ON CONVEX UNIVALENT FUNGTIONS

T. BAŞGÖZE, J. L. FRANK, AND F. R. KEOGH

In what follows, we suppose that $f(z)=\sum_{0}{ }^{\infty} a_{n} z^{n}$ is regular for $|z|<1$. Let

$$
\begin{aligned}
s_{n}(z) & =\sum_{0}^{n} a_{k} z^{k}, \quad \sigma_{n}(z)=\frac{1}{n+1} \sum_{0}^{n} s_{k}(z) \\
k(r, \theta) & =\frac{1-r^{2}}{2\left(1-2 r \cos \theta+r^{2}\right)}, \\
k_{n}(r, \theta) & =\frac{1-r^{2}-2 r^{n+1}\{\cos (n+1) \theta-r \cos n \theta\}}{2\left(1-2 r \cos \theta+\overline{r^{2}}\right)}
\end{aligned}
$$

and

$$
K_{n}(r, \theta)=\frac{1}{2 n \pi} \int_{0}^{2 \pi} \frac{\sin ^{2} \frac{1}{2} n(\theta-\phi)}{\sin ^{2} \frac{1}{2}(\theta-\phi)} k(r, \phi) d \phi, \quad 0 \leqq r<1 .
$$

Then (see, for example, [6, pp. 235-236]), for $0 \leqq r<\rho<1$, we have:

$$
\begin{align*}
s_{n}\left(r e e^{i \theta}\right) & =\frac{1}{\pi} \int_{0}^{2 \pi} f\left(\rho e^{i(\theta-\phi)}\right) k_{n}\left(\frac{r}{\rho}, \phi\right) d \phi \\
\sigma_{n}\left(r e^{i \theta}\right) & =\frac{1}{\pi} \int_{0}^{2 \pi} f\left(\rho e^{i(\theta-\phi)}\right) K_{n+1}\left(\frac{r}{\rho}, \phi\right) d \phi \tag{1}
\end{align*}
$$

The following results are well known.
Theorem A. If $|f(z)|<M$ for $|z|<1$, then $\left|\sigma_{n}(z)\right|<M$ for all n and $|z|<1$. Conversely, if $\left|\sigma_{n}(z)\right|<M$ for all n and $|z|<1$, then $|f(z)|<M$.

Theorem B. If $|f(z)|<M$ for $|z|<1$, then $\left|s_{n}(z)\right|<M$ for all n and $|z|<\frac{1}{2}$. The number $\frac{1}{2}$ is best possible.

The proof of Theorem A (see, for example, [6, pp. 235-236]) depends on the facts that $K_{n}(r, \theta)>0$ for $r<1$ and

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{2 \pi} K_{n}\left(\frac{r}{\rho}, \phi\right) d \phi=1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sigma_{n}(z)=f(z) ; \tag{3}
\end{equation*}
$$

the proof of Theorem B (see, for example, [6, pp. 235-236]) follows in a similar way from the properties

$$
k_{n}(r, \theta)>0\left(r<\frac{1}{2}\right) \quad \text { and } \frac{1}{\pi} \int_{0}^{2 \pi} k_{n}\left(\frac{r}{\rho}, \phi\right) d \phi=1
$$

[^0]of $k_{n}(r, \theta)$. The function $f(z)=(z-a) /(a z-1)$, where $0<a<1$, satisfies $|f(z)|<1$, and the fact that $s_{1}\left(-\frac{1}{2} a^{-1}\right)=\left(a^{2}+1\right) /(2 a)>1$ (with a arbitrarily near to 1) shows that the number $\frac{1}{2}$ in Theorem B is best possible.

Theorems A and B are very special cases of the following more general results.

Theorem 1. (i) Suppose that the values taken by $f(z)$ for $|z|<1$ lie in a convex domain D. Then the values taken by $\sigma_{n}(z)$ also lie in D for all n and $|z|<1$.
(ii) Conversely, if the values taken by $\sigma_{n}(z)$ lie in a convex domain D for all n and $|z|<1$, then the values taken by $f(z)$ lie in D for $|z|<1$.

Proof. (i) By (1) and (2) we have

$$
\sigma_{n}\left(r e^{i \theta}\right)=\int_{0}^{2 \pi} f\left(\rho e^{i(\theta-\phi)}\right) K_{n+1}\left(\frac{r}{\rho}, \phi\right) d \phi / \int_{0}^{2 \pi} K_{n+1}\left(\frac{r}{\rho}, \phi\right) d \phi .
$$

For fixed $r e^{i \theta}$, the right-hand side is the centre of mass of a positive linear mass distribution of density $K_{n+1}(r / \rho, \phi)$ along the curve $w=f\left(\rho e^{i(\theta-\phi)}\right)$ described as ϕ varies from 0 to 2π. Since D is convex, this centre of mass lies in D.
(ii) The converse follows from (3).

Theorem 2. Under the conditions of Theorem 1 (i), the values taken by $s_{n}(z)$ lie in D for all n and $|z|<\frac{1}{2}$.

Proof. This is exactly as in the proof of Theorem 1 (i), but with $K_{n}(r / \rho, \phi)$ replaced by $k_{n}(r / \rho, \phi)$.

Alternatively, we may reduce the proof of Theorem 1 as well as the proof of Theorem 2 to the special (and classical) case when D is the half-plane $R w>0$, using the fact that a convex domain is the intersection of half-planes.

Suppose that $g(z)$ and $h(z)$ are regular for $|z|<1, h(z)$ is univalent, and $g(z)$ is subordinate to $h(z)$. We shall then write

$$
g(z) \prec h(z) .
$$

In the case when the function of Theorem 2 is univalent and of the normalized form $f(z)=z+\sum_{2}{ }^{\infty} a_{n} z^{n}$, and maps $|z|<1$ onto a convex domain D in the w-plane, the conclusion of the theorem for $n=2$ is the familiar fact (see, for example, [2, p. 13]) that D contains the disc $|w|<\frac{1}{2}$, i.e., that

$$
\begin{equation*}
\frac{1}{2} z<f(z) . \tag{4}
\end{equation*}
$$

The purpose of the remainder of this note is to show the solution of the problem of determining necessary and sufficient conditions on complex numbers λ, μ under which, for all convex $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}, \lambda z+\mu a_{2} z^{2}$ is convex and

$$
\begin{equation*}
\frac{1}{2} z \prec \lambda z+\mu a_{2} z^{2}<f(z), \tag{5}
\end{equation*}
$$

a stronger form of (4). A necessary condition for the left-hand relation in (5) is that $|\lambda| \geqq \frac{1}{2}$ (see, for example, [4, p. 228]), and it is easily seen (by considering $\lambda e^{i \theta} z+\mu e^{2 i \theta} a_{2} z^{2}$) that we may suppose with no effective loss of generality that λ is real and positive. The solution of the problem is then as follows.

Theorem 3. (i) If, for all convex $f(z)=z+\sum_{2}{ }^{\infty} a_{n} z^{n}, \lambda z+\mu a_{2} z^{2}$ is convex and

$$
\frac{1}{2} z \prec \lambda z+\mu a_{2} z^{2} \prec f(z),
$$

then $\lambda=\mu+\frac{1}{2}, \mu \leqq \frac{1}{6}$.
(ii) Conversely, for all convex $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}$ and $\mu \leqq \frac{1}{6},\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2}$ is convex and

$$
\frac{1}{2} z \prec\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2} \prec \frac{2}{3} z+\frac{1}{6} a_{2} z^{2} \prec f(z)
$$

The theorem is the combination of a number of lemmas proved below.
Lemma 1. The function $z+c z^{2}$ is convex if and only if $|c| \leqq \frac{1}{4}$.
Lemma 1 is equivalent to the fact that $z+c z^{2}$ is starlike if and only if $|c| \leqq \frac{1}{2}$ (see, for example, [1]).

Lemma 2. If for all convex $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}, \lambda z+\mu a_{2} z^{2}$ is convex and

$$
\frac{1}{2} z \prec \lambda z+\mu a_{2} z^{2} \prec f(z),
$$

then μ is real and non-negative and

$$
\lambda=\mu+\frac{1}{2}, \quad \mu \leqq \frac{1}{6} .
$$

Proof. If $\lambda z+\mu a_{2} z^{2}$ is convex for all convex $f(z)$, then, with

$$
f(z)=z /(1-z)=z+z^{2}+\ldots,
$$

by Lemma 1 we must have

$$
\begin{equation*}
|\mu| \leqq \frac{1}{4} \lambda . \tag{6}
\end{equation*}
$$

The minimum value of $\left|\lambda z+\mu z^{2}\right|$ on $|z|=1$ is then $\lambda-|\mu|$; hence $\frac{1}{2} z \prec \lambda z+\mu z^{2}$ implies

$$
\begin{equation*}
\lambda-|\mu| \geqq \frac{1}{2} \tag{7}
\end{equation*}
$$

With the same $f(z)$, if $\lambda z+\mu z^{2}<f(z)$, then, for real $x,-1<x<1$, we have $\lambda x+R \mu x^{2}>-\frac{1}{2}$, and allowing $x \rightarrow-1$,

$$
\begin{equation*}
\lambda \leqq R \mu+\frac{1}{2} \tag{8}
\end{equation*}
$$

Combination of (6), (7), and (8) yields the conclusions stated. We suppose from now on that μ is real and non-negative.

Lemma 3. Suppose that b_{0}, b_{1}, and b_{2} are complex numbers, $b_{2} \neq 0$, and let $P(z)=b_{0}+b_{1} z+b_{2} z^{2}$.
(i) If $\left|b_{0}\right|<\left|b_{2}\right|$ and

$$
\begin{equation*}
\left|b_{0} \bar{b}_{1}-\bar{b}_{2} b_{1}\right| \leqq\left|b_{2}\right|^{2}-\left|b_{0}\right|^{2} \tag{9}
\end{equation*}
$$

then the zeros of $P(z)$ lie on $|z| \leqq 1$.
(ii) If the zeros of $P(z)$ lie on $|z| \leqq 1$, then $\left|b_{0}\right| \leqq\left|b_{2}\right|$ and (9) holds.

A proof of this is given in [3].
Lemma 4. For all convex $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}$ and all $\mu \leqq \frac{1}{6},\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2}$ is convex and

$$
\frac{1}{2} z<\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2}<\frac{2}{3} z+\frac{1}{6} a_{2} z^{2} .
$$

Proof. By Lemma 1, since $\left|a_{2}\right| \leqq 1$ (see, for example, [2, p. 12]) and $\mu \leqq \frac{1}{6}$, $\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2}$ is convex. Furthermore, in $|z|=1$ we have

$$
\left|\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2}\right| \geqq \mu+\frac{1}{2}-\mu\left|a_{2}\right| \geqq \frac{1}{2}
$$

hence

$$
\frac{1}{2} z \prec\left(\mu+\frac{1}{2}\right) z+\mu a_{2} z^{2} .
$$

It is now sufficient to show that, for each real α and $\mu<\frac{1}{6}$, the polynomial

$$
\begin{equation*}
\frac{2}{3} z+\frac{1}{6} a_{2} z^{2}-\left(\mu+\frac{1}{2}\right) e^{i_{\alpha}}-\mu a_{2} e^{2 i \alpha} \tag{10}
\end{equation*}
$$

has a zero on $|z| \leqq 1$. We shall show, in fact, that except when $\left|a_{2}\right|=1$ and α takes a certain value, it has a zero in $|z|<1$. Suppose that for some α it has no zero in $|z|<1$. Then the polynomial

$$
\left[\left(\mu+\frac{1}{2}\right) e^{i \alpha}+\mu a_{2} e^{2 i \alpha}\right] z^{2}-\frac{2}{3} z-\frac{1}{6} a_{2}
$$

has both zeros on $|z| \leqq 1$; hence by Lemma 3,

$$
\begin{aligned}
\mid(1 / 9) a_{2}+(2 / 3)\left[(\mu+(1 / 2)) e^{-i_{\alpha}}\right. & \left.+\mu \bar{a}_{2} e^{-2 i \alpha}\right] \mid \\
& \leqq\left|(\mu+(1 / 2))+\mu a_{2} e^{i \alpha}\right|^{2}-(1 / 36)\left|a_{2}\right|^{2}
\end{aligned}
$$

Writing $a_{2}=\rho e^{i \phi}, \alpha+\phi=\Psi$, this is equivalent to

$$
\begin{equation*}
\left|6 \mu+3+6 \mu \rho e^{i \Psi}\right|^{2}-4\left|\rho \epsilon^{i \Psi}+3(2 \mu+1)+6 \mu \rho e^{-i \Psi}\right| \geqq \rho^{2} . \tag{11}
\end{equation*}
$$

But, since $\mu<\frac{1}{6}$, we have

$$
\begin{align*}
& \left|\rho e^{i \Psi}+3(2 \mu+1)+6 \mu \rho e^{-i \Psi}\right|=\mid 6 \mu \rho e^{i \Psi}+3(2 \mu+1)+6 \mu \rho e^{-i \Psi} \tag{12}\\
& +\rho(1-6 \mu) e^{i \Psi} \mid \\
& \geqq 3(2 \mu+1)+12 \mu \rho \cos \Psi-\rho(1-6 \mu),
\end{align*}
$$

and (11), (12) yield

$$
\begin{aligned}
& -\left(1-36 \mu^{2}\right) \rho^{2}-12 \mu \rho(1-6 \mu) \cos \Psi-3(1+2 \mu)(1-6 \mu) \\
& \\
& \quad+4 \rho(1-6 \mu) \geqq 0
\end{aligned}
$$

Again since $\mu<\frac{1}{6}$, we may divide this inequality by $1-6 \mu$, and we obtain

$$
4 \rho(1-3 \mu \cos \Psi) \geqq(1+6 \mu) \rho^{2}+3(1+2 \mu)
$$

This implies that

$$
4 \rho(1+3 \mu) \geqq(1+6 \mu) \rho^{2}+3(1+2 \mu)
$$

or

$$
(\rho-1)\left(\rho-1-\frac{2}{1+6 \mu}\right) \leqq 0
$$

Since $\rho \leqq 1$, this is a contradiction (and shows that (10) has a zero in $|z|<1$) unless $\rho=1, \Psi=\pi$. But (10) then has a zero $-e^{-i \phi}$, and this completes the proof.

Lemma 5. For all convex $f(z)=z+\sum_{2}^{\infty} a_{n} z^{n}$, we have $\frac{2}{3} z+\frac{1}{6} a_{2} z^{2}<f(z)$.
This is the particular case $n=2$ of the relation

$$
V_{n}(z, f) \prec f(z)
$$

proved by Pólya and Schoenberg [5], where $V_{n}(z, f)$ is the de la Vallée Poussin mean defined by

$$
V_{n}(z, f)=\binom{2 n}{n}^{-1} \sum_{1}^{n}\binom{2 n}{n+k} a_{k} z^{k}
$$

Theorem 3 now follows on combining Lemmas 2, 4, and 5.
In conclusion we remark that we have also a proof of Lemma 6 which is exactly on the lines of the proof of the relation $\frac{3}{8} z+\frac{1}{16} a_{2} z^{2}<f(z)$ for starlike $f(z)$ given in [3]. This consists of showing first that, for any $w(z)=w_{1} z+$ $w_{2} z^{2}+\ldots$ regular for $|z|<1$ and satisfying $|w(z)|<1$, we have

$$
\frac{2}{3} w_{1} z+\frac{1}{6}\left(w_{2}+w_{1}^{2}\right) z^{2}<\frac{z}{1-z},
$$

and then using the fact that any convex domain may be expressed as the intersection of half-planes.

References

1. J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233.
2. W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48 (Cambridge Univ. Press, Cambridge, 1958).
3. F. R. Keogh, A strengthened form of the $\frac{1}{4}$-theorem for starlike univalent functions (to appear in the A. J. MacIntyre Memorial Volume, Ohio Univ. Press).
4. Z. Nehari, Conformal mapping (McGraw-Hill, New York, 1952).
5. G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295-334.
6. E. C. Titchmarsh, The theory of functions, 2nd ed. (Oxford Univ. Press, London, 1939).

Middle East Technical University, Ankara, Turkey;
University of Kentucky,
Lexington, Kentucky

[^0]: Received October 23, 1968. This research was supported by the National Science Foundation under Grant GP-8225.

