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AT MOST 64 LINES ON SMOOTH QUARTIC SURFACES
(CHARACTERISTIC 2)

S LAWOMIR RAMS and MATTHIAS SCHÜTT

Abstract. Let k be a field of characteristic 2. We give a geometric proof that

there are no smooth quartic surfaces S ⊂ P3
k with more than 64 lines (predating

work of Degtyarev which improves this bound to 60). We also exhibit a smooth

quartic containing 60 lines which thus attains the record in characteristic 2.

§1. Introduction

This paper continues our study of the maximum number of lines on

smooth quartic surfaces in P3 initiated in [9, 10]. Starting from Segre’s

original ideas and claims in [16], we proved in [9] that a smooth quartic

surface outside characteristics 2 and 3 contains at most 64 lines, with

the maximum attained by Schur’s quartic [12]. In characteristic 3, this

specializes to the Fermat quartic which contains 112 lines, the maximum

by [10]. In characteristic 2, however, both these quartics degenerate which

opens the way to new phenomena. In this paper we study these phenomena

and give a geometric proof that the maximum number of lines still cannot

exceed 64:

Theorem 1.1. Let k be a field of characteristic p= 2. Then any smooth

quartic surface over k contains at most 64 lines.

After this paper was written, Degtyarev stated in [2], partly based on

machine-aided calculations from [3], that the bound of Theorem 1.1 can be

improved to 60 in characteristic 2. The record is attained by a quartic with

S5-action which we shall exhibit explicitly in Section 8. We point out that

unlike in other characteristics (by work of us and Veniani [9, 10, 19]), there

exist nonsmooth quartic K3 surfaces with more lines than in the smooth
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case, in fact with as many as 68 lines in characteristic 2 (see Remark 2.3),

indicating how special this situation is.

We emphasize that originally we were expecting the bound from charac-

teristics 6= 2, 3 to go up in characteristic 2, since just like in characteristic

3, there may be quasi-elliptic fibrations and the flecnodal divisor may

degenerate. With this in mind, our previous best bound ended up at 84

in [10, Proposition 1.3]. In contrast, this paper will show that quasi-elliptic

fibrations in characteristic 2 cannot arise from lines on smooth quartics (see

Proposition 2.1). Then we make particular use of special features of elliptic

fibrations in characteristic 2, and of the Hessian, to preserve the original

bound of 64.

The paper is organized as follows. Section 2 reviews genus one fibrations

for smooth quartics with lines with a special view toward quasi-elliptic

fibrations. In Section 3, we discuss ramification types and the Hessian of

a cubic in characteristic 2 to derive Segre’s upper bound for the number of

lines met by a line of the so-called first kind on a smooth quartic surface.

Lines of the second kind are analyzed in Section 4, much in the spirit of [9].

The proof of Theorem 1.1 is given in Sections 5–7 by distinguishing which

basic configurations of lines occur on the quartic. The paper concludes with

an example of a smooth quartic over F4 containing 60 lines over F16.

Convention 1.2. Throughout this note we work over an algebraically

closed field k of characteristic p= 2, since base change does not affect the

validity of Theorem 1.1.

§2. Genus one fibration

Let S be a smooth quartic surface over an algebraically closed field k

of characteristic 2. Assuming that S contains a line `, the linear system

|OS(1)− `| gives a pencil of cubic curves; explicitly these are obtained

as residual cubics Ct when S is intersected with the pencil of planes Ht

containing `. In particular, we obtain a fibration

(1) π : S→ P1

whose fibers are reduced curves of arithmetic genus one. Note that in general

there need not be a section, and due to the special characteristic, the general

fiber need not be smooth, that is, the fibration may a priori be quasi-

elliptic. In fact, we shall instantly rule this latter special behavior out, but

before doing so, we note the limited types of singular fibers (in Kodaira’s

notation [5]) which may arise from a plane curve of degree 3:
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78 S. RAMS AND M. SCHÜTT

Table 1.
Possible singular fibers of π.

Kodaira type Residual cubic
I1 Nodal cubic
I2 A line and a conic meeting transversally in 2 points
I3 3 lines meeting transversally in 3 points
II Cuspidal cubic
III A line and a conic meeting tangentially in a point
IV 3 lines meeting transversally in a point

While this is already quite restrictive for any genus one fibration, it

determines the singular fibers of a quasi-elliptic fibration in characteristic 2

completely: the general fiber has Kodaira type II, and for Euler–Poincaré

characteristic reasons, there are exactly 20 reducible fibers, all of type III. It

turns out that this together with the theory of Mordell–Weil lattices provides

enough information to rule out quasi-elliptic fibrations in our characteristic

2 set-up:

Proposition 2.1. The fibration π cannot be quasi-elliptic.

Proof. Assume to the contrary that π is quasi-elliptic. Then S auto-

matically is unirational, and thus supersingular, that is, the Néron–Severi

group NS(S) has rank 22 equaling the second Betti number; endowed with

the intersection pairing, the Néron–Severi lattice has discriminant

disc NS(S) =−22σ for some σ ∈ {1, . . . , 10}(2)

by [1]. We use the following basic result whose proof resembles that of

[4, Theorem 2].

Lemma 2.2. If π is quasi-elliptic, then it admits a section.

Proof of Lemma 2.2. If there were no section, then π would have

multisection index 3, thanks to the trisection `. Hence we can define an

auxiliary integral lattice L of the same rank by dividing the general fiber F

by 3:

L= 〈NS(S), F/3〉.

Since L can be interpreted as index 3 overlattice of NS(S), we obtain

disc L= disc NS(S)/32.
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By (2), this is not an integer, despite L being integral, giving the desired

contradiction.

We continue the proof of Proposition 2.1 by picking a section of π and

denoting it by O. Then ` induces a section P of π which is obtained

fiberwise (or on the generic fiber) from ` by Abel’s theorem. By the theory of

Mordell–Weil lattices [17] (which also applies to quasi-elliptic fibrations), the

class of P in NS(S) is computed as follows. Let r be the number of reducible

fibers which are intersected by O in the linear component, and denote the

respective component by `i. Let ` ·O = s. We claim that

P = `− 2O + (4 + 2s)F − (`1 + · · ·+ `r).

To see this, it suffices to verify the following properties, using the fact that

P ≡ ` modulo the trivial lattice generated by O and fiber components:

• P meets every fiber with multiplicity one in a single component (the linear

component; this is assured by subtracting 2O and the `i);

• P 2 =−2 (giving the coefficient of F in the representation of P ).

But then the Mordell–Weil group of a Jacobian quasi-elliptic fibration is

always finite (compare [11, Section 4]), so P has height zero. Using P.O =

8 + 3s− r and the correction terms 1/2 from each of the 20− r reducible

fibers where O meets the conic while P always meets the line, we find

h(P ) = 2χ(OS) + 2P.O −
∑
v

corrv(P ) = 10 + 6s− 3

2
r.

Since the equation h(P ) = 0 has no integer solution (reduce modulo 3!), we

arrive at the required contradiction.

Remark 2.3. Once quasi-elliptic fibrations are excluded, one can adopt

the techniques from [9, 10] to prove without too much difficulty that S

cannot contain more than 68 lines. While this is still a few lines away

from Theorem 1.1, it is an interesting coincidence that there exists a one-

dimensional family of nonsmooth quartic K3 surfaces (parameterized by

λ), that is, admitting only isolated ordinary double points as singularities,

which contain as many as 68 lines:

X = {(x3
1 + x3

2)x3 + λx3
2x4 + x1x2x

2
4 + x4

3 = 0}.

We found this family experimentally during our search for smooth quartics

with many lines (see Section 8). Generically, there is only a single (isolated)
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singularity; it is located at [0, 0, 0, 1] and has type A3. The minimal

resolution of a general member of the family is a supersingular K3 surface

of Artin invariant σ = 2.

Recently, Veniani proved in [20] that 68 is indeed the maximum for

the number of lines on quartic surfaces with at worst isolated ordinary

double point singularities in characteristic 2, and every surface attaining

this maximum is projectively equivalent to a member of the above family.

§3. Ramification and Hessian

In this section, we introduce two of the main tools for the proof of

Theorem 1.1. It is instructive that both of them have different features

in characteristic 2 than usual.

3.1 Ramification

First we consider the ramification of the restriction of the morphism π to

the line `:

π|` : `→ P1.

Since this morphism has degree 3, it always has exactly 1 or 2 ramification

points in characteristic 2 (because of Riemann–Hurwitz and wild ramifica-

tion). We distinguish the ramification type of ` according to the ramification

points as follows:

Ramification type Ramification points

(1) One simple
(1, 1) Two simple
(1, 2) One simple, one double
(2, 2) Two double

The ramification type is relevant for our purposes because often one

studies the base change of S over k(`) where by definition the fibration

corresponding to π attains a section. In fact, we usually extend the base

field to the Galois closure of k(`)/k(P1) where ` splits into three sections.

Note that the field extension k(`)/k(P1) itself is Galois if and only if ` has

ramification type (2, 2). Encoded in the ramification, one finds how the

singular fibers behave under the base change, and more importantly, how

they are intersected by the sections obtained from `.
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3.2 Hessian

We now introduce the Hessian of the residual cubics Cλ. To this end, we

apply a projective transformation, so that

`= {x3 = x4 = 0} ⊂ P3.

Then the pencil of hyperplanes in P3 containing ` is given by

Hλ : x4 = λx3

(including the hyperplane {x3 = 0} at λ=∞, so everything in what follows

can be understood in homogeneous coordinates of P1 parametrizing Hλ; we

decided to opt for the affine notation for simplicity). The residual cubics Cλ
of S ∩Hλ are given by a homogeneous cubic polynomial

g ∈ k[λ][x1, x2, x3](3)

which is obtained from the homogeneous quartic polynomial f ∈
k[x1, x2, x3, x4] defining S by substituting Hλ for x4 and factoring out x3.

Outside characteristic 2, the points of inflection of Cλ (which are often used

to define a group structure on Cλ, at least when one of them is rational) are

given by the Hessian

det

(
∂2g

∂xi∂xj

)
16i,j63

.

In characteristic 2, however, some extra divisibilities in the coefficients force

us to modify the Hessian formally using the x1x2x3-coefficient α of g until

it takes the following shape (understood algebraically over Z in terms of the

generic coefficients of g before reducing modulo 2 and substituting):

h=
1

4

(
1

2
det

(
∂2g

∂xi∂xj

)
16i,j63

− α2g

)
∈ k[λ][x1, x2, x3](3).

(These manipulations must be known to the experts as they amount to the

saturation of the ideal generated by g and its Hessian over Z[λ][x1, x2, x3].)

In order to use the Hessian for considerations of lines on S, Segre’s key

insight from [16] was that h vanishes on each linear component of a

given residual cubic Cλ0 (or, if Cλ0 is singular, but irreducible, in its

singularity). That is, any line in a fiber of π (i.e., intersecting `) gives a

zero of the following polynomial R, obtained by intersecting g and h with
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` (i.e., substituting x3 = 0) and taking the resultant with respect to either

remaining homogeneous variable:

R= resultantx1(g(x1, 1, 0), h(x1, 1, 0)) ∈ k[λ].

More precisely, one computes that R has generically degree 18, and that

each line contributes to the zeroes of R on its own, that is, if some fiber

contains three lines, then R attains a triple root:

Lemma 3.1. In the above set-up, assume that π has:

(1) a fiber of type I3 or IV at λ0, then (λ− λ0)3 |R;

(2) a fiber of type I2 or III with double ramification at λ0, then (λ− λ0)2 |R.

For degree reasons, one directly obtains the following upper bound,

originally due to Segre over C, for the valency v(`) of the line `, that is, the

number of other lines on S met by `:

Corollary 3.2. If R 6≡ 0, then v(`) 6 18.

This makes clear that we have to carefully distinguish whether R vanishes

identically or not. Recall from [9, 16] how this leads to the following

terminology:

Definition 3.3. The line ` is said to be of the second kind if R≡ 0.

Otherwise, we call ` a line of the first kind.

We next show that lines of the second kind behave essentially as in

characteristic 6= 2, 3. For lines of the first kind, the different quality of

ramification changes the situation substantially, but it is not clear (to us)

whether the valency bound from Corollary 3.2 is still sharp. (The lines on

the record surface from Section 8 have all valency 17.)

§4. Lines of the second kind

Since lines of the second kind in characteristic 2 turn out to behave mostly

like in characteristics 6= 2, 3, we will be somewhat sketchy in this section.

That is, while trying to keep the exposition as self-contained as possible, we

refer the reader back to [9] for the details whenever possible.

Let ` be a line of the second kind. Then, by definition, ` is contained in the

closure of the flex locus on the smooth fibers. This severely limits the way

how ` may intersect the singular fibers. As in characteristics 6= 2, 3 in [9],

one obtains the following configurations depending on the ramification:
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Lemma 4.1. A line of the second kind may intersect the singular fibers

of π depending on the ramification as follows:

Ramification Fiber type Configuration

Unramified I1 3 smooth points
I3 1 smooth point on each component
IV 1 smooth point on each component

Simple II 1 smooth point and the cusp

Double I1 Tangent to the node
I2 Tangent to one of the nodes
IV The triple point

We emphasize that fibers of types II and III necessarily come with wild

ramification in characteristic 2; in fact they impose on the discriminant a

zero of multiplicity at least 4 by [14]. (In mixed characteristic, i.e., when

specializing from characteristic zero to characteristic 2, this can often be

explained as some fiber of type II absorbing other irreducible singular fibers

without changing its type, compare Lemma 4.2 with the results valid in

characteristic zero from [9, Lemma 4.3].)

As in [9] we continue to argue with the base change of S to the Galois

closure of k(`)/k(P1). By construction, this sees ` split into three sections;

taking one as zero for the group law, the others necessarily become 3-torsion.

In practice, this implies that fibers of types I1 and I3 have to even out—

including two possible degenerations:

• a pair of fibers I1, I3 might merge to type IV;

• two fibers of type I1 might merge to I2, still paired with two I3 fibers.

In the next table, we thus group the fibers according to their Kodaira

type in single entries II, IV, pairs (I1, I3) and triples (I2, I3, I3). Since fiber

type I2 automatically comes with double ramification by Lemma 4.1, we

can bound the possible configurations of singular fibers (where the precise

numbers depend on the index of wild ramification of the II fibers):

Lemma 4.2. For a line of the second kind, the singular fibers of π can

be configured as follows:
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Ramification types Fiber configuration Possible degenerations

(1), (1, 2) 1× II
65× (I1, I3) IV, at most one triple (I2, I3, I3)

(1, 1) 2× II
64× (I1, I3) IV

(2, 2) 6× (I1, I3) IV, at most two triples (I2, I3, I3)

Corollary 4.3. Unless the line ` of the second kind has ramification

type (2, 2), it has valency

v(`) 6 16.

Otherwise one has v(`) 6 20.

It is due to this result that we will have to pay particular attention to

lines of the second kind with ramification type (2, 2). As it happens, quartics

containing such a line are not hard to parametrize; in fact, a comparison

with the proof of [9, Lemma 4.5] shows that exactly the same argument as

in characteristics 6= 2, 3 goes through:

Lemma 4.4. Let ` be a line of the second kind on a smooth quartic S

with ramification type (2, 2). Then S is projectively equivalent to a quartic

in the family Z given by the homogeneous polynomials

x3x
3
1 + x4x

3
2 + x1x2q2(x3, x4) + q4(x3, x4) ∈ k[x1, x2, x3, x4](4)

where `= {x3 = x4 = 0}, q2 ∈ k[x3, x4](2) and q4 ∈ k[x3, x4](4).

We will not need the precise location of all singular fibers of π in

what follows, but we would like to highlight the ramified singular fibers

of Kodaira type I1 at λ= 0,∞. These degenerate to type I2 if and only

if x3 respectively x4 divides q4 (unless the surface attains singularities, for

instance if q4 has a square factor). Note that if S is smooth and taken as in

Lemma 4.4, then

v(`) = 18 ⇐⇒ x3x4 - q4.

For the record, we also note the following easy consequence of our

considerations which we use occasionally to specialize to Jacobian elliptic

fibrations:

Corollary 4.5. If π admits no section, or if no two lines on S

intersect, then S contains at most 21 lines.
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Proof. In the first case, since any line disjoint from ` would give a section

of π, we know that all lines on S meet `. Hence the corollary follows from

the combination of Corollaries 3.2 and 4.3.

In the second case, the lines give orthogonal (−2) classes in NS(X). Since

the latter has signature (1, ρ(X)− 1) with ρ(X) 6 b2(X) = 22, the claim

follows.

§5. Proof of Theorem 1.1 in the triangle case

We break the proof of Theorem 1.1 into three cases, depending on which

configurations of lines the smooth quartic S admits. They will be treated

separately in this and the next two sections. Throughout this section, we

work with a smooth quartic S satisfying the following assumption:

Assumption 5.1. S contains a triangle (or a star) composed of 3 lines.

Equivalently (since S is assumed to be smooth), there is a hyperplane H

containing the three said lines and thus splitting completely into lines on S:

H ∩ S = `1 + · · ·+ `4.

5.1

If neither of the lines `1, . . . , `4 is of the second kind, then each of them

meets at most 18 lines on S by Corollary 3.2. Since any line on S meets H,

we find that S contains at most 64 lines as claimed.

5.2

If the lines are allowed to be of the second kind, but not of ramification

type (2, 2), then Corollary 4.3 implies again that S contains at most 64

lines.

5.3

To complete the proof of Theorem 1.1 in the triangle case, it thus suffices

to consider the case where one of the lines, say `1, is of the second kind

with ramification type (2, 2). Hence X can be given as in Lemma 4.4; in

particular, it admits a symplectic automorphism ϕ of order 3 acting by

ϕ[x1, x2, x3, x4] 7→ [ωx1, ω
2x2, x3, x4]

for some primitive root of unity ω. Note that ϕ permutes the lines `2, `3, `4
(or of any triangle coplanar with `1). In particular, these three lines are of

the same type. As before, we continue to distinguish three cases:
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5.3.1

If `2 is of the first kind, then consider the degree 18 polynomial R ∈ k[λ]

associated to the flex points of the genus one fibration induced by `2. Locate

the singular fiber `1 + `3 + `4 (of type I3 or IV) at λ= 0. Then an explicit

computation shows that

λ4 |R.

Since this divisibility exceeds the lower bound from Lemma 3.1, we infer

from the arguments laid out in Section 3 that `2 meets at most 14 lines

outside the fiber at λ= 0. In total, this gives

v(`i) 6 17, i= 2, 3, 4.

Together with Corollary 4.3, this shows that S contains at most 63 lines.

5.3.2

Similarly, if `2 is of the second kind, but not of ramification type (2, 2),

then by Corollary 4.3, there are no more than 60 lines on S.

5.3.3

We conclude the proof of Theorem 1.1 in the triangle case by ruling

out that `2 is of the second kind with ramification type (2, 2). (Over C
this case leads either to Schur’s quartic (containing 64 lines) or to S being

singular [9, Lemma 6.2].) But presently the situation differs substantially

since there can only be two ramification points anyway. Rescaling x3, x4, we

can assume that the given line lies in the fiber at λ= 1; this determines the

x4
4-coefficient of q4, say. Then, up to the action of ϕ, it is given by

`2 : x3 + x4 = x1 + x2 + q2(1, 1)x3 = 0

One checks that `2 has generically ramification type (1, 1); this degenerates

to type (2, 2) with S continuing to be smooth if and only if

q′2(1, 1)q2(1, 1)2 + q′4(1, 1) = 0

where the prime indicates the formal derivative with respect to either x3 or

x4. Substituting for a coefficient of q4, this directly implies

λ6 |R
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where we have located the I3 or IV fiber `1 + `3 + `4 at λ= 0 as in 5.3.1.

Solving for R≡ 0, we inspect the first few coefficients of R. Starting with

the coefficient of λ7, a simple case-by-case analysis yields that R can only

vanish identically if S is singular. This completes the proof of Theorem 1.1

in the triangle case.

§6. Proof of Theorem 1.1 in the square case

Throughout this section, we work with a smooth quartic S satisfying the

following assumption:

Assumption 6.1. S contains neither a triangle nor a star composed of 3

lines, but it does contain a square comprising 4 lines.

We shall refer to this situation as the square case. Our arguments are

inspired by an approach due to Degtyarev and Veniani (see [19]).

Lemma 6.2. If S contains no triangles or stars, then each line ` on S

has valency

v(`) 6 12.

Proof. Since the genus one fibration π induced by ` cannot be quasi-

elliptic by Proposition 2.1, the proof of Lemma 6.2 amounts to a simple

Euler–Poincaré characteristic computation as the contributions of the

singular fibers (including wild ramification) have to sum up to 24. Presently,

since S admits no triangles and stars by assumption, π can only have

singular fibers of Kodaira types I1, I2, II, III. Hence there can be at most

12 fibers containing a line.

Denote any 4 lines forming a square on S by `1, . . . , `4. Order the lines

such that `i.`j = 1 if and only if i 6≡ j mod 2. Consider the two residual

(irreducible) conics Q12, Q34 such that the hyperplane class H decomposes

on S as

H = `1 + `2 +Q12 = `3 + `4 +Q34.

Then the linear system |2H −Q12 −Q34| induces a genus one fibration

ψ : S→ P1

with fibers of degree 4 – one of them is exactly the square D = `1 + · · ·+ `4
of Kodaira type I4. Any line on S is either orthogonal to D and thus a fiber

component of ψ, or it gives a section or bisection for ψ, thus contributing

to the valency of one or two of the lines `i. In total, this gives the upper
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Table 2.
Possible reducible fibers of ψ.

Kodaira type Configuration of curves
I2/III Line + cubic or two quadrics
I3/IV 2 lines and a quadric

I4 4 lines forming a square

bound

#{lines on S} 6 #{lines in fibers of ψ}+
4∑
i=1

(v(`i)− 2)

6 #{lines in fibers of ψ}+ 40

where the second equality follows from Lemma 6.2. We shall now study the

possible fiber configurations to derive the following upper bound for the

number of lines on S which will prove Theorem 1.1 in the square case.

Proposition 6.3. Under Assumption 6.1, the smooth quartic S con-

tains at most 60 lines.

Before starting the proof of Proposition 6.3 properly, we note the possible

reducible fibers of ψ:

Using the fact that additive fibers necessarily come with wild ramification

(so that they contribute at least 4 to the Euler–Poincaré characteristic,

see [14, Proposition 5.1]), one can easily work out all fiber configurations

possibly admitting more than 20 lines as fiber components:

#{lines in fibers of ψ} Fiber configuration

24 6I4

22 5I4 + 2I2

5I4 + I3 + I1

5I4 + IV
21 5I4 + I2 + 2I1

5I4 + III
4I4 + 2I3 + I2

To rule out all these configurations, we employ structural Weierstrass

form arguments specific to characteristic 2 (which apply since we can always

switch to the Jacobian of ψ). Similar arguments have been applied to the

particular problem of maximal singular fibers of elliptic K3 surfaces in [14].
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6.1 General set-up

In characteristic 2, an elliptic curve with given nonzero j-invariant j can

be defined by a Weierstrass form over a given field K by

y2 + xy = x3 +
1

j
.(3)

As usual, this is unique up to quadratic twist, but here twists occur in terms

of an extra summand Dx2, with K-isomorphic surfaces connected by the

Artin–Schreier map z 7→ z2 + z over K:

y2 + xy = x3 +Dx2 +
1

j
.(4)

The main approach now consists in substituting a conjectural j-invariant,

given as quotient

j = a12
1 /∆(5)

associated to the usual integral Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Converting the twisted form of (3) with j-invariant from (5) to an integral

model E, we arrive at the Weierstrass form

y2 + a2
1xy = x3 +D′x2 + ∆(6)

Which, outside very special cases, will be nonminimal at the zeroes of

a1. Then minimalizing is achieved by running Tate’s algorithm [18] which

consequently gives relations between the coefficients of a1, D
′ and ∆, or

in some cases like ours leads to a contradiction. By inspection of (6), the

polynomial a1 encodes singular or supersingular fibers. For immediate use,

we record the following criterion which is borrowed from [15, Lemma 2.4(a)]:

Lemma 6.4. Assume that there is a supersingular place which is not

singular. Locating it at t= 0, the t-coefficient of ∆ has to vanish.

Proof. By assumption, a1 = ta′1, so the integral Weierstrass form (6)

reads

y2 + t2a′21 xy = x3 +D′x2 + ∆.

Writing ∆ = d0 + d1t+ · · · , the fiber of the affine Weierstrass form at t= 0

has a singular point at (0,
√
d0). Since t= 0 is a place of good reduction, the
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Weierstrass form is nonminimal. From Tate’s algorithm [18], this translates

as (0,
√
d0) being in fact a surface singularity. Equivalently, d1 = 0 by

Jacobi’s criterion.

Example 6.5. There cannot be a rational elliptic surface in charac-

teristic 2 with singular fibers 5I2, 2I1. Otherwise, ∆ = ∆2
5(t2 + at+ b) for

some squarefree degree 5 polynomial ∆5 and with a 6= 0. Since the surface

is semistable, Lemma 6.4 kicks in to show that a= 0, contradiction.

Remark 6.6. Note that the criterion of Lemma 6.4 applies after any

Möbius transformation fixing 0, and to any supersingular place that is

not singular. Tracing the nonminimality argument further through Tate’s

algorithm, one can, for instance, show that there do not exist elliptic

fibrations in characteristic 2 with configuration of singular fibers 4I3 + 6I2

(as occurring on Schur’s quartic over C).

6.2 Nonexistence of the configurations 6I4, 5I4 + 2I2, 5I4 +

IV, 5I4 + III

In each of the said cases, the j-invariant (5) is a perfect square.

Equivalently, ψ arises from another elliptic fibration by a purely inseparable

base change. (To see this, apply the variable transformation y 7→ y +Dx to

(4).) In the first two cases, this would lead to a rational elliptic surface with

five I2 fibers; this cannot exist by [6] (which can be checked independently

as in Example 6.5 or 6.3). Similarly, the configuration 5I4 + IV cannot arise

at all because fibers of type IV are only related to type IV∗ by inseparable

base change, so that the Euler–Poincaré characteristics would not sum up

to a multiple of 12.

For the last configuration, since the fiber of type III comes with wild

ramification of index 1 (by the Euler–Poincaré characteristic formula), it

can only arise from a singular fiber of the same ramification index and

total contribution to the discriminant congruent to 2 mod 6. By [14,

Proposition 5.1], this uniquely leads to Kodaira type I∗1, but then again

with the five I2 fibers the Euler–Poincaré characteristics do not sum up to

a multiple of 12.

6.3 Nonexistence of the configurations 5I4 + I3 + I1, 5I4 + I2 +

2I1, 4I4 + 2I3 + I2

Each of these configurations is semistable, so Lemma 6.4 applies with

supersingular (smooth) place at t= 0. In the first case, for instance, we can
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locate the I3 fiber at ∞ and write affinely

∆ = ∆4
5(t− λ)

for some squarefree polynomial ∆ of degree 5. But then t |∆5 by Lemma 6.4,

contradiction. The other two configurations can be ruled out completely

analogously.

Proof of Proposition 6.3. Altogether it follows from Sections 6.2 and 6.3

that the fibers of ψ may contain at most 20 lines. In view of the upper

bound

#{lines on S}6 #{lines in fibers of ψ}+ 40,

this completes the proof of Proposition 6.3.

§7. Proof of Theorem 1.1 in the squarefree case

Throughout this section, we work with a smooth quartic S satisfying the

following assumption:

Assumption 7.1. S contains neither a triangle nor a star composed of 3

lines nor a square comprising 4 lines.

In short, we also call S squarefree (meaning also trianglefree). In

the sequel of this paper we use the following stronger version of [10,

Theorem 1.1].

Lemma 7.2. Let Q⊂ S be an irreducible conic which is coplanar with

two lines on S. Then Q is met by at most 46 lines on S.

Proof. The proof of the claim forms the last section of the proof of [10,

Proposition 1.3].

Proposition 7.3. If S is squarefree, then S contains at most 60 lines.

Proof. By Corollary 4.5 we can assume that S contains a pair of lines

`1 6= `2 that intersect. Let `2, `3, `4, . . . , `k1+1 be the lines on S that meet `1,

and let `i,1, . . . , `i,ki be the lines that intersect `i for i> 2. After reordering

the lines, we assume `1 = `i,1.

Suppose that (k1 + ki) 6 16 for an i ∈ {2, . . . , k1 + 1}. Then, by

Lemma 7.2 the irreducible conic in |OS(1)− `1 − `i| is met by at most

44 lines on S other than `1, `i, and the claim of the proposition follows

immediately, because every line on S meets either `1 or `i or the conic.

Otherwise, we assume to the contrary that S contains more than 60 lines.

After exchanging `1, `i, if necessary, and iterating the above process, we may
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assume using Lemma 6.2 that

5 6 k1 6 ki and (k1 + ki) > 17 for i> 2.(7)

In particular, we always have the lines `2, . . . , `6 on S, and ki > 9 for i> 2.

Assumption 7.1 guarantees that

`j1 .`j2 = 0 whenever 2 6 j1 < j2

`i,j1 .`i,j2 = 0 whenever 1 6 j1 < j2 and i> 2

`i,j meets at most one of the `m,n ∀i, j, m> 2.(8)

Consider the divisor D = 2`2 + `2,2 + · · ·+ `2,5 of Kodaira type I∗0. Then |D|
induces a genus one fibration

ψ : S→ P1

with D as fiber. Naturally, `3, . . . , `k1+1, being perpendicular to D, also

appear as fiber components, but we can say a little more. Namely, by (8),

each `j (for 2< j 6 k1 + 1) comes with at least (kj − 5) adjacent lines, say

`j,6, . . . , `j,kj which are also perpendicular to D. Since kj > 9, the divisor

2`j + `j,6 + · · ·+ `j,9 gives another I∗0 fiber of ψ; in particular, there is no

space for any further fiber components, that is, kj = 9 for all j = 3, . . . ,

k1 + 1. Therefore, we obtain k1 > 8 from (7), so ψ admits at least 8 fibers of

type I∗0. The sum of their contributions to the Euler–Poincaré characteristic

of S clearly exceeds e(S) = 24, even if ψ were to be quasi-elliptic. This gives

the desired contradiction and thus concludes the proof of Proposition 7.3.

Conclusion 7.4. We treated the triangle case (see Section 5), the square

case (Proposition 6.3) and the squarefree case (Proposition 7.3), so the proof

of Theorem 1.1 is complete.

§8. Example with 60 lines

This section gives an explicit example of a smooth quartic surface defined

over the finite field F4 which contains 60 lines over F16. Motivated by [8]

where a pencil of quintic surfaces going back to Barth was studied, we

consider geometrically irreducible quartic surfaces with an action by the

symmetric group S5 of order 120. These come in a one-dimensional pencil

which can be expressed in elementary symmetric polynomials si of degree i

in the homogeneous coordinates of P4 as

Sµ = {s1 = s4 + µs2
2 = 0} ⊂ P4.
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There are 60 lines at the primitive third roots of unity as follows. Let α ∈
F16 be a fifth root of unity, that is, α4 + α3 + α2 + α+ 1 = 0. Then µ0 =

1 + α2 + α3 is a cube root of unity, and Sµ0 contains the line ` given by

`= {s1 = x3 + x2 + (α3 + α+ 1)x1 = x4 + (α3 + α2 + α+ 1)x2 + αx1 = 0}.

The S5-orbit of ` consists of exactly 60 lines which span NS(Sµ0) of rank

20 and discriminant −55. We are not aware of any other smooth quartic

surface in P2
F̄2

with 60 or more lines.

In fact, the surface Sµ0 can be shown to lift to characteristic zero together

with all its 60 lines at µ̂=− 3
10 ±

√
−11
10 (although proving this is not as easy

as it might seem). The lines are then defined over the Hilbert class field

H(−55) as follows. Let α ∈ Q̄ satisfy

α4 + 18α2 + 125 = 0 so that µ̂=
α2 + 3

20
.

The quartic at µ̂ contains the line

`= {s1 = x3 − ax1 − bx2 = x4 − cx1 + x2 = 0}

where

2c+ α+ 1 = 40b+ α3 − 5α2 + 3α− 55 = 40a− α3 − 5α2 − 23α− 35 = 0.

As before, its S5-orbit comprises all 60 lines on Sµ̂.
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