
ON SIMPLE ALTERNATIVE RINGS 
A. A. ALBERT 

1. Introduction. The only known simple alternative rings which are not 
associative are the Cayley algebras. Every such algebra has a scalar extension 
which is isomorphic over its center F to the algebra C = etlF + e00Jr + C10 + Ci , 
where C,-,- = et3F +/.-/F + g*/F (i,j = 0, 1; i 9* j). The elements exx and e00 

are orthogonal idempotents and euXa = x^e^ = xtJ-, e^Xu = x,-,At- — 0, 
Xij2 = 0 for every xi7- of CtJ. The multiplication table of C is then completed 
by the relations1 

\-l/ Jiogio ^ou &io^io Jon ^10/10 Sou 

\£) goijoi = 1̂05 ^oi^oi = = 7 io» Joi^oi = = |[io) 

W/ "ij*ji Jiijji gii^ji ^t't; 

(4) eafa = ei3gf» = fifri = fiiga = g<f«<i = g<*Ai = 0. 

R. H. Bruck and E. Kleinfeld have recently shown2 that every alternative 
division ring of characteristic not two is either associative or a Cayley algebra. Their 
methods do not seem to be readily applicable to the simple case but we shall 
use the machinery of idempotents to prove the following result. 

THEOREM. Every simple alternative ring which contains an idempotent not its 
unity quantity is either associative or is the Cayley algebra C. 

2. Elementary properties. Our results are based on properties which were 
given by Zorn.1 He assumed that the characteristic was not 2 or 3 and did not 
give complete details of his computations. As we shall make no assumption 
about the characteristic of our rings it will be necessary for us to re-derive the 
properties of Zorn and so make our exposition quite self-contained. 

We first note that an alternative ring C is a mathematical system having the 
usual properties of associative rings except that the associative law for products 
is replaced by the identities x(xy) = (xx)y, (yx)x = yixx). It is easy to see 
that the associator 

(x, y, z) = (xy)z — x(yz) 

is an alternating function of its arguments x, y, z, a result which implies that 

(5) z(xy + yx) = (zx)y + (zy)x, (xy + yx)z = x{yz) + y(xz), 
z(xy) + y(xz) — (zx)y + (yx)z, 

for every x} y, z of C We shall assume henceforth that C contains an idempotent 
u not the unity quantity of C. 

Received January 18, 1951. 
^ h e multiplication table of a Cayley algebra was given in this form by M. Zorn, Théorie de> 

alternativen Ringe, Abh. Math. Sem. Hamburgischen Univ., vol. 8 (1930), 123-147. 
2The structure of alternative division rings, Proc. Amer. Math. Soc, vol. 2 (1951), 878-890. 
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The ring C may be expressed as the module direct sum C= d + Co + Ci + Co 
of its submodules C , where C», consists of all x»,- of C such that uxu = ixiit 

Xau = fan (hj = 0» !)• Indeed if x = xxl + x10 + x01 + x00 thenxx l = uixu), 
x10 = ux — u(xu), x01 = xu — u(xu), x00 = x — xu — ux — u(xu). This decompo­
sition is precisely that of the associative case and needs no additional argument. 
However the multipicative properties of the modules Cy need to be derived. 
We proceed as follows: 

Let ux = Xx, xu = /xx, uy = ay, yu = /3y. Then 

(x, yj u) — (xy)u — x{yu) — (xy)u — fixy = — (y, x, u) = y(xu) — (yx)u 
= nyx — {yx)u = — (x, u, y) = x{uy) — (xu)y = (a — y)xy = (y, u, x) 
= (yu)x — y(ux) = (/3 — X)yx = (u, x, y) = (ux)y — w(xy) 
= Xxy — w(xy) = — (uf y, x) = u(yx) — (uy)x = w(yx) — ayx. 

We thus obtain the identities 

(6) (xy)u = (a + 0 — /x)^» ft(xy) = (X + /x — a)xy, 

(7) (yx)w = (X + M — &)yx, u{yx) = (a + /3 — X)yx, 

(8) (a - p)xy = (fi - X)yx, 

where (7) is obviously derivable from (6) by the interchange of x and y and the 
consequent interchanges of X, /x with a, 0. If X = /x = a = 0 = 1 we have 
(xy)w = #(xy) = xy and so C1X is a subring of C. Similarly the values X = n 
= a = /3 = 0 yield w(xy) = (xy)w = 0 and so C00 is a subring of C. We 
now put X = /x = 1 and a = 0 = 0 to obtain xy = yx, {xy)u = — xy, 
(yx)u = 2yx, and so (xy)u = 2xy, 3xy = 0. But [(xy)w]w = — (xy)u = xy 
= (xy)w2 = (xy)w = — xy and 2xy = 0, xy = 0. This proves3 that d awJ 
awd Coo ciTe orthogonal subrings of C. 

We next put X = /x = 1 = a and 0 = 0. Then (xy)w = 0 and u(xy) = xy, 
yx = 0>andsoC11Cio Q C10, C10C„ = 0. By symmetry C i C i C C01, C11COi = 0. 
Similarly, the values X = /x = jS = 0 and a = 1 yield xy = 0, w(yx) = yx, 
(yx)u = 0, and so C00C10 = 0, C10C00 Q C10, and C01C00 = 0, C00C01 S Ci by 
symmetry. The relations C10C01 C Cn, C01C10 ^ C00 follow from (6) ,(7) by 
taking X = / 3 = l , a = /x = 0. 

The properties derived so far for the component modules C , are properties 
satisfied by all associative rings. In the associative case C10

2 = C0i
2 = 0. How­

ever, this last result need not hold in the alternative case, and we now put 
a = X = 1, /x = £ = 0 and obtain (xy)u = xy, u(xy) = 0, xy = — yx. Thus 
we have the property 

v>v x 1 0 y 1 0
 == yio^io == ôu 

for every x10 and y10 of C10, where z0l is in Ci- Similarly 

(10) x01y01 = — y01x01 = z10. 

'This seems to be one of the few places in our development where an assumption about the 
characteristic would make any difference. 
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Now xl0
2 = (ux10)x10 = ux10

2 = uz01 = 0, and by symmetry we have the rela­
tion 

(11) *«2 = 0 (i,j = 0,l;i9*j). 

Zorn also gave the following result: 

LEMMA 1. Let x, y, z be elements of the component modules of C not all in the 
same subring C t i. Then (x, y, z) = 0 except possibly when at least two of the 
elements are in the same module C,-y (i 7e j). 

We also have the identities 

(12) zuixaya) = (*<y*y y )?,-,• = *<y(3\-ySyy), 

(13) (xuyii)zu = (ZiiXaha = *.-y(s,-.-3' »/)» 

(14) XiiiyiiZji) = ZiiiXiiya) = (*/,•*,,)?,•<, 
(15) XiiiyaZa) = ^ ( x ^ y ) = ^ / f c r ^ / ) , 

(16) frayai,- = (z^x^ya = 0\-y*,y)*.-y. 

We use (5) to write 

since (a:,-,-s,-,•)?*» — 0. This proves (14). Also 

(xnyn)Zii + (zuyn)Xii = XiiiyaZu) + ZuiyuXa) = 0 

and sofauyi^Za = — (z»t\y;y)#*y = a\-y(z,-»3\/)- Interchange x and y to obtain 
(yn%ij)zn = "" (znx<i)yn — ~" (xnyn)Zii a n d we have proved (13). Formula 
(12) follows by symmetry. Now (#,,-, ;ytl-, s,-y) = 0 trivially, 

(*«, 3\-<» *<,-) = ~ (*«, *<y, yu) = Xaiznyn) - (xuZ^yn = 0, 

(xu,yihZii) = - (ynfXi<f*ii) = yaixuZii) - (y<y*«)siy = o, 
(**,-, y<y, */»•) = - (y</»^«. .̂-/) = y*»(^<i2i<) — (?.•/*.•<)*/< = 0. 

The remaining properties of the associator follow by symmetry. Formula (IS) 
states that the factors in xii{yijZij) may be permuted cyclically. To prove this 
result we use the final relation in (5) to write 

zaixajii) +yi](xiizii) = {ziixij)yij + (y*y*<y)**y 

The left member is in CyC tJ
2 Q C»yCy» C C,, and the right member is in 

C,-,-2Cy Q Cy.-C-y C C,y. Since i ^ j both members vanish and we have 

- yn(Xi,-Zii) = yaiZiiXu), (ZiiXaha = - (ynXii)zn = Cviy^iy)jsiy 

from which we have both (15) and (16). 

COROLLARY. The ring C is associative if and only if both C1X and C00 are associ­
ative and Co2 = Coi2 = 0. 
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3. Construction of ideals. We first consider the product p{i = xii(yiizti) 
which is an element of C,C t J

2 C C« and let ait be any element of C«. Then 
&<•£.•* = (p>iiXii)(yuZii) by Lemma 1. But then (15) and (13) imply that 

vupu = Zii[(auXn)y<i] = 2M[(*.-,-y<i)0«] = [^,-(^iy*i)]«« = £«a« 

for every au of C„ and pti of C C , 2 , C„(C,C„2) = ( C / C ^ J C C ^ C ^ . If 
6«t- is in C,-t then 

buidapu) = M (0«#<») (?*/*•»)] = [ M ^ * * M ) ] (?</*»,) 

= [(i«ai,-)^,-](y*i^/) = (fiudu)Piu 

and C./C»,2 is contained in the centre of C,t. By symmetry we have the 
following result: 

LEMMA 2. The modules Ct7C»,2 and C,-<2Q< are ideals of C,t which are con­
tained in the centre of C<< ( i , j = 0, 1 ; i 9* j). 

We next prove the following result: 

LEMMA 3. Let B. be an ideal of C - Then 

(17) D, = B< + B<C, + C,-,B, + (C,-,B,)C, (*\j = 0, 1; * * j) 

is an ideal of C 

We have (C,-tBt)C = CJt(B<CtJ) by Lemma 1. We now compute 

CuDi = C„B, + (C<B,)C- ç D„ D«C„ = B<C + C„(B,C„) ç D„ 
CD, = C„(C,<5,) + G,[(C,«B,)C,] c C A + [C„(C„B,)]C„ + (C„B,)(C„') 

by (14). Then C„-D, c Bt + B«C* + (C,-,B,)C,< c B, + B,C„ + BtCM
2 c D, 

since C,»2 £ C«y. Also 

D,C„- = B,C,-+(B«C,-)CI-+ (C„B<)C, ç B,C,+ CVB,+ C^B.C,,) c D,. 

If we pass to a ring anti-isomorphic to C the module Dt is unchanged but C7» is 
replaced by C t /. Hence CJtDt C D», D<CJt C D t. Finally 

C A — C ^ C ^ O + C-J^B.OC,-] 
= (CCJB, + [C„(C,A)]C„ c C„B, + (C„B,)C, ç D„ 

and D.-C,-,- = Bi(C,-C,-,-) + (C/tBfXC-C,-,-) C D,-. This completes our proof. 

LEMMA 4. Ze/ 

C 2C = C C 2 = C 2 C = C C 2 = 0 
V.10 V.10 >«10>"10 >»oi V-oi N»oi V o l v / . 

Then G = C10
2 + C01

2 is a proper ideal of C. 

We have 

C,G = Cuds = ( C Q C ^ C Q ^ G , GC^C^C^CICOCG. 
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Also C ,G = Cadi2 Q C/2 Ç G, G d C d 2 C , Ç d 2 Ç G, as desired. 
Now C i 5̂  0, d i is not contained in G, and G is a proper ideal of C. 

The constructions just given are sufficient for our needs and we proceed now 
to the simple case. 

4. Simple rings. Lemma 1 implies that 

Xiibii(zijWn)] = Xii[(ynZii)wn] = [XiiiyuZiMwa 
= [(xuyu)zii]wii = (xny<i)(ziiWn). 

Since xii{ziiwji) = (xuZi^Wa and (z^w^^Xu = Zi^w^Xn) we see that d d 
is an associative ideal of d - It follows immediately that B = C o d + d + C i 
+ CiCo is an ideal of C. If C is simple and B = 0 then C00 is a proper ideal of 
C, and C = Cn has u as unity quantity contrary to hypothesis. Hence B = C, 
d d = d is associative. If B,- were a non-zero proper ideal of d the ideal 
Di of Lemma 3 would be a non-zero proper ideal of C. Thus we have 

LEMMA 5. Let C be simple. Then Qxx is a simple associative ring and d is 
either zero or a simple associative ring. 

When C is simple the set G of Lemma 4 cannot be a proper ideal of C. Hence 
C is either associative or G = C10

2 + Ci 2 ^ 0, one of the modules C10C10
2, 

Coi2Coi, d 2 d , Co ld 2 must not be zero. Let d d 2 9^ 0. By Lemma 2 we 
know that Bt = d d 2 is a non-zero ideal of d , by Lemma 5 that B, = d > 
d coincides with its centre and must be a field. If a{ — x^h^ 9^ 0 where x{i 

is in d and yit is in d 2 then 

a{
2 = a^Xiija) = {fliXi^yu = [x^iy^x^^y^ 5* 0 

and so y^x^ 9^ 0, C , 2 d 9e 0. The converse is obvious and so d d 2 ^ 0 if 
and only if d 2 d 9e 0. It follows that both Ci and C00 are fields. Moreover, 
since we may pass to an anti-isomorphic ring if necessary, we may assume that 
Co Co2 7e 0. We now prove 

LEMMA 6. The rings Cxx and d are isomorphic fields with unity quantities 
u = exx and e00 respectively, e — exx + e00 is the unity quantity of C, exx = exoeoxt 

0oo = e01e10 for quantities e{i in d such that e01 = f10gio and f10, g10 are in d -

We select/1X and g10 so that x10eox = ax 9e- 0 in the field d . Then ax has an 
inverse bx in C1X and b1(x10e01) = exx = (bxxxo)eox = exoeox. Thus 

and so eoxexo = e00 9^ 0. But 

e00
 == \e00e01)e10 i\eoxexo)eox\exo \C0Xexx)610 £01̂ 10 e00 

is an idempotent of C00 and must be its unity quantity. 
We now use Lemma 3 with B» = d 9e 0 and see that d C 1 0

 = Cod = Co, 
C01Cn = C o d = d . The fact that C i = C o d implies that e00x01 = x01 
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for every x01 of C i . Similarly xxoe00 = xxo for every xxo of C10. It is now trivial 
to see that e = exl + e00 is the unity quantity of C. 

The mapping 
Xxx > Xxxl ^oil^n^ioj V^oi^nJ^io 

is an isomorphism of C1X onto C00 such that 

3̂ 10 (#11-*/ = = ^n^ioj l^ii-i )Zoi = ^oi^ii 

for every xxx of d , y10 of C10 and zox of C0i. Indeed we compute 

3 ,
1 o k i ( # i i ^ i o ) ] = 6 \ o O ( * n O + t y i o ( # n « i o ) K i = ^ i J ^ i o O ^ i o + tyio^oKi] 

= #n[yio(«oi«io + e10e01)] = xxxyxo. 

Similarly woxxxx = (xxxT)w0X. Also 

(xxxT)(yxxT) = [e0X(xxxeX0)](yxxT) = e0X[{xxxeX0){yxxT)] 
= eox[yxl(xxle10)] = e01[(xxxyxx)exo] = (xxxyxl)T. 

Since C1X and C00 are fields, this proves that T is an isomorphism of CX1 onto Coo-
Actually T has an inverse given by xlx = exo(x00eox) = £103>0i since then 

#n^ = = [60X V^io^oiJ J^io = = LV^oi^ioJ^oi "I V^oi^oiJ^ioJ^io = = V^oo^oi/^io = = #oo» 

a result following from (z10e10)e10 = zlo0io2 = 0 and 

\X0060X)6X0 ~\~ \X006X0)60X \X00601)6X0 X00600 X 0 0 . 

We now show that the set Z of all elements z = zxl + zxlT is contained4 in 
the centre of C. Indeed zyu = yitz for every y{i of C», trivially. Also 

zy10 = zxxy10 = y10(zxxT) = yl0z, zy = 3/2 

for every y of C. Since Z = d + C00 we know that the associators (z, xy y) 
with x and y in components C», are zero unless possibly when x = xu and 
y = y a are in the same CtJ (i ?* j). But 

[0X1 + zxxT)xX0]yX0 = (z11xl0)y10f 

(zxl + zxxT)(xxoyxo) = (zxxT)(xxoyxo) = [xX0(zxlT)]yX0 = (zxxxxo)yxo 

as desired. 
By our construction, C t l = gnZ and C00 = £00Z are one-dimensional algebras 

over Z. We also note that since exoe01 = e10(fxog10) = exx we may use (15) to 
obtain gxo(exofxo) = / I O(gioO = «n- Put 

and obtain (1). Then 

0̂1̂ 10 v̂ io./10/̂ io Vjiô io/̂ 10 0̂0 v îo îoj/10 Joi/10 

and we have (3). Nowe10g01 = e10(exof10) = 0, e10/01 = e1 0(g1 0O = -^ofeogio) 
= 0 since e10

2 = 0. Similarly 
4If C has characteristic not two or three the property zy = yz implies that (z, xt y) = 0. 

However our proof is so arranged that (z, x, y) = 0 is quite trivial. 
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Jiogoi J io^oi IJIOC'OI s i o / o i U, 

6,01^10 J o i ^ i o 501J10 ^o i j io ^ o i s i o Joigio ^ 

and we have completed a proof which shows that (4) holds. The computation 

£ o i ( g i o O + g i o f c o i O = ^01/01 + gio = ( « o i g i o + g i o O ^ i o = 0 

yields g10 = /01e01. The remaining formulae of (2) are derived similarly. 
We have now shown that C contains an algebra D over Z with the multipli­

cation table given by (l)-(4). It remains only to show that eiiy fiit ga are 
linearly independent over F and that these elements form a basis of CtJ- over Z 
in order to prove that D is the eight-dimensional Cayley algebra over Z and that 
C = D. 

LEMMA 7. Let h^ha = e^ so that h^h^ = eu. Then x^h^ = 0 if and only 
tf %a = aha for a in Z. 

We have #,-,•(£,•,• + e,-,-) = x{i = (#,-/&»,•)&/< + (#<,•&,•<)&,•,•. If #</&<,• = 0 then 
x4i = aha with x^ha = ae{i and a in Z. The converse follows from A,-,-2 = 0. 

LEMMA 8. Le£ #»/0,-» = #»•/,•» = Xuga — 0. r&ew xt-7- = 0. 

If Xijha = aeti and ^/»xtJ- = ^ J f then 

hjiixuhji) = aAj-< = (hiiXi^ha = plia. 

If A,-,- 7̂  0 then a = 0. Now a\-,-et-,- = ± #»•,•(/,••£/»•) by (1) and (2) and so 

*<A/ = ± \gn(Xiifii) - (£/<*</)/,•<] 

by (14). It follows that #<,-£,•/ =:: 0 and that x{i = ae t /. Similarly x{i = £/.-,•. 
But if a ̂  0 we have 

ae.-ifo = ± aga = 0/,,-2 = 0 

contrary to hypothesis. Hence a = 0, x4i = 0. 
It is evident that the proof above implies that fi}- ̂  ae^ for a in Z. If 

g</ = aet/ + Pfi,- then 
g<,6„- = ±fa = 0/,,-^ = ± /3g„-

which has been shown to be impossible. We have shown that D is an eight-
dimensional algebra. 

We now let x^e^ = aea> xafa = feu, x^ga = yei{ for a, 0, 7 in Z. Then 
y*y = .̂ tj — (ae</ + /?/»-,• + 7g»/) has the property that 

ji^a = (a - a)e« = 0, 
y<if/« = (0 - 0)«,< = 0, 
Jiiga = (7 - 7)^i = 0 

and so yi:- = 0 by Lemma 8. This completes our proof. 

The University of Chicago 

https://doi.org/10.4153/CJM-1952-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-013-x

