

# A Note on Algebras that are Sums of Two Subalgebras

Marek Kępczyk

Abstract. We study an associative algebra A over an arbitrary field that is a sum of two subalgebras B and C (*i.e.*, A = B + C). We show that if B is a right or left Artinian PI algebra and C is a PI algebra, then A is a PI algebra. Additionally, we generalize this result for semiprime algebras A. Consider the class of all semisimple finite dimensional algebras A = B + C for some subalgebras B and C that satisfy given polynomial identities f = 0 and g = 0, respectively. We prove that all algebras in this class satisfy a common polynomial identity.

## 1 Introduction

Let R be an associative ring and let  $R_1$ ,  $R_2$  be subrings such that  $R = R_1 + R_2$  (we keep this notation throughout the paper). In [3], K. I. Beidar and A. V. Mikhalev stated the following problem: if the subrings  $R_i$  satisfy polynomial identities (in short, PI rings), is it true that also R is a PI ring? The problem is still open. A positive answer in particular cases can be found in many papers (cf. [2-5, 9-12]). In [11] it was shown that if  $R_1$  is a nil ring of bounded index (*i.e.*, satisfies identity  $x^{n_i} = 0$ ) and  $R_2$  is a PI ring then R is a PI ring. Beidar and Mikhalev proved in [3] that if R1 satisfies an identity  $[x_1, x_2] \cdots [x_{2m-1}, x_{2m}] = 0$  and  $R_2$  satisfies an identity  $[x_1, x_2] \cdots [x_{2n-1}, x_{2n}] = 0$ for some  $m, n \ge 2$ , then R is a PI ring. We say that R satisfies (f, g) if  $R_1$  and  $R_2$ satisfy polynomial identities f = 0 and g = 0, respectively. Consider the class (f, g)of all rings *R* that satisfy (f, g) for fixed *f* and *g*. Denote this class by  $\mathcal{R}(f, g)$ . Since  $\Re(f, g)$  is closed under direct products, it follows that if a Beidar–Mikhalev problem has a positive solution, then all rings in  $\mathcal{R}(f, g)$  satisfy a common polynomial identity. Similarly, by the results cited above, all rings in  $\mathcal{R}(x^n, g)$  and correspondingly in  $\Re([x_1, x_2] \cdots [x_{2m-1}, x_{2m}], [x_1, x_2] \cdots [x_{2n-1}, x_{2n}])$  satisfy a common polynomial identity.

Let *K* be a field. Assume that A = B + C is a *K*-algebra and *B*, *C* are subalgebras of *A*. Some results concerning algebras in the context of the Beidar–Mikhalev problem can be found in [6–8]. Let f = 0 and g = 0 be given polynomial identities and let  $\mathcal{M}$  be the class of all semisimple finite-dimensional *K*-algebras *A*, where *B* satisfies f = 0 and *C* satisfies g = 0. Note that  $\mathcal{M}$  is not closed under direct products. In this paper we show that all algebras in  $\mathcal{M}$  satisfy a common polynomial identity.

Received by the editors July 18, 2015; revised December 3, 2015.

Published electronically February 11, 2016.

This work was supported by Bialystok University of Technology grant S/WI/0/2016.

AMS subject classification: 16N40, 16R10, 16S36, 16W60, 16R20.

Keywords: rings with polynomial identities, prime rings.

We say that an algebra H almost satisfies a certain property w if it has an ideal of finite codimension in H that satisfies w. Suppose that f = 0 and g = 0 are polynomial identities such that every ring in  $\mathcal{R}(f,g)$  is a PI ring. In [6] it was proved that if B almost satisfies f = 0 and C almost satisfies g = 0, then A is a PI algebra. This observation was used in [6] to extend the aforementioned two results (from [3, 11]) to algebras. In this paper we present further results of this type. We prove that if B is a right (or left) Artinian PI algebra and C is a PI algebra, then A is a PI algebra. Moreover, we show that if B is an almost nil PI algebra, C is a PI algebra and A is semiprime, then A is a PI algebra.

### 2 Preliminary Material

We consider associative algebras over a fixed field *K* that are not assumed to have an identity. Suppose that *A* is an algebra and *B* and *C* are subalgebras of *A* such that A = B + C (we keep this notation throughout the paper). For a *K*-linear space *H*, we write dim *H* instead of dim<sub>*K*</sub> *H*. To denote that *I* is an ideal (right ideal) of an algebra *H*, we write  $I \triangleleft H (I <_r H)$ . We denote the degree of a polynomial *f* by deg *f*.

The following theorem is the basic fact that we shall use in this note.

**Theorem 2.1** ([12, Theorem 3]) Suppose  $\mathfrak{F}$  is a homomorphically closed class of rings that is closed under direct powers. If every nonzero prime ring in  $\mathfrak{F}$  contains a nonzero one sided PI ideal, then  $\mathfrak{F}$  consists of PI rings.

We will also use the following two results from [6].

*Lemma 2.2* ([6, Lemma 4]) Let H be a K-algebra and let S, T be finite-dimensional K-subspaces of H. If M and P are K-subspaces of H such that  $\dim(SMT + P)/P < \infty$ , then  $\dim M/N < \infty$ , where  $N = \{v \in M \mid SvT \subseteq P\}$ .

*Remark 2.3* It is not hard to check that

 $\dim M/N \le (\dim S)(\dim T) \big( \dim(SMT + P)/P \big).$ 

Let A = B + C,  $B_0 \triangleleft B$ , and  $C_0 \triangleleft C$ , where dim  $B/B_0 < \infty$  and dim  $C/C_0 < \infty$ .

*Lemma* 2.4 ([6, Lemma 6]) Suppose that for the algebra A,  $C_0$  is a PI ideal of C. If I is an ideal of the product  $\prod A$  such that  $\prod B_0 \subseteq I$ , then  $(\prod A)/I$  is a PI algebra.

**Remark 2.5** Suppose that  $C_0$  satisfies a polynomial identity of degree d. Using Remark 2.3 and the proof of [6, Lemma 6], we can check that  $(\prod A)/I$  satisfies a polynomial identity whose degree depends only on d and dim  $A/(B_0 + C_0)$ .

Below we prove a certain modification of [1, Theorem 1], which will be used in further considerations.

*Lemma 2.6* Let P be a semiprime ring and let S be a PI subring of P that satisfies a polynomial identity of degree d. Moreover, let J be a nilpotent subring of P and let n be

*a positive integer such that*  $J^n = 0$  and  $J^{n-1} \neq 0$ . If  $A_i = J^{n-i}PJ^i \subseteq S$  for all  $1 \le i \le n-1$ , then  $n \le d$ .

**Proof** Suppose that n > d. The subring *S* satisfies a polynomial identity of degree *d*, so it satisfies the identity

$$x_1x_2\cdots x_d=\sum_{\mathrm{id}\neq\pi\in S_d}\alpha_\pi x_{\pi(1)}x_{\pi(2)}\cdots x_{\pi(d)},$$

where  $S_d$  is the set of permutations of the set  $\{1, 2, ..., d\}$  and  $\alpha_{\pi}$  are some integers. Therefore

$$(J^{n-1}P)^{d}J^{d} = A_{1}A_{2}\cdots A_{d} = \sum_{\mathrm{id}\neq\pi\in S_{d}} \alpha_{\pi}A_{\pi(1)}A_{\pi(2)}\cdots A_{\pi(d)} = 0,$$

so  $(J^{n-1}P)^{d+1} = 0$ . Since P is semiprime, it follows that  $J^{n-1} = 0$ , a contradiction. Thus,  $n \le d$ .

#### 3 New Results

Let f = 0 and g = 0 be given polynomial identities and let S and T be the classes of all *K*-algebras satisfying identity f = 0 and g = 0, respectively.

Let *H* be a *K*-algebra. Denote by  $\mathcal{H}(H)$  the minimal homomorphically closed class of algebras that is closed under direct powers such that  $H \in \mathcal{H}(H)$ .

**Theorem 3.1** Let  $\mathcal{M}$  be the class of all semisimple finite dimensional K-algebras of the form A = B + C, where  $B \in S$  and  $C \in T$ . Then all algebras in  $\mathcal{M}$  satisfy a common polynomial identity.

**Proof** Suppose that  $A \in \mathcal{M}$ . Let us note that since A is a finite dimensional semisimple algebra, we have  $A = A_1 \times A_2 \times \cdots \times A_k$ , where the  $A_i = B_i + C_i$  are simple and  $B_i \in S$  and  $C_i \in T$ . Consequently, without loss of generality, we can assume that the class  $\mathcal{M}$  consists of simple algebras. Since  $A \otimes_K \overline{K} = B \otimes_K \overline{K} + C \otimes_K \overline{K}$  is a simple finite-dimensional  $\overline{K}$ -algebra and  $B \otimes_K \overline{K}$ ,  $C \otimes_K \overline{K}$  are its PI subalgebras, where  $\overline{K}$  is the algebraic closure of K, we can assume additionally that K is an algebraically closed field. Therefore, A is isomorphic to  $K_n$ , the ring of  $n \times n$  matrices over K. Assume that B satisfies an identity f = 0 of degree d. Since B is finite dimensional, the Jacobson radical J(B) of B is nilpotent. Note that the index of nilpotency of J(B), *i.e.*, the smallest positive integer s such that  $J(B)^{s} = 0$ , is bounded by d. Furthermore, B/J(B) is a finite direct product of  $K_{n_i}$ , where i = 1, 2, ..., m, for some positive integer m and  $n_i \leq d$ . The subalgebra C has similar properties. Let  $\mathcal{M} = \{A_{\alpha} = B_{\alpha} + C_{\alpha} \mid B_{\alpha} \in \mathbb{S}, C_{\alpha} \in \mathcal{T} \text{ and } \alpha \in T\}$  for a set T. It is enough to prove that  $\overline{A} = \prod_{\alpha \in T} A_{\alpha}$  is a PI algebra. Since  $B_{\alpha}$  is a finite dimensional K-algebra, we can assume that for all  $\alpha$  we have  $B_{\alpha} = D_{\alpha,1} \oplus D_{\alpha,2} \oplus \cdots \oplus D_{\alpha,n_{\alpha}} \oplus J(B_{\alpha})$  for some positive integer  $n_{\alpha}$ . Additionally,  $D_{\alpha,l}D_{\alpha,t} \subseteq J(B_{\alpha})$ , where  $l, t \in \{1, 2, ..., n_{\alpha}\}$ and  $l \neq t$ . Let  $s_{\alpha}$  be the index of nilpotency of  $J(B_{\alpha})$ . We follow the convention that  $J(B_{\alpha})^0 = 1$ . If  $B_{\alpha}J(B_{\alpha})^{s_{\alpha}-1} \neq 0$ , without loss of generality, we can assume that  $D_{\alpha,1}J(B_{\alpha})^{s_{\alpha}-1} \neq 0$ . We have also that  $(D_{\alpha,2} \oplus \cdots \oplus D_{\alpha,n_{\alpha}} \oplus J(B_{\alpha}))D_{\alpha,1}J(B_{\alpha})^{s_{\alpha}-1} = 0$ . Let  $G_{\alpha} = B_{\alpha} + D_{\alpha,1}J(B_{\alpha})^{s_{\alpha}-1}A_{\alpha}$  if  $B_{\alpha}J(B_{\alpha})^{s_{\alpha}-1} \neq 0$ , and  $G_{\alpha} = B_{\alpha} + J(B_{\alpha})^{s_{\alpha}-1}A_{\alpha}$ 

342

A Note on Algebras that are Sums of Two Subalgebras

if  $B_{\alpha}J(B_{\alpha})^{s_{\alpha}-1} = 0$ . Clearly,  $G_{\alpha}$  is a subalgebra of  $A_{\alpha}$  and since  $B_{\alpha} \subseteq G_{\alpha}$ , we have  $G_{\alpha} = G_{\alpha} \cap (B_{\alpha} + C_{\alpha}) = B_{\alpha} + (G_{\alpha} \cap C_{\alpha}).$  Let  $D_{\alpha} = D_{\alpha,2} \oplus \cdots \oplus D_{\alpha,n_{\alpha}} \oplus J(B_{\alpha})$  if  $B_{\alpha}J(B_{\alpha})^{s_{\alpha}-1} \neq 0$ , and  $D_{\alpha} = B_{\alpha}$  otherwise. Clearly,  $D_{\alpha} \triangleleft B_{\alpha}$ . Since  $D_{\alpha}G_{\alpha} \subseteq D_{\alpha}$ , we obtain that  $D_{\alpha}$  is a right PI ideal of  $G_{\alpha}$  that satisfies the identity f = 0. Consider  $\overline{G} = \prod_{\alpha \in T} G_{\alpha}$ ,  $\overline{B} = \prod_{\alpha \in T} B_{\alpha}$ ,  $\overline{E} = \prod_{\alpha \in T} (G_{\alpha} \cap C_{\alpha})$  and  $\overline{D} = \prod_{\alpha \in T} D_{\alpha}$ . Clearly,  $\overline{G} = \overline{B} + \overline{E}$ ,  $\overline{D}$  is a right ideal of  $\overline{G}$  and  $\overline{D}$  satisfies the identity f = 0. Suppose that  $D_{\alpha} = 0$ for all  $\alpha \in T$ . Based on Lemma 2.4 and Remark 2.5 it is not hard to see that there exists a polynomial identity common for all  $G_{\alpha}$ . Hence by Lemma 2.4, if  $\prod D \subseteq I$  for some ideal I of  $\prod \overline{G}$ , then  $(\prod \overline{D})/I$  is a PI algebra. Therefore, every nonzero algebra from  $\mathcal{H}(G)$  contains a nonzero PI ideal. Applying Theorem 2.1 we obtain that G is a PI algebra. Summing up, we have that for every  $\alpha \in T$  there exists a nonzero ideal  $I_{\alpha}$ of  $B_{\alpha}$  such that  $\prod_{\alpha \in T} I_{\alpha} A_{\alpha}$  is a right *PI* ideal of  $\overline{A}$ . Analogously, we can prove that for every  $\alpha \in T$  there exists a nonzero ideal  $J_{\alpha}$  of  $C_{\alpha}$  such that  $\prod_{\alpha \in T} A_{\alpha} J_{\alpha}$  is a left *PI* ideal of *A*. Let us note that  $J_{\alpha}A_{\alpha}I_{\alpha} \subseteq J_{\alpha}I_{\alpha}$ , so  $J_{\alpha}I_{\alpha} \neq 0$ , since  $A_{\alpha}$  being simple is a prime algebra. Thus,  $A_{\alpha}J_{\alpha}I_{\alpha}A_{\alpha} = A_{\alpha}$ . This implies that every nonzero algebra in  $\mathcal{H}(\overline{A})$  contains a nonzero one sided PI ideal. Using Theorem 2.1 we get that  $\overline{A}$  is a PI algebra, which completes the proof.

The following corollary is an immediate consequence of Theorem 3.1.

**Corollary 3.2** Suppose that  $\mathfrak{X}$  is the class of all finite dimensional K-algebras of the form A = B + C, where  $B \in S$  and  $C \in \mathfrak{T}$ . Then there exists a polynomial identity h = 0 such that every  $A \in \mathfrak{X}$  satisfies the identity  $h^n = 0$  for some positive integer n.

We now prove the following theorem.

**Theorem 3.3** Assume A = B + C. If B is a right Artinian PI algebra and C is a PI algebra, then A is a PI algebra.

**Proof** Adjoining an identity if necessary, we can assume that  $K \subseteq A$ ,  $K \subseteq B$  and  $K \subseteq C$ . Since *B* is right Artinian, we have that for some positive integer k,  $B/J(B) = B_1 \times B_2 \times \cdots \times B_k$ , where the  $B_i$  are simple algebras and I = J(B) is nilpotent. Additionally, since *B* is a *PI* algebra, each  $B_i$  is finite dimensional over its center. Passing if necessary to  $A \otimes_K \overline{K}$ , where  $\overline{K}$  is the algebraic closure of *K*, we can assume that  $K = \overline{K}$  and all the  $B_i$  are finite dimensional over *K*.

Consequently, B/I is a finite dimensional algebra over K and I is nilpotent. Let G = B + IA. Clearly G is a subalgebra of A and  $G = B + (C \cap G)$ . We show that G is a PI algebra. We proceed by induction with respect to n, where n is the index of nilpotency of I. If n = 1, the assertion follows from Lemma 2.4. Suppose that n > 1 and the result holds for smaller integers. Since  $I^n = 0$ , it follows that  $I^{n-1} <_r G$ . Consequently, there exists a two sided nilpotent ideal J of G such that  $I^{n-1} \subseteq J$ . Note that  $G/J = (B + J)/J + ((C \cap G) + J)/J$  and  $((B + J)/J)^{n-1} = 0$ . Thus, G/J is a PI algebra by the induction hypothesis. Since J is nilpotent, we have that G is a PI algebra. Consider L = I + IA. Obviously,  $L <_r A$  and  $L \subseteq G$ . It follows that L is a PI algebra. By Lemma 2.4, if I is an ideal of the product  $\prod A$  such that  $\prod L \subseteq I$ , then

343

 $(\prod A)/I$  is a *PI* algebra. This implies that every nonzero algebra from  $\mathcal{H}(A)$  contains a nonzero right *PI* ideal. Applying Theorem 2.1 we obtain that *A* is a *PI* algebra.

*Remark 3.4* It is easy to see that Theorem 3.3 remains true if we replace "right Artinian" by "left Artinian".

It is well known that if *P* is a nil *PI* ring, then  $P^n \subseteq W(P)$  for some positive integer *n*, where W(P) denotes the sum of all nilpotent ideals of the ring *P*. Suppose that *R* is a ring and  $R_1$ ,  $R_2$  are its subrings such that  $R = R_1 + R_2$ . In [12, Theorem 8] it was proved that if  $R_1$  is a nil *PI* ring that satisfies a polynomial identity of degree *d* and  $R_2$  is a *PI* ring, then  $R_1^{d-1} \subseteq \beta(R)$ , where  $\beta(R)$  denotes the prime radical of *R*. As a consequence of the result, it was shown in [12, Corollary 9] that if  $R_1$  is a nil *PI* ring,  $R_2$  is a *PI* ring, and *R* is semiprime, then *R* is a *PI* ring.

Below we extend [12, Corollary 9] for algebras.

**Theorem 3.5** Assume A = B + C. If B is an almost nil PI algebra, C is a PI algebra and A is semiprime, then A is a PI algebra.

**Proof** Let  $I \triangleleft B$  be a nil *PI* ideal and dim B/I = s. We proceed by induction with respect to *s*. For s = 0 the assertion follows from [12, Corollary 9]. Assume that s > 0, and the assertion holds for smaller integers. Assume that *I* satisfies a polynomial identity f = 0 of degree *k*. Therefore, *B* satisfies identity

$$g = \left[f(x_{1,1}, x_{2,1}, \dots, x_{k,1}), \dots, f(x_{1,2s}, x_{2,2s}, \dots, x_{k,2s})\right] = 0$$

of degree d = 2sk.

We show that I is nilpotent. Suppose that J is a nilpotent ideal of I and m is the index of nilpotency of J. Consider  $\overline{B} = B + JAJ^{m-1} + J^2AJ^{m-2} + \dots + J^{m-1}AJ$ . Clearly,  $\overline{B}$ is a subalgebra of A and  $\overline{B} = B + (\overline{B} \cap C)$ . Let  $\overline{I} = I + JAJ^{m-1} + J^2AJ^{m-2} + \dots + J^{m-1}AJ$ . It is not hard to check that  $\overline{I}$  is a nil ideal of  $\overline{B}$ . Moreover, B is a homomorphic image of  $\overline{B}/(JAJ^{m-1} + J^2AJ^{m-2} + \dots + J^{m-1}AJ)$ , so  $\overline{B}$  is a PI algebra. Let  $t \in (\overline{I} \cap (\overline{B} \cap C))$ . Since  $tA = t\overline{B} + tC$  and  $t\overline{B}$  is a nil PI algebra and tC is a PI algebra, [12, Theorem 8] implies  $(t\overline{B})^{d-1} \subseteq (tA)$ . However, since A is semiprime and  $tA <_r A$ ,  $(\beta(tA))^2 = 0$ . Hence for every  $t \in (\overline{I} \cap (\overline{B} \cap C)), t^{4(d-1)} = 0$ . Since  $\overline{I}$  is a nil PI ideal of  $\overline{B}$  and  $\dim \overline{B}/\overline{I} \leq \dim B/I$ , by induction hypothesis we can assume that  $\dim \overline{B}/\overline{I} = s$ . It follows that  $\overline{I} \subseteq I + (\overline{I} \cap (\overline{B} \cap C))$ . Applying [8, Lemma 5], we obtain that  $\overline{I} \subseteq Q_1 + Q_2$ , where  $Q_1$  and  $Q_2$  are subalgebras of A such that  $Q_1 \subseteq I$ ,  $Q_2 \subseteq (\overline{I} \cap (\overline{B} \cap C))$  and  $Q_1 + Q_2$  is a subalgebra of  $\overline{B}$ . So  $\overline{I}$  satisfies a common polynomial identity of all rings in the class  $\Re(g, x^{4(d-1)})$  say h = 0. By Lemma 2.6, we have that  $m < \deg h$ . Hence we proved that the index of nilpotency of any nilpotent ideal J of I does not exceed deg h. So I is a nilpotent ideal of B and dim  $B/I < \infty$ . Now using a similar argument as in the second paragraph of the proof of Theorem 3.3, we obtain the result.

### References

- [1] S. A. Amitsur, Nil PI-rings. Proc. Amer. Math. Soc. 2(1951), 538-540.
- [2] Yu. Bahturin and A. Giambruno, *Identities of sums of commutative subalgebras*. Rend. Circ. Mat. Palermo 43(1994), 250–258. http://dx.doi.org/10.1007/BF02844841
- [3] K. I. Beïdar and A. V. Mikhalëv, Generalized polynomial identities and rings which are sums of two subrings. Algebra and Logic 34(1995), no. 1, 1–5. http://dx.doi.org/10.1007/BF00750549
- [4] B. Felzenszwalb, A. Giambruno, and G. Leal, On rings which are sums of two PI-subrings: a combinatorial approach. Pacific J. Math. 209(2003), no. 1, 17–30. http://dx.doi.org/10.2140/pjm.2003.209.17
- [5] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe. Math. Ann. 149(1962/1963), 258–260. http://dx.doi.org/10.1007/BF01470877
- [6] M. Kępczyk, Note on algebras which are sums of two PI subalgebras. J. Algebra Appl. 14(2015), 1550149, 10. http://dx.doi.org/10.1142/S0219498815501492
- [7] \_\_\_\_\_, Note on algebras that are sums of two subalgebras satisfying polynomial identities. British J. Math. Com. Sci. 4(2014), no. 23, 3245–3251. http://dx.doi.org/10.9734/BJMCS/2014/12652
- [8] \_\_\_\_\_, On algebras that are sums of two subalgebras satisfying certain polynomial identities. Publ. Math. Debrecen 72(2008), no. 3–4, 257–267.
- [9] M. Kępczyk and E. R. Puczyłowski, On radicals of rings which are sums of two subrings. Arch. Math. (Basel) 66(1996), 8–12. http://dx.doi.org/10.1007/BF01323977
- [10] \_\_\_\_\_, On the structure of rings which are sums of two subrings. Arch. Math. (Basel) 83(2004), no. 5, 429–436. http://dx.doi.org/10.1007/s00013-004-1206-9
- [11] \_\_\_\_\_, Rings which are sums of two subrings. J. Pure Appl. Algebra 133(1998), no. 1–2, 151–162. http://dx.doi.org/10.1016/S0022-4049(97)00191-6
- [12] \_\_\_\_\_, Rings which are sums of two subrings satisfying polynomial identities. Comm. Algebra 29(2001), no. 5, 2059–2065. http://dx.doi.org/10.1081/AGB-100002168

Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15–351 Białystok, Poland e-mail: m.kepczyk@pb.edu.pl