{\|x-y\|}$ is a nontangential point in $\Omega \cap \partial B(\xi,\|x-y\|)$. Since

$$
\left\|\xi_{\|x-y\|}-b\right\| \leq\left\|\xi_{\|x-y\|}-\xi\right\|+\|\xi-x\|+\|x-b\| \lesssim\|x-y\| \lesssim \min \left\{\delta_{\Omega}\left(\xi_{\|x-y\|}\right), \delta_{\Omega}(b)\right\},
$$

it follows from the Harnack inequality that $g_{\Omega}\left(\xi_{\|x-y\|}\right) \approx g_{\Omega}(b)$. Thus (4) is proved.

Note that, from Lemmas 2.1 and 2.2(3),

$$
\begin{equation*}
G_{\Omega}(x, y) \lesssim \frac{g_{\Omega}(x)}{g_{\Omega}(b)}\|x-y\|^{2-n} \tag{2.1}
\end{equation*}
$$

for all $x, y \in \Omega$ and $b \in \mathcal{B}(x, y)$. This will be used frequently in the next section.

3. Proof of Theorem 1.1

In the argument below, let u be a positive continuous solution of (1.1) with $\|u\|_{\infty} \leq M$. Note that u has the representation

$$
\begin{equation*}
u(x)=\int_{\Omega} G_{\Omega}(x, y) a(y) u(y)^{p} d y \quad \text { for all } x \in \Omega \tag{3.1}
\end{equation*}
$$

In Section 3.1, we give a proof of the upper estimate $u(x) \lesssim g_{\Omega}(x)$ considering two cases $\alpha<2$ and $\alpha \geq 2$ separately, where α is as in Lemma 2.2. The case $\alpha<2$ follows easily from a simple estimation of the right-hand side in (3.1), but the other case needs iteration arguments to improve the estimates because $\int_{\Omega} G_{\Omega}(x, y) d y$ vanishes slowly at some boundary point. In Section 3.2, we give a proof of the lower estimate $g_{\Omega}(x) \lesssim u(x)$ by the use of the Harnack inequality for (1.1) and the uniform lower boundedness of $u\left(x_{0}\right)$. In Section 3.3, we prove that the ratio u / g_{Ω} has a continuous extension to $\bar{\Omega}$.

3.1. Upper estimate.

3.1.1. The case $\alpha<2$. Let $x \in \Omega$. By (2.1) and Lemma 2.2(2),

$$
G_{\Omega}(x, y) \lesssim g_{\Omega}(x)\|x-y\|^{2-n-\alpha} \quad \text { for all } y \in \Omega .
$$

Using (3.1),

$$
u(x) \leq\|a\|_{\infty} M^{p} \int_{\Omega} G_{\Omega}(x, y) d y \lesssim \frac{\|a\|_{\infty} M^{p}}{2-\alpha} g_{\Omega}(x) .
$$

3.1.2. The case $\alpha \geq 2$. For simplicity, we write

$$
p_{k}:=\sum_{j=0}^{k} p^{j}
$$

Let N be the smallest nonnegative integer such that $\alpha<2 p_{N}$. Then $N \geq 1$. We claim that, for each $k \in\{0, \ldots, N-1\}$,

$$
\begin{equation*}
u(x) \leq C g_{\Omega}(x)^{2 p_{k} / \alpha} \quad \text { for all } x \in \Omega, \tag{3.2}
\end{equation*}
$$

where C depends only on $\|a\|_{\infty}, M, p, n$ and Ω. We prove this by induction. Let $x \in \Omega$. It is easy to see that

$$
\begin{equation*}
\int_{B\left(x, \delta_{\Omega}(x) / 2\right)} G_{\Omega}(x, y) d y \lesssim \delta_{\Omega}(x)^{2} \lesssim g_{\Omega}(x)^{2 / \alpha} \tag{3.3}
\end{equation*}
$$

To estimate the integral over $\Omega \backslash B\left(x, \delta_{\Omega}(x) / 2\right)$, we take γ_{0} with

$$
\frac{\alpha-2}{\alpha}<\gamma_{0}<\frac{\alpha-2}{\alpha-\beta} .
$$

Note that $0<\gamma_{0}<1$. Then, by (2.1) and Lemma 2.2(2),(4), for all $y \in \Omega \backslash B\left(x, \delta_{\Omega}(x) / 2\right)$ and $b \in \mathcal{B}(x, y)$,

$$
\begin{aligned}
G_{\Omega}(x, y) & \lesssim\left(\frac{g_{\Omega}(x)}{g_{\Omega}(b)}\right)^{\gamma_{0}}\left(\frac{g_{\Omega}(x)}{g_{\Omega}(b)}\right)^{1-\gamma_{0}}\|x-y\|^{2-n} \\
& \lesssim\left(\frac{\delta_{\Omega}(x)}{\|x-y\|}\right)^{\beta \gamma_{0}}\left(\frac{g_{\Omega}(x)}{\|x-y\|^{\alpha}}\right)^{1-\gamma_{0}}\|x-y\|^{2-n} \\
& \lesssim \delta_{\Omega}(x)^{\beta \gamma_{0}} g_{\Omega}(x)^{1-\gamma_{0}}\|x-y\|^{2-n+(\alpha-\beta) \gamma_{0}-\alpha} .
\end{aligned}
$$

By the choice of γ_{0}, this yields

$$
\begin{equation*}
\int_{\Omega \backslash B\left(x, \delta_{\Omega}(x) / 2\right)} G_{\Omega}(x, y) d y \lesssim \delta_{\Omega}(x)^{2+\alpha\left(\gamma_{0}-1\right)} g_{\Omega}(x)^{1-\gamma_{0}} \lesssim g_{\Omega}(x)^{2 / \alpha} \tag{3.4}
\end{equation*}
$$

It follows from (3.1), (3.3) and (3.4) that $u(x) \lesssim\|a\|_{\infty} M^{p} g_{\Omega}(x)^{2 / \alpha}$, which implies that (3.2) holds for $k=0$. Next, we assume that (3.2) holds for some $k \in\{0, \ldots, N-2\}$. Then, for all $x \in \Omega$,

$$
\begin{equation*}
\int_{B\left(x, \delta_{\Omega}(x) / 2\right)} G_{\Omega}(x, y) u(y)^{p} d y \lesssim g_{\Omega}(x)^{2\left(p_{k+1}-1\right) / \alpha} \delta_{\Omega}(x)^{2} \lesssim g_{\Omega}(x)^{2 p_{k+1} / \alpha}, \tag{3.5}
\end{equation*}
$$

where, in the first inequality, we used the Harnack inequality: $g_{\Omega}(y) \lesssim g_{\Omega}(x)$ for all $y \in B\left(x, \delta_{\Omega}(x) / 2\right)$. Take γ_{k} with

$$
\frac{\alpha-2 p_{k+1}}{\alpha}<\gamma_{k}<\min \left\{\frac{\alpha-2\left(p_{k+1}-1\right)}{\alpha}, \frac{\alpha-2 p_{k+1}}{\alpha-\beta}\right\} .
$$

Since

$$
\begin{aligned}
G_{\Omega}(x, y) g_{\Omega}(y)^{2\left(p_{k+1}-1\right) / \alpha} & \lesssim\left(\frac{g_{\Omega}(x)}{g_{\Omega}(b)}\right)^{\gamma_{k}} \frac{g_{\Omega}(x)^{1-\gamma_{k}}}{g_{\Omega}(b)^{1-\gamma_{k}-2\left(p_{k+1}-1\right) / \alpha}}\|x-y\|^{2-n} \\
& \lesssim \delta_{\Omega}(x)^{\beta \gamma_{k}} g_{\Omega}(x)^{1-\gamma_{k}}\|x-y\|^{2-n-\beta \gamma_{k}-\left(1-\gamma_{k}\right) \alpha+2\left(p_{k+1}-1\right)}
\end{aligned}
$$

by (2.1) and Lemma 2.2, it follows from the choice of γ_{k} that

$$
\begin{equation*}
\int_{\Omega \backslash B\left(x, \delta_{\Omega}(x) / 2\right)} G_{\Omega}(x, y) u(y)^{p} d y \lesssim \delta_{\Omega}(x)^{\left(\gamma_{k}-1\right) \alpha+2 p_{k+1}} g_{\Omega}(x)^{1-\gamma_{k}} \lesssim g_{\Omega}(x)^{2 p_{k+1} / \alpha} \tag{3.6}
\end{equation*}
$$

Therefore we obtain from (3.1), (3.5) and (3.6) that $u(x) \lesssim g_{\Omega}(x)^{2 p_{k+1} / \alpha}$ for all $x \in \Omega$. Thus (3.2) holds.

Let us apply (3.2) with $k=N-1$ to show $u(x) \lesssim g_{\Omega}(x)$. Let $x \in \Omega$. Note that, for all $y \in \Omega$ and $b \in \mathcal{B}(x, y)$,

$$
G_{\Omega}(x, y) g_{\Omega}(y)^{2\left(p_{N}-1\right) / \alpha} \lesssim \frac{g_{\Omega}(x)}{g_{\Omega}(b)^{1-2\left(p_{N}-1\right) / \alpha}}\|x-y\|^{2-n} .
$$

If $1-2\left(p_{N}-1\right) / \alpha \leq 0$, then

$$
\int_{\Omega} G_{\Omega}(x, y) u(y)^{p} d y \lesssim g_{\Omega}(x) .
$$

If $1-2\left(p_{N}-1\right) / \alpha>0$, then

$$
\int_{\Omega} G_{\Omega}(x, y) u(y)^{p} d y \lesssim g_{\Omega}(x) \int_{\Omega}\|x-y\|^{-n-\alpha+2 p_{N}} d y \lesssim g_{\Omega}(x)
$$

by our choice of N. Hence $u(x) \lesssim g_{\Omega}(x)$ in all cases. This completes the proof of the upper estimate.
3.2. Lower estimate. In a previous paper [9, Section 5], we proved the Harnack inequality for positive classical solutions of the Lane-Emden equation $-\Delta v=|v|^{p-1} v$ with $1<p<(n+2) /(n-2)$, but the argument given there is applicable to a positive continuous function v on Ω with a distributional Laplacian that satisfies $0 \leq-\Delta v \leq$ $C \delta_{\Omega}(x)^{-2} v$ in Ω. Since the distributional Laplacian of our object u satisfies $0 \leq-\Delta u=$ $a(x) u^{p} \leq\|a\|_{\infty} M^{p-1} u$ in Ω, we can obtain the following Harnack inequality.

Lemma 3.1. There exists $\kappa=\kappa\left(\|a\|_{\infty}, M, p, n\right) \in(0,1)$ such that

$$
u(x) \leq 2 u(y)
$$

for any pair of points $x, y \in \Omega$ satisfying $\|x-y\| \leq \kappa \min \left\{\delta_{\Omega}(x), \delta_{\Omega}(y)\right\}$.
To guarantee that all solutions take their maximum values apart from the boundary, we need the following lemma.

Lemma 3.2. There exists $C=C\left(\|a\|_{\infty}, M, p, n, \Omega\right)>0$ such that

$$
u(x) \leq C u\left(x_{0}\right) \quad \text { for all } x \in \Omega .
$$

Proof. From the discussion in the previous subsection, we see that there exists $\gamma>0$ such that, for all $x \in \Omega$,

$$
u(x)=\int_{\Omega} G_{\Omega}(x, y) a(y) u(y)^{p} d y \lesssim M^{p-1}\|a\|_{\infty}\|u\|_{\infty} g(x)^{\gamma} .
$$

Therefore, we find $\delta=\delta\left(\|a\|_{\infty}, M, p, n, \Omega\right)>0$ such that $u(x) \leq\|u\|_{\infty} / 2$ for all $x \in \Omega$ satisfying $\delta_{\Omega}(x) \leq \delta$. This implies that u attains its maximum at some point $x_{1} \in \Omega$ with $\delta_{\Omega}\left(x_{1}\right) \geq \delta$. By Lemma 3.1, $u(x) \leq u\left(x_{1}\right) \leqq u\left(x_{0}\right)$ for all $x \in \Omega$, as required.

Let us show that $g_{\Omega}(x) \lesssim u(x)$ for all $x \in \Omega$. Let $E:=\left\{x \in \Omega: G_{\Omega}\left(x, x_{0}\right) \geq 1\right\}$. Then E is compact in Ω. By Lemma 3.1, we have $g_{\Omega}(x)=1$ and $u\left(x_{0}\right) \lesssim u(x)$ for all $x \in E$, and so

$$
g_{\Omega}(x) u\left(x_{0}\right) \lesssim u(x) \quad \text { on } E .
$$

By the minimum principle for superharmonic functions, we see that this inequality holds on the whole of Ω. Therefore it suffices to show that

$$
\begin{equation*}
u\left(x_{0}\right) \geq C>0 \tag{3.7}
\end{equation*}
$$

Since

$$
\sup _{x \in \Omega} \int_{\Omega} G_{\Omega}(x, y) d y \leq C(n, \operatorname{diam} \Omega),
$$

we have $\|u\|_{\infty} \leq C\|a\|_{\infty}\|u\|_{\infty}^{p}$. This, together with Lemma 3.2, yields

$$
\left(C\|a\|_{\infty}\right)^{-1 /(p-1)} \leq\|u\|_{\infty} \lesssim u\left(x_{0}\right),
$$

which gives (3.7). Thus the lower estimate is proved.
3.3. Continuous extension. Let $\xi \in \partial \Omega$. Note that

$$
\lim _{x \rightarrow \xi} \frac{G_{\Omega}(x, y)}{G_{\Omega}\left(x, x_{0}\right)}=M_{\Omega}(y, \xi),
$$

since the Martin boundary of a bounded Lipschitz domain is identical to the Euclidean boundary (see [1]). By the upper estimate $u(x) \lesssim g_{\Omega}(x)$, (2.1) and Lemma 2.2,

$$
\frac{G_{\Omega}(x, y)}{G_{\Omega}\left(x, x_{0}\right)} a(y) u(y)^{p} \lesssim g_{\Omega}(y)^{p-1}\|x-y\|^{2-n} \lesssim\|x-y\|^{2-n}
$$

for all $x, y \in \Omega$. It follows from a version of Lebesgue's dominated convergence theorem that

$$
\lim _{x \rightarrow \xi} \frac{u(x)}{g_{\Omega}(x)}=\lim _{x \rightarrow \xi} \int_{\Omega} \frac{G_{\Omega}(x, y)}{G_{\Omega}\left(x, x_{0}\right)} a(y) u(y)^{p} d y=\int_{\Omega} M_{\Omega}(y, \xi) a(y) u(y)^{p} d y .
$$

Hence u / g_{Ω} has a continuous extension to $\bar{\Omega}$. This completes the proof of Theorem 1.1.
Remark 3.3. If α_{Ω} defined by (1.3) is greater than 2, then $\int_{\Omega} M_{\Omega}(x, \xi) d x$ may diverge for some $\xi \in \partial \Omega$. Therefore we need the upper estimate $u(x) \lesssim g_{\Omega}(x)$ to show the existence of boundary limits of u / g_{Ω}.

References

[1] D. H. Armitage and S. J. Gardiner, Classical Potential Theory (Springer, London, 2001).
[2] M. F. Bidaut-Véron and L. Vivier, 'An elliptic semilinear equation with source term involving boundary measures: the subcritical case', Rev. Mat. Iberoam. 16(3) (2000), 477-513.
[3] K. Bogdan, 'Sharp estimates for the Green function in Lipschitz domains', J. Math. Anal. Appl. 243(2) (2000), 326-337.
[4] H. Brézis and R. E. L. Turner, 'On a class of superlinear elliptic problems', Comm. Partial Differential Equations 2(6) (1977), 601-614.
[5] D. G. de Figueiredo, P.-L. Lions and R. D. Nussbaum, 'A priori estimates and existence of positive solutions of semilinear elliptic equations', J. Math. Pures Appl. (9) 61(1) (1982), 41-63.
[6] B. Gidas and J. Spruck, 'A priori bounds for positive solutions of nonlinear elliptic equations', Comm. Partial Differential Equations 6(8) (1981), 883-901.
[7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 2001).
[8] K. Hirata, 'Global estimates for non-symmetric Green type functions with applications to the p-Laplace equation', Potential Anal. 29(3) (2008), 221-239.
[9] K. Hirata, 'Existence and nonexistence of a positive solution of the Lane-Emden equation having a boundary singularity: the subcritical case', Monatsh. Math. 186(4) (2018), 635-652.
[10] D. S. Jerison and C. E. Kenig, 'Boundary behavior of harmonic functions in nontangentially accessible domains', Adv. Math. 46(1) (1982), 80-147.
[11] F. Y. Maeda and N. Suzuki, 'The integrability of superharmonic functions on Lipschitz domains', Bull. Lond. Math. Soc. 21(3) (1989), 270-278.
[12] P. J. McKenna and W. Reichel, 'A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains', J. Funct. Anal. 244(1) (2007), 220-246.
[13] P. Quittner and P. Souplet, Superlinear Parabolic Problems (Birkhäuser, Basel, 2007).

KENTARO HIRATA, Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
e-mail: hiratake@hiroshima-u.ac.jp

[^0]: This work was supported in part by JSPS KAKENHI Grant Number JP18K03333.
 © 2018 Australian Mathematical Publishing Association Inc.

