ON SIMPLE ALTERNATIVE RINGS
A. A. ALBERT

1. Introduction. The only known simple alternative rings which are not
associative are the Cayley algebras. Every such algebra has a scalar extension
which is isomorphic over its center F to the algebra C = e,,F + ¢,.,F + C,, + C..,
where C;; = e;;F + fi;F + g:;F (4,7 =0,1; i j). The elements e,, and e,,
are orthogonal idempotents and e;x;; = x;;€;; = X5, €;;%:; = X365 = 0,
x:;2 = 0 for every x;; of C;;. The multiplication table of C is then completed
by the relations!

1 Fro8io = €o1y €10€10 = fory €iofio = Lous

@) Zoifor = €10y €01801 = fioy 01601 = Zuoy

(3) eiieis = fuific = giitis = eusy

4) eiifis = e:igii = fiieis = fuigis = gii€s; = Luifs; = 0.

R. H. Bruck and E. Kleinfeld have recently shown? that every alternative
division ring of characteristic not two s either associative or a Cayley algebra. Their
methods do not seem to be readily applicable to the simple case but we shall
use the machinery of idempotents to prove the following result.

THEOREM. Every simple alternative ving which contains an idempotent not its
unity quantity is either associative or is the Cayley algebra C.

2. Elementary properties. Our results are based on properties which were
given by Zorn.! He assumed that the characteristic was not 2 or 3 and did not
give complete details of his computations. As we shall make no assumption
about the characteristic of our rings it will be necessary for us to re-derive the
properties of Zorn and so make our exposition quite self-contained.

We first note that an alternative ring C is a mathematical system having the
usual properties of associative rings except that the associative law for products
is replaced by the identities x(xy) = (xx)y, (yx)x = y(xx). It is easy to see
that the associator

(%, 9,5) = (9)z — x(32)
is an alternating function of its arguments «, vy, 2, a result which implies that
(5) z(xy + yx) = (2x)y + (29)x, (xy + yx)z = x(y2) + y(x2),
z(xy) + y(xz) = (ax)y + (yx)z,
for every x, v, zof C.  We shall assume henceforth that C contains an idempotent
u not the unity quaniity of C.
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The ring C may be expressed as the module direct sum C=C,,+C,,+C,,+C,,
of its submodules C;; where C;; consists of all x,; of C such that wux;; = 7x,;,
xiU = jxi; (5,7 = 0,1). Indeed if x = x,, + x,0 + %o, + %o, thenx,, = u(xu),
X0 = ux — u(xu), %,, = xu — u(xu), x,, = x — xu — ux — u(xu). This decompo-
sition is precisely that of the associative case and needs no additional argument.
However the multipicative properties of the modules C;; need to be derived.
We proceed as follows:

Let ux = \x, xu = px, uy = ay, yu = By. Then

(3, u) = (y)u — x(yu) = (xy)u — Bxy = —(y, %, u) = y(xu) — (yx)u

= pyx — (yx)u = — (x,u,y) = x(uy) — (xu)y = (a — w)xy = (y, %, x)
= (yu)x — y(ux) = (8 — Nyx = (u,x,5) = (ux)y — u(xy)
=My —uxy) = — (u,9,%) = u(yx) — (uy)x = u(yx) — ayx.

We thus obtain the identities

(6) (xy)u = (a + 8 — wxy, ulxy) = A + p — a)xy,

(M (x)u = A+ pu — B)yx, u(yx) = (a + B — N)yx,

) (@ — wxy = (B — Nyx,

where (7) is obviously derivable from (6) by the interchange of x and v and the
consequent interchanges of A, u with a, 8. If A=p =a =8 =1 we have
(xy)u = u(xy) = xy and so C,, is a subring of C. Similarly the values \ = u
=a=0=0 yield u(xy) = (xy)u = 0 and so C,, is a subring of C. We

now put A=p=1 and a =8=0 to obtain xy = yx, (xy)u = — xy,
(yx)u = 2yx, and so (xy)u = 2xy, 3xy = 0. But [(xy)u]u = — (xy)u = xy
= (xy)u?® = (xy)u = — xy and 2xy = 0, xy = 0. This proves® that C,, and

and C,, are orthogonal subrings of C.

We next put A\ =u=1=aand 8 =0. Then (xy)u = 0 and u(xy) = xy,
yx = 0,and so C,,C,, < C,,, C..C,, = 0. Bysymmetry C,,C,, € C,,, C.,C,,=0.
Similarly, the values A=u=8=0 and « =1 yield xy =0, u(yx) = yx,
(yx)u = 0, and so C,.C,, =0, C,,C,, € C,, and C,.C,, =0, C,,C,, © C,, by
symmetry. The relations C,,C,, € C,,, C..C,, € C,, follow from (6) ,(7) by
takingA =8=1,a =pu = 0.

The properties derived so far for the component modules C;; are properties
satisfied by all associative rings. In the associative case C,,2 = C,,> = 0. How-
ever, this last result need not hold in the alternative case, and we now put
a=\=1,u=8=0 and obtain (xy)u = xy, u(xy) = 0, xy = — yv. Thus
we have the property

(9) xloylo = - yloxlo = Zo1y
for every x,, and v,, of C,,, where z,, is in C,,. Similarly
(10) xoxyol = - yolxox = 20

3This seems to be one of the few places in our development where an assumptivn about the
characteristic would make any difference.
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Now x,,2 = (ux,,)x,, = ux,,? = uz,, = 0, and by symmetry we have the rela-
tion
(11) x.~,-2 =0 (’i,j = 0, 1; 7 #j).
Zorn also gave the following result:

LemMA 1. Let x, v, z be elements of the component modules of C not all in the
same subring C;;.. Then (x, ¥, 2) = 0 except possibly when at least two of the
elements are in the same module C;; (1 = j).

We also have the identities

(12) 2;; (Xy6) = (X02i0)Y00 = %0 (Vizis),
(13) (X:1Y:)200 = (8:a%63) Vs = %4 (80¥44)s
(14) %5 (¥i62:5) = 230(%59:15) = (2:%00) Vi,
(15) X (V%) = 20 (Xe¥53) = Vi (20%45),
(16) (Xeiyei)z; = (a%:i)yei = (9:i8:) %5

We use (5) to write
255 (055950) = %45 (Vii%i3) = 20 @03y 50) %45 (353954) = (255%0F245250)Y50= (2100) Vi
since (x;;3;;)¥;s = 0. This proves (14). Also
(siyii)2es + (Baayi)®e; = %0 (Viizi0) + 20:(Vasxi) =0

and so(x;;V:i)2:s = — (2::):)%:; = %4;(2::9:;)- Interchange x and y to obtain
(yii%:i)2i = — (245%45)¥si = — (%4;%41)%:; and we have proved (13). Formula
(12) follows by symmetry. Now (%, ¥, 2;;) = 0 trivially,

(isy Visy 2i7) = — (%eiy 2aiy Yoi) = X5 (245950) — (4:245)950 = 0,

(Ciiy Viir 211) = — Diir Xiir 2i3) = Y45 (%0:35) — (Vas¥i0)2zi; = 0,

(X5, ¥iiy 2i5) = — iy Xiiy 8i1) = Vi (0i8i5) — (V055503 = 0.

The remaining properties of the associator follow by symmetry. Formula (15)
states that the factors in x;;(y;;2;;) may be permuted cyclically. To prove this
result we use the final relation in (5) to write

2 (%5965) + ¥ (645865) = (8:i%:)ye; + ii%ii)2s5

The left member is in C;;C;;2 € C,;C;; € C;; and the right member is in
C,;;2C:; € C;:C;; € C;;. Since ¢ # j both members vanish and we have

— ¥ (%20) = ¥ (2:i%55), 8%y = — (Vaxi)ze = (Yaya)3

from which we have both (15) and (16).

COROLLARY. The ring C is associative if and only if both C,, and C,, are associ-
ative and C,,2 = C,,2 = 0.
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3. Construction of ideals. We first consider the product p.; = x.; (Vsi2:5)
which is an element of C;;C;;2 € C;; and let a;; be any element of Ci;;. Then
Qiipis = (@ii%i;) (9:24;) by Lemma 1. But then (15) and (13) imply that

Qiipie = 2i;[(@eiii)yii] = z;,-[(xuyu)an] = [2; (Xi¥i5) ]ass = Diilis

fOl’ every a;q of C.-.- and P,‘; of C,-,'C“z, C;.-(C;,-C.—;z)= (ciiciiz)ciigciiciiz‘ If
b.-; is in C.‘.’ then

bis(aespes) = bisl(@isxs;) (vi52:)] = [b:i(aeixi) ] (96i2s:)
= [(b::a:)%:;](¥ii2:) = (bssii)pis,
and C,;;C,;? is contained in the centre of C;;. By symmetry we have the
following result:
LemMA 2. The modules C,;C;;? and C;;2C;; are ideals of Ci; which are con-
tained in the centre of Cii (3,7 = 0, 1; 7 5 7).

We next prove the following result:

LemMA 3. Let B; be an ideal of Ci;. Then
an D: = B: + B.C;; + C;.B: + (C;:B)C,; (4,7 =0,1;4 5% 7)
is an ideal of C.
We have (C;;B.)C;; = C;,(B:C;;) by Lemma 1. We now compute
C..D, = C,.B; + (C..B)C;; € D,, D.Ci; = B.C; 4+ C;:(B:C.;) € D,
C:.D: = G (CiiBy) + Ci;[(CB) Gyl S B, + [Ci(CiiB) IC; + (Ci:BL) (Cii®)

by (14) Then c;jD; g B.' + B.‘Cci + (ciiBi)cii ..g B-’ + Btcii + Biciiz _C_ D(
since C,~,-2 E C.-,~. Also

D.C; = B&Cei+(Beca;'>C€i+ (ciiBi)cii - Bac.‘i‘l‘ C:i*B:+ C,'.'(B.'Cu) C D..

If we pass to a ring anti-isomorphic to C the module D, is unchanged but C;; is
replaced by C;;. Hence C;;D; € D,, D;C;; € D,. Finally

CiiD-' = Cii(cieBi) + cii[(ciiBi)cii]
= (ciicii)Bs + [cii(ciiBi)]cs’i c CnBi + (CieBi)cai c Dn

and D.C;; = B.(C,,C;;) + (C,.B)(Ci;C;;) S D;. This completes our proof.
LEMMa 4. Let
C.2C, = C.C.2= C.2C, = C.C..2 =0
Then G = C.,2 + C,.2 is a proper ideal of C.
We have
C.G=0C.C02=(C.C)C: SC2C G, GCi=C,;%Ci = (i (CLGHEG.

https://doi.org/10.4153/CJM-1952-013-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1952-013-x

ON SIMPLE ALTERNATIVE RINGS 133

AlSO ciz‘G = c.‘jc,'.‘z g C;j2 g Gy Gc.',' g Cf;2Cii g C.‘,‘2 E G, as desired.
Now C,, # 0, C,, is not contained in G, and G is a proper ideal of C.

The constructions just given are sufficient for our needs and we proceed now
to the simple case.

4, Simple rings. Lemma 1 implies that

xii[yii(zijwii 1= xii[(ys‘izii)wﬁl = [xu(yﬁzii)]wii
= [(eiayii)ziilwie = (%ivi0) (2050).
Since x,;(2:;w;s) = (Xii2i;)w;s and (2:,w;:)%: = 2:;(w; ;) we see that C;;Cj;
is an associative ideal of C;;. It follows immediately that B = C,,C,,+C,.+C..
+ C,.C,,is an ideal of C. If Cis simple and B = 0 then C,, is a proper ideal of
C, and C = C,, has « as unity quantity contrary to hypothesis. Hence B = C,
C.;C;s = C,; is associative. If B; were a non-zero proper ideal of C;; the ideal
D. of Lemma 3 would be a non-zero proper ideal of C. Thus we have

LemMa 5. Let C be simple. Then C,, is a simple associative ring and C,, is
either zero or a simple associative ring.

When C is simple the set G of Lemma 4 cannot be a proper ideal of C. Hence
C is either associative or G = C,,2 4+ C,,2 5 0, one of the modules C,,C,.2,
C..2C,,, C..2C,,, C.,C..? must not be zero. Let C;;C;;2# 0. By Lemma 2 we
know that B; = C;;C;,? is a non-zero ideal of C;;, by Lemma 5 that B; = C;;,
C;: coincides with its centre and must be a field. If a; = x;,;h;; # 0 where x;;
isin C;; and v;, is in C,;? then

a? = a;(%:;y:10) = (@x:)yi0 = [0 (V%) ]yi0 # 0

and so y;x:; # 0, C;;2C;; # 0. The converse is obvious and so C;;C;;? 5 0 if
and only if C;;2C;; # 0. It follows that both C,, and C,, are fields. Moreover,
since we may pass to an anti-isomorphic ring if necessary, we may assume that
C..C..2 % 0. We now prove

LeEMMA 6. The rings C,, and C,, are isomorphic fields with unity quantities
u = e,, and e,, respectively, e = e,, + e,, is the unity quantity of C, e,, = e€,.0.,
oo = €., for quantities e;; in C;; such that e,, = f,.g.0 and fio, g.o are in C,,.

We select f,, and g,, so that x,,e,, = @, # 0 in the field C,,. Then @, has an
inverse b, in C,, and b, (x,.60,) = €., = (b,%,.)€0, = €,46,,. Thus

€2 = €,(€10€01) = (€::€10)€01 = [€10(€0:610)]60, = €1,
and so e,.e,, = €,, # 0. But
o2 = (€00€01)C10 = [(€61€10)€01]€10 = (€0:1611)€10 = €0,6,0 = €46

is an idempotent of C,, and must be its unity quantity.
We now use Lemma 3 with B; = C;; # 0 and see that C,,C,, = C,,C,, = C,,,
C..C.. = C..C.., = C,.. The fact that C,, = C,,C,, implies that e,,x,, = x.,
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for every x,, of C,,. Similarly x,.e,, = x,, for every x,, of C,,. Itis now trivial
to see that ¢ = e,, + e,, is the unity quantity of C.

The mapping
X 2 x0T = €, (%1:€10) = (€0:1%1,)€50
s an isomorphism of C,, onto C,, such that
Vio(®uT) = 2,900 (80120 = 2,.%.,
for every x,, of C,,, v,, of C,, and 2,, of C,,. Indeed we compute

Viollor (X1:610)] = (V16€01) (X1:610) + [V10(Xri€10)]€0r = X0t [(Vi0€or)ro + (Vio€10)€or]
= %, (Y10 (€01810 F €10801)] = %0110
Similarly wo,x,, = (%,,7)w,,. Also
@ T) (30 T) =01 (%:::0)] (V02 T) = €0 [(%1:600) (31, T)]
=0, [¥1: (®1:610)] = €a:[(@1y1)e] = ()T

Since C,, and C,, are fields, this proves that T is an isomorphism of C,, onto C,,.
Actually T has an inverse given by x,, = €,,(X0.€0:) = €,.Y,, since then

%, T = [eo(€rodor)]ere = [(€01€10)Yor + (€0r¥or)€r0lere = (Xo0€01)€10 = Xoo,
a result following from (z,.e,,)e,, = 2..6:,2 = 0 and
(%00€01)€10 T+ (¥00€10)€01 = (¥00€01)€10 = Xoo€oo = Xoo-
We now show that the set Z of all elements g = 2,, + 2,,T is contained? in
the centre of C. Indeed zy,; = y::z for every y,; of C;; trivially. Also
2o = Zudie = Yio(2aT) = 303, 2y = yz

for every vy of C. Since Z = C,, 4+ C,, we know that the associators (3, x, ¥)
with x and y in components C;; are zero unless possibly when x = x;; and
y = y;; are in the same C;; (z # j). But

[(2:: + 2. T7)%10]Y10 = (81:1%10) V10
(20 + 20 D) (Xo¥i0) = (20 T) (%0¥i0) = [£100(@0 D) 1o = (20:%10) Y10

as desired.

By our construction, C,, = e,,Z and C,, = ¢,,Z are one-dimensional algebras
over Z. We also note that since €,,€,, = €,,(f1.€:0) = €., we may use (15) to
obtain g,,(€,0f10) = fi0(gie€:0) = €.,. Put

€iofio = Zo1y Liobro = fou
and obtain (1). Then

Zo1810 = (exoflo)gm = (flogxo)elo = €0 = (gxoelo)fm =foxf10

and we have (3)' NO\V €:0801 = exo(exofxo) = 07 exofol = e:o(gmelo> = _elo(elogxo)
= 0 since ¢,,> = 0. Similarly

41f C has characteristic not two or three the property zy = yz implies that (z, x, y) = 0.
However our proof is so arranged that (z, x, y¥) = 0 is quite trivial.
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flogm = floem = gxoeol = gzofm. = Or
201810 = f01610 = Zoifio = €oifio = €0:810 = fourflio = 0

and we have completed a proof which shows that (4) holds. The computation

o1 (810810) F io(Corss) = ofor + g0 = (€orfeo + Zi0tor)ero = 0

vields g,, = f.,.€,,. The remaining formulae of (2) are derived similarly.

We have now shown that C contains an algebra D over Z with the multipli-
cation table given by (1)-(4). It remains only to show that e;;, fi;, g:; are
linearly independent over F and that these elements form a basis of C;; over Z

in order to prove that D is the eight-dimensional Cayley algebra over Z and that
C=D.

LEMMA 7. Let h”h“ = €;; SO that h,‘;h“ = &;;. Then x.','k,',' =0 /l/:f and only
’Lf Xii = ak;,-for ain Z.

We have x;;(ei; + ;) = %i; = (wi;hii)hic + (Xiihi)hi;. I xihi; = 0 then
%;; = ahy; with x;;h;; = ae;; and a in Z. The converse follows from %;;2 = 0.

LEMMA 8. Let X;i€i; = x,‘jf,'.- = X;ifi:i = 0. Then Xii = 0.

If x,—ih“ = a€;; and h,’,'x;j = ﬂe,',' then

his(xiihis) = ahis = (hjxi)he = Bhys.
If hi; #£ 0 then a = B. Now x;6;; = == x;;(fi:g5:) by (1) and (2) and so
xiiei; = £ (g (®aifis) — (g1e%:i)fii]
by (14). It follows that x,;e;; = 0 and that x;; = ae;;. Similarly x;; = 8f;;.
But if a # 0 we have
ae;ifs; = &£ agi; = Bfi;® =

contrary to hypothesis. Hence a = 0, x;; = 0.

It is evident that the proof above implies that f;; > ae;; for a in Z. If
gi; = ae;; -+ Bfi; then

giieii = £ fi; = Bfiies; = =+ Bgi;

which has been shown to be impossible. We have shown that D is an eight-
dimensional algebra.

\Ve now let Xii€;; = aé;y, x{if,',' = ,Be,',', Xiifii = Y€is for a, 6, Y in Z. Then
Yii = xy; — (aes; + Bfi; + vg:;) has the property that

Yiieis = (@ — a)e;; = 0,
Yiifis = (B — Bess = 0,
Yiifii = ('Y —7)e;; =0

and so v;; = 0 by Lemma 8. This completes our proof.

The University of Chicago
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