NON-LOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS

BUI AN TON

Let G be a bounded open set of \mathbb{R}^n with a smooth boundary ∂G . We consider the following elliptic boundary-value problem:

$$Au = f$$
 on G ; $B_j u = \sum_{k=1}^m L_{jk} C_k u$ on ∂G , $j = 1, ..., m$,

where A and B_j are, respectively singular integro-differential operators on G and on ∂G , of orders 2m and r_j with $r_j < 2m$; C_k are boundary differential operators, and L_{jk} are linear operators, bounded in a sense to be specified.

Let A_2 be the realization of A as an operator on $L^2(G)$ with the above boundary conditions. When the symbols σ_A , σ_j of A and B_j satisfy a strengthened Shapiro-Lopatinskiĭ condition, we show, in § 2, that A_2 is a Fredholm operator, the generalized eigenfunctions of A_2 are complete in $L^2(G)$ and $(A_2 + \lambda I)^{-1}$ exists for large $|\lambda|$, arg $\lambda = \theta$. We also prove the existence of a solution of $(A_2 + \lambda I)u = f(x, T_1u, \ldots, T_{2m-1}u)$, where T_j are bounded, linear operators from $W^{j,2}(G)$ into $L^2(G)$, $f(x, \zeta_1, \ldots, \zeta_{2m-1})$ has a linear growth in $(\zeta_1, \ldots, \zeta_{2m-1})$.

The proofs depend on a result on elliptic boundary-value problems $\{A; B_j\}$ containing a large parameter λ , which is given in § 3. The notation, the definitions, and the results are given in § 1.

Non-local elliptic boundary-value problems have been studied by Agranovič (2), Beals (4), Browder (6), Schechter (8), and others.

1. Let G be a bounded open set of \mathbb{R}^n , regular of class C^{∞} with boundary ∂G . The generic point x of G is $x = (x_1, \ldots, x_n)$. Set $D_j = i^{-1}\partial/\partial x_j$, j = 1, \ldots , n. For each n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n)$ of non-negative integers, we write:

$$D^{\alpha} = \prod_{j=1}^{n} D_{j}^{\alpha j}$$
 and $|\alpha| = \sum_{j=1}^{n} \alpha_{j}$.

Let s be a non-negative integer; we denote by $W^{s,2}(G)$ the space

$$W^{s,2}(G) = \{u: u \text{ in } L^2(G), D^{\alpha}u \text{ in } L^2(G); |\alpha| \leq s\}$$

(the derivatives are taken in the sense of the theory of distributions). $W^{s,2}(G)$ is a Hilbert space with the norm

$$||u||_{s,2} = \left\{ \sum_{|\alpha|\leqslant s} ||D^{\alpha}u||_{L^{2}(G)}^{2} \right\}^{\frac{1}{2}}$$

Received March 13, 1967.

and the obvious inner product. Set

$$|||u|||_{s,2} = \{||u||_{s,2}^{2} + |\lambda|^{s/m}||u||_{0,2}^{2}\}^{\frac{1}{2}},$$

then

$$|||u|||_{s,2} \leq \left(\sum_{k=0}^{s} |\lambda|^{k/m} ||u||_{s-k,2}^{2}\right)^{\frac{1}{2}} \leq C|||u|||_{s,2}$$

(cf. Agranovič and Višik (3, p. 64)).

Let ϕ_k , $k = 1, \ldots, N$, be those functions of the finite partition of unity whose supports intersect the boundary ∂G . For $s \ge 0$, we define $W^{s,2}(\partial G)$ as the completion of $\mathcal{C}^{\infty}(\partial G)$ with respect to the norm

$$||u||_{s,2}^{\prime} = \left(\sum_{k=1}^{N} ||\phi_{k}u||_{W^{s,2}(\mathbb{R}^{n-1})}^{2}\right)^{\frac{1}{2}},$$

where $||\phi_k u||_{W^{s,2}(\mathbb{R}^{n-1})}$ is taken in local coordinates and is defined by means of the Fourier transforms:

$$||\phi_k u||_{W^{s,2}(\mathbb{R}^{n-1})} = \left\{ \int_{\mathbb{R}^{n-1}} (1+|\xi|^{2s}) |F(\phi_k u)|^2 d\xi \right\}^{\frac{1}{2}}.$$

The space $W^{s,2}(\partial G)$ is a Hilbert space. It neither depends on the choice of local coordinates nor on the choice of the partition of unity. We set

$$|||u|||_{s,2}^{\prime} = (||u||_{s,2}^{\prime 2} + |\lambda|^{s/m}||u||_{0,2}^{\prime 2})^{\frac{1}{2}}.$$

We have that

$$|||u|||_{s-\frac{1}{2},2} \leq C|||u|||_{s,2}.$$

Let u(x) be in $C^k(R_+^n)$, $R_+^n = \{x: x_n > 0\}$. Then the Hestenes formula defines a smooth continuation L of u to Lu in $C^k(R^n)$. If u is in $W^{k,2}(R_+^n)$, then $||Lu||_{W^{s,2}(R^n)} \leq C||u||_{W^{s,2}(R_+^n)}$, $s = 0, \ldots, k$.

DEFINITION 1.1. (i) A is said to be an operator of order k in $W^{s,2}(G)$ if A is a bounded linear mapping from $W^{s,2}(G)$ into $W^{s-k,2}(G)$. s and k are two nonnegative integers with $s \ge k$.

(ii) A is said to be an operator almost of order k - 1 on $W^{s,2}(G)$ if A may be decomposed into $A = A_{\epsilon'} + A_{\epsilon''}$, where $A_{\epsilon'}$ is an operator of order k in $W^{s,2}(G)$ with norm less than ϵ and $A_{\epsilon''}$ is an operator of order k - 1 in $W^{s,2}(G)$. ϵ is any given positive number.

Consider the singular integral operators

$$A_{mk}u(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} Y_{mk}(x-y) |x-y|^{-n}u(y) dy, \qquad u \in L^2(\mathbb{R}^n),$$

where $Y_{mk}(x)$ are the spherical functions on the unit sphere in \mathbb{R}^n .

Let $\sigma(x, \xi)$ be a positive homogeneous function of ξ of degree 0. We expand $\sigma(x, \xi)$ as follows:

$$\sigma(x, \xi) = \sum_{m,k} \gamma_m a_{mk}(x) Y_{mk}(\xi), \qquad \gamma_0 = 1.$$

The operator $A = \sum_{m,k} a_{mk}(x)A_{mk}$ associated with σ is a homogeneous singular integral operator on \mathbb{R}^n with symbol σ . It is of class (p, q) if

$$\sigma(x, \xi) \in C^p(R^n; W^{q,2}(\Sigma))$$

where $C^p(\mathbb{R}^n; W^{q,2}(\Sigma))$ is the space of functions $f(x, \cdot)$ on \mathbb{R}^n with values in $W^{q,2}(\Sigma)$ and having x-continuous derivatives of order $\leq p$ in $W^{q,2}(\Sigma)$. Σ is the unit sphere in \mathbb{R}^n .

DEFINITION 1.2. A singular integro-differential operator of class (p, q) of order s in $W^{k,2}(\mathbb{R}^n)$, $s \ge k$, is an operator of the form:

$$A = \sum_{|\alpha|=s} A_{\alpha} D^{\alpha} + T,$$

where A_{α} are homogeneous singular integral operators in \mathbb{R}^n , of class (p, q), and T is an arbitrary linear operator almost of order s - 1 in $W^{k,2}(\mathbb{R}^n)$. A is homogeneous if T = 0.

The symbol of A,

$$\sigma_A(x,\,\xi)\,=\sum_{|\alpha|=s}\,\sigma_\alpha(x,\,\xi)\xi^\alpha,$$

is a positive homogeneous function of order s with respect to ξ , $\sigma_{\alpha}(x, \xi)$ is the symbol of A_{α} .

DEFINITION 1.3. (i) $A = R\tilde{A}L$ (where \tilde{A} is a homogeneous singular integrodifferential operator of class (p, q) of order s in $W^{k,2}(\mathbb{R}^n)$, $s \ge k$, R is the restriction operator of functions from \mathbb{R}^n to \mathbb{R}_+^n , and L is the extension operator of functions from \mathbb{R}_+^n to \mathbb{R}^n) is a singular integro-differential operator of class (p, q)and of order s in $W^{k,2}(\mathbb{R}_+^n)$.

(ii) A is called an admissible singular integro-differential operator on R_{+}^{n} if for $x_{n} = 0$ we have that

$$\sigma_A(x', 0, \xi', \xi_n) = \sum_{k=0}^s \sigma_k(x', \xi') \xi_n^k$$

and $\sigma_s(x', \xi')$ does not depend on ξ_n .

Hence, if σ is the symbol of an admissible singular integro-differential operator of class (p, q) of order s in $W^{k,2}(R_+^n)$, then $\sigma_k(x', \xi')$ are positively homogeneous of degree s - k and are in $C^p(R^{n-1}; W^{q-\frac{1}{2},2}(\Sigma'))$, where Σ' is the unit sphere in R^{n-1} .

Let $\{N_k\}$ be a finite open covering of cl(G) and $\{\phi_k\}$ a finite partition of unity corresponding to N_k . Denote by ψ_k an infinitely differentiable function with compact support in N_k and $\psi_k = 1$ on the support of ϕ_k .

We shall consider singular integro-differential operators on G of the form

(1.1)
$$A = \sum_{k} \phi_{k} A_{k} \psi_{k} + T,$$

where T is an operator almost of order 2m - 1 in $W^{s,2}(G)$ ($s \ge 2m$) and A_k is an admissible singular integro-differential operator of order 2m on R_+^n if N_k is a boundary neighbourhood, and on R^n , otherwise. We consider also operators on ∂G of the form

(1.2)
$$B_j = \sum_{k}' \phi_k B_{jk} \psi_k + T_j, \quad j = 1, ..., m,$$

where the summation is taken over all the k corresponding to boundary neighbourhoods N_k . B_{jk} are given by

$$B_{jk} = \sum_{l=0}^{r_j} B_{jk}{}^l D_n{}^l,$$

where $B_{jk}{}^{l}$ are singular integro-differential operators on R^{n-1} , homogeneous of orders $r_{j} - l$. T_{j} is an operator almost of order -1 from $W^{s,2}(G)$ into $W^{s-r_{j}-\frac{1}{2},2}(\partial G)$. The symbol σ_{A} of A is defined as follows: it is a function $\sigma_{A}(P, \xi)$ such that for points P in N_{k} , x in local coordinates, it coincides with the symbol $\sigma_{Ak}(x, \xi)$ of A_{k} . Similarly for σ_{Bj} .

DEFINITION 1.4. An admissible singular integro-differential operator A on G of the form (1.1) is said to be elliptic at a point P of G if

$$\sigma_{A_k}(x, \xi) \neq 0 \quad for \ \xi \neq 0; \qquad P \in N_k \cap G,$$

and elliptic on G if it is elliptic at each point of G.

The definition is invariant with respect to the choice of coordinate neighbourhoods and local coordinates.

 A_k is said to be *properly elliptic* at $x_0 = (x', 0)$ if $\sigma_{A_k}(x', \xi', \zeta) = 0$, considered as a polynomial in the complex variable ζ , has *m* roots in the upper half ζ -plane and *m* roots in the lower half-plane. Throughout the paper, we shall assume that the A_k are properly elliptic on \mathbb{R}^n .

DEFINITION 1.5. The elliptic boundary-value problem $\{A; B_j, j = 1, ..., m\}$ on G, where A and B_j are of the form (1.1) and (1.2), is said to be regular if for each k corresponding to boundary neighbourhoods N_k we have that

$$\operatorname{Det}\left(\int_{C}\zeta^{\tau-1}\sigma_{B_{jk}}(x',\xi',\zeta)[\sigma_{A_{k}}(x',\xi',\zeta)]^{-1}d\zeta\right)\neq 0,$$

where r, j = 1, ..., m and C is a closed Jordan rectifiable curve in the upper half ζ -plane containing all the m roots of $\sigma_{Ak}(x', \xi', \zeta) = 0$.

ASSUMPTION (1). Let $\{A; B_j, j = 1, ..., m\}$ be a regular elliptic boundary problem on G. A and B_j are of the form (1.1) and (1.2).

We assume that there exists a θ , $0 \leq \theta < 2\pi$, such that for every k corresponding to boundary neighbourhoods N_k we have that

$$\operatorname{Det}\left(\int_{C}\zeta^{\tau-1}\sigma_{B_{jk}}(x',\xi',\zeta)[\sigma_{A_{k}}(x',\xi',\zeta)+\lambda]^{-1}d\zeta\right)\neq 0,$$

where r, j = 1, ..., m, arg $\lambda = \theta$, $|\lambda| \ge \lambda_0 > 0$, and C is as in Definition 1.5.

We now state the main results of the paper.

THEOREM 1.1. Let $\{A; B_j, j = 1, ..., m\}$ be a regular elliptic boundary-value problem on G. The admissible singular integro-differential operator A is of the form (1.1), of class (s - 2m, q), and of order 2m. $s \ge 2m$ and q > (n - 1)/2. The B_j are of the form (1.2), of class $(s - r_j, q - \frac{1}{2})$, and of orders r_j with $r_j < 2m - 1$.

Suppose that there exists a θ such that Assumption (1) is satisfied. Then

(1) For all u in $W^{s,2}(G)$, we have that

$$|||u|||_{s,2} \leq C \left\{ |||(A + \lambda I)u|||_{s-2m,2} + \sum_{j=1}^{m} |||B_{j}u|||_{s-r_{j}-\frac{1}{2},2} \right\},$$

where $\arg \lambda = \theta$, $|\lambda| \ge \lambda_0 > 0$, and C is independent of λ and u.

(2) For any $(f, g_1, ..., g_m)$ in

$$W^{s-2m,2}(G) \times \prod_{j=1}^{m} W^{s-r_j-\frac{1}{2},2}(\partial G), \qquad s \ge 2m$$

there exists a unique solution u in $W^{s,2}(G)$ of

$$(A + \lambda I)u = f \text{ on } G, \quad B_j u = g_j \text{ on } \partial G, \qquad j = 1, \ldots, m.$$

The proof of the theorem is long and will be given in § 3. The theorem has been proved by Agranovič and Višik (3) for the case when the operators A and B_j are differential operators (cf., also, Agmon (1)).

THEOREM 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied. Let C_k , $k = 1, \ldots, m$, be a set of boundary differential operators of orders v_k with $v_k < 2m$. Let L_{jk} , j, $k = 1, \ldots, m$, be a set of compact (or bounded) linear operators from $W^{s-v_k-\frac{1}{2},2}(\partial G)$ into $W^{s-r_j-\frac{1}{2},2}(\partial G)$ (or into $W^{s-r_j-\frac{1}{2}+\epsilon,2}(\partial G)$ for some $\epsilon > 0$). Then

(i) there exists a positive constant M, independent of λ (arg $\lambda = \theta$) and u, such that, for all u in $W^{s,2}(G)$,

$$|||u|||_{s,2} \leq M \left\{ |||(A + \lambda I)u|||_{s-2m,2} + \sum_{j=1}^{m} \left\| \left(B_{j} - \sum_{k=1}^{m} L_{jk}C_{k} \right) u \right\|_{s-\tau_{j-\frac{1}{2},2}}' \right\},$$

$$s \geq 2m, |\lambda| \geq \lambda_{0} > 0$$

(ii) let A_2 be the realization of A as an operator on $L^2(G)$ with null boundary conditions

$$B_{j}u - \sum_{k=1}^{m} L_{jk}C_{k}u = 0 \text{ on } \partial G, \qquad j = 1, \ldots, m.$$

Then $(A_2 + \lambda I)^{-1}$ exists and is defined on all of $L^2(G)$. It is a compact operator on $L^2(G)$ with $||A_2 + \lambda I)^{-1}|| \leq M/|\lambda|$ for $|\lambda| \geq \lambda_0 > 0$.

THEOREM 1.3. Suppose that the hypotheses of Theorem 1.2 are satisfied. Then (i) there exists a positive constant M such that, for all u in $W^{s,2}(G)$,

$$||u||_{s,2} \leq M \left\{ ||Au||_{s-2m,2} + ||u||_{0,2} + \sum_{j=1}^{m} \left\| \left(B_{j} - \sum_{k=1}^{m} L_{jk}C_{k} \right) u \right\|_{s-r_{j}-\frac{1}{2},2}^{\prime} \right\}, \\ s \geq 2m;$$

(ii) A_2 is a Fredholm operator and $ind(A_2) = 0$ (cf. Schechter (8).

THEOREM 1.4. Suppose that the hypotheses of Theorem 1.2 are satisfied for s = 2m. Suppose, further, that there exist θ_k , $k = 1, \ldots, N$, $0 \leq \theta_k < 2\pi$, for which assumption (1) is satisfied and such that the plane is divided by these rays arg $\lambda = \theta_k$ into angles which are less than $2m\pi/n$. Then the generalized eigenfunctions of A_2 are complete in $L^2(G)$.

The theorem extends for the case p = 2, a result of Agmon (1).

THEOREM 1.5. Suppose that the hypotheses of Theorem 1.2 are satisfied for s = 2m. Let $f(x, \zeta_1, \ldots, \zeta_{2m})$ be a function measurable in x on G, continuous in $(\zeta_1, \ldots, \zeta_{2m})$ with $f(x, 0, \ldots, 0) \neq 0$. Suppose, further, that there exists a positive constant M such that

$$|f(x, \zeta_1, \ldots, \zeta_{2m})| \leq M \left\{ 1 + \sum_{j=1}^{2m-1} |\zeta_j| \right\}.$$

Let T_1, \ldots, T_{2m-1} be bounded linear operators from $W^{j,2}(G)$ into $L^2(G)$ and let T_{2m} be a bounded linear operator from $W^{2m-\epsilon,2}(G)$ into $L^2(G), 0 < \epsilon$. Then

(i) for $|\lambda| \ge \lambda_0 > 0$, there exists a non-trivial solution u in $W^{2m,2}(G)$ of the elliptic boundary-value problem

$$(A + \lambda I)u = f(x, T_1u, \dots, T_{2m}u) \text{ on } G,$$
$$B_ju = \sum_{k=1}^m L_{jk}C_ku \text{ on } \partial G, \qquad j = 1, \dots, m;$$
(ii) let (g_1, \dots, g_m) be in
$$\prod_{j=1}^m W^{2m-r_j - \frac{1}{2}, 2}(\partial G).$$

There exists a solution u in $W^{2m,2}(G)$ of $(A + \lambda I)u = f(x, T_1u, \ldots, T_{2m}u)$ on $G; B_ju = g_j$ on ∂G .

2. In this section we shall give the proofs of Theorems 1.2–1.5, assuming Theorem 1.1.

Proof of Theorem 1.2. (1) We establish the a-priori estimate. Suppose that part (i) of the theorem is not true. Then for any λ with $\arg \lambda = \theta$, $|\lambda| \ge \lambda_0 > 0$, there would exist $\{u_n\}$ with

 $|||u_n|||_{s,2} = 1$

and

$$|||(A + \lambda)u_n|||_{s-2m,2} + ||u_n||_{0,2} + \sum_{j=1}^m \left\| \left(B_j - \sum_{k=1}^m L_{jk}C_k \right) u_n \right\|'_{s-\tau_j - \frac{1}{2}, 2} \to 0.$$

From the weak compactness of the unit ball in a Hilbert space, we obtain a subsequence, which we may assume to be the original one, such that $u_n \to u$ weakly in $W^{s,2}(G)$ as $n \to \infty$. Since $u_n \to 0$ in $L^2(G)$, we have that u = 0. Since G is a bounded open set of \mathbb{R}^n , regular of class \mathbb{C}^∞ , it follows from the

Sobolev imbedding theorem that $u_n \to 0$ in $W^{s-1,2}(G)$ and $u_n \to 0$ weakly in $W^{s-\frac{1}{2},2}(\partial G)$ as $n \to \infty$. The operator $\sum_{k=1}^{m} L_{jk}C_k$ is a compact linear mapping from $W^{s-\frac{1}{2},2}(\partial G)$ into $W^{s-r_j-\frac{1}{2},2}(\partial G)$, being the composition of a linear mapping from $W^{s-\frac{1}{2},2}(\partial G)$ into $W^{s-\nu_k-\frac{1}{2},2}(\partial G)$ and a compact mapping from $W^{s-\nu_k-\frac{1}{2},2}$ into $W^{s-\tau_j-\frac{1}{2},2}(\partial G)$.

Therefore $\sum_{k=1}^{m} L_{jk} C_k u_n \to 0$ in $W^{s-r_j - \frac{1}{2}, 2}(\partial G)$ as $n \to \infty$.

Hence, $B_{j}u_n \to 0$ in $W^{s-r_j-\frac{1}{2},2}(\partial G)$ as $n \to \infty$, $j = 1, \ldots, m$. In a similar fashion, we show that

$$\lambda^{(s-r_j-\frac{1}{2})/2m}B_ju_n \to 0 \text{ in } L^2(\partial G), \qquad j = 1, \ldots, m$$

On the other hand, from Theorem 1.1, we obtain the following:

$$|||u_n|||_{s,2} \leq M \left\{ |||(A + \lambda)u_n|||_{s-2m,2} + \sum_{j=1}^m |||B_ju_n|||_{s-r_j-\frac{1}{2},2}^{\prime} \right\}.$$

Thus $|||u_n|||_{s,2} \to 0$ as $n \to \infty$, which is a contradiction. Now take $|\lambda|$ sufficiently large and we obtain the a-priori estimate.

(2) Let A_2 be a linear operator on $L^2(G)$ defined as follows:

$$D(A_{2}) = \left\{ u: u \text{ in } W^{2m,2}(G), Au \text{ in } L^{2}(G); \\ B_{j}u = \sum_{k=1}^{m} L_{jk}C_{k}u \text{ on } \partial G, j = 1, \dots, m \right\}, \\ A_{2}u = Au \quad \text{if } u \text{ is in } D(A_{2}).$$

$$A_2$$
 is densely defined. Indeed, we have that $C_c^{\infty}(G) \subset D(A_2)$. From the a-priori estimate and Proposition 16.1 of Agranovič (2, p. 99), we deduce that $(A_2 + \lambda I)$ is a closed operator on $L^2(G)$ with $N(A_2 + \lambda I) = \{0\}$. We show that $R(A_2 + \lambda I) = L^2(G)$. Let f be any element of $L^2(G)$, v an element of $W^{2^{m,2}}(G)$, and suppose that $0 \leq t \leq 1$. Consider the following elliptic boundary-value problem

$$(A + \lambda I)u = f$$
 on G , $B_ju = t \sum_{k=1}^m L_{jk}C_kv$ on ∂G , $j = 1, \ldots, m$.

From Theorem 1.1, we know that there exists a unique solution u in $W^{2m,2}(G)$ of the above problem. Define the following non-linear mapping T(t) from $[0, 1] \times W^{2m,2}(G)$ into $W^{2m,2}(G)$:

$$T(t)v = u,$$

where u is the unique solution of the above boundary-value problem. If we can show that T(1)u = u, i.e. T(1) has a fixed point, then u is in $D(A_2)$ and

is in $R(A_2 + \lambda I)$. Since f is an arbitrary element of $L^2(G)$, we have that $R(A_2 + \lambda I) = L^2(G)$. We verify that T(t) satisfies the hypotheses of the Leray-Schauder fixed-point theorem.

PROPOSITION 2.1. T(t) is a completely continuous operator from $[0, 1] \times W^{2m,2}(G)$ into $W^{2m,2}(G)$.

of

Proof. T(t) is continuous. Let $t_n \to t$, $v_n \to v$ in $W^{2m,2}(G)$. From Theorem 1.1 we obtain the following:

$$||u_n||_{2m,2} \leq M \left\{ ||f||_{0,2} + \sum_{j,k=1}^m ||L_{jk}C_k(t_nv_n)|||_{2m-\tau_j-\frac{1}{2},2}^{\prime} \right\}.$$

Thus

$$||u_n - u||_{2m,2} \leq M \sum_{j,k=1}^m |||L_{jk}C_k(t_nv_n - tv)|||'_{2m-r_j-\frac{1}{2},2}$$

We immediately have that $u_n \to u$ in $W^{2m,2}(G)$. T(t) is compact. Indeed, suppose that $||v_n||_{2m,2} \leq M$. Then from the weak compactness of the unit ball in a Hilbert space, we have that $v_n \to v$ weakly in $W^{2m,2}(G)$, hence also weakly in $W^{2m-\frac{1}{2},2}(\partial G)$. But $\sum_{k=1}^{m} L_{jk}C_k$ is a compact operator from $W^{2m-\frac{1}{2},2}(\partial G)$ into $W^{2m-r_j-\frac{1}{2},2}(\partial G)$, thus

$$\sum_{k=1}^{m} L_{jk}C_k v_n \to \sum_{k=1}^{m} L_{jk}C_k v \quad \text{in } W^{2m-r_j-\frac{1}{2},2}(\partial G)$$

as well as in $L^2(\partial G)$. Therefore $u_n \to u$ in $W^{2m,2}(G)$.

PROPOSITION 2.2. I - T(0) is a homeomorphism of $W^{2m,2}(G)$ into itself. If $[I - T(t)]v = 0, 0 < t \leq 1$, then $||v||_{2m,2} \leq M$, where M is independent of t.

Proof. The first assertion follows directly from Theorem 1.1. Suppose that T(t)v = v; then v is the solution of the boundary-value problem

$$(A + \lambda I)v = f$$
 on G , $B_j v = \sum_{k=1}^m L_{jk}C_k(tv)$ on ∂G , $j = 1, \ldots, m$.

In the first part of the proof of the theorem, we may, instead of considering the operator L_{jk} , take the operator tL_{jk} ; then we have that

$$||v||_{2m,2} \leq M ||f||_{0,2},$$

where M is independent of λ , v, and t.

Proof of Theorem 1.2 (continued). The operator T(t) satisfies all the conditions of the Leray-Schauder fixed-point theorem (the uniform continuity condition of the theorem is not necessary as observed by Browder in (7)). Therefore, T(1)u = u. Thus $R(A_2 + \lambda I) = L^2(G)$ and hence, $(A_2 + \lambda I)^{-1}$ exists and is defined on all of $L^2(G)$. Since the injection mapping from $W^{2m,2}(G)$ into $L^2(G)$ is compact, $(A_2 + \lambda I)^{-1}$ is a compact linear mapping of $L^2(G)$ into itself and, moreover, from the a-priori estimate, it follows that

$$||(A_2 + \lambda I)^{-1}|| \leq M/|\lambda| \text{ for } |\lambda| \geq \lambda_0 > 0.$$

The theorem is proved.

Proof of Theorem 1.3. (1) We establish the a-priori estimate by contradiction. It is similar to the first part of the proof of Theorem 1.2. We obtain a

contradiction by using the following estimate of Proposition 16.3 of Agranovič (**2**, p. 101):

$$||u||_{s,2} \leq M \left\{ ||Au||_{s-2m,2} + ||u||_{0,2} + \sum_{j=1}^{m} ||B_{j}u||'_{s-\tau_{j}-\frac{1}{2},2} \right\}.$$

(2) By standard arguments, we deduce from the a-priori estimate that A_2 is closed, $N(A_2)$ is of finite dimension, and that $R(A_2)$ is closed in $L^2(G)$. Hence A_2 is a semi-Fredholm operator.

We now show that if Assumption (1) is satisfied, then A_2 is a Fredholm operator and $ind(A_2) = \dim N(A_2) - \operatorname{codim} R(A_2) = 0$. From Theorem 1.2, we have that

$$(A_2 + \lambda I)(A_2 + \lambda I)^{-1} = I,$$

where I is the identity operator on $L^{2}(G)$. Thus

$$A_{2}(A_{2} + \lambda I)^{-1} = I - \lambda (A_{2} + \lambda I)^{-1}.$$

Since $(A_2 + \lambda I)^{-1}$, considered as a mapping from $L^2(G)$ into itself, is compact, it follows from a well-known argument that $I - \lambda(A_2 + \lambda I)^{-1}$ is a Fredholm operator and $\operatorname{ind}(I - \lambda(A_2 + \lambda I)^{-1}) = 0$. Hence $A_2(A_2 + \lambda I)^{-1}$ is a Fredholm operator and $\operatorname{ind}(A_2(A_2 + \lambda I)^{-1}) = 0$. We can easily show that $R(A_2) = R(A_2(A_2 + \lambda I)^{-1})$ and $N(A_2) = N(A_2(A_2 + \lambda I)^{-1})$. Therefore, $\operatorname{ind}(A_2) = \operatorname{ind}(A_2(A_2 + \lambda I)^{-1}) = 0$.

Proof of Theorem 1.4. Since $(A_2 + \lambda I)^{-1}$ is a compact linear mapping of $L^2(G)$ into itself, the spectrum of A_2 is discrete and the eigenspaces are of finite dimension. With the hypotheses of the theorem, it follows from Theorem 3.2 of Agmon (1, pp. 128–129) that the generalized eigenfunctions of A_2 are complete in $L^2(G)$. Indeed, the proof in (1) depends only on the compactness of $(A_2 + \lambda I)^{-1}$ and on an estimate on the growth of the resolvent operator as in Theorem 1.2.

Proof of Theorem 1.5. Let v be an element of $W^{2m,2}(G)$ and suppose that $0 \leq t \leq 1$. Consider the following elliptic boundary-value problem:

$$(A + \lambda I)u = f(x, tT_1v, \dots, tT_{2m}v) \quad \text{on } G,$$

$$B_ju = \sum_{k=1}^m L_{jk}C_ku \quad \text{on } \partial G, \qquad j = 1, \dots, m$$

Since

$$|f(x,\zeta_1,\ldots,\zeta_{2m})| \leq M\left\{1+\sum_{j=1}^{2m-1}|\zeta_j|\right\},$$

 $f(x, tT_1v, \ldots, tT_{2m}v)$ is in $L^2(G)$. Define the non-linear mapping $\mathfrak{T}(t)$ from $[0, 1] \times W^{2m,2}(G)$ into $W^{2m,2}(G)$ as follows:

$$\mathfrak{T}(t)v = u,$$

where u is the unique solution of the above boundary-value problem. It follows from Theorem 1.2 that $\mathfrak{T}(t)$ is well-defined.

To prove the theorem, we show that $\mathfrak{T}(t)$ satisfies the hypotheses of the Leray-Schauder fixed-point theorem. The proof is essentially the same as that given in (10). It suffices to note that since T_{2m} is a bounded linear mapping from $W^{2m-\epsilon,2}(G)$ into $L^2(G)$, it is a compact linear mapping from $W^{2m,2}(G)$ into $L^2(G)$.

A similar argument (taking into account Theorem 1.1) gives the existence of a solution in $W^{2m,2}(G)$ of

 $(A + \lambda I)u = f(x, T_1u, \ldots, T_{2m}u)$ on G, $B_ju = g_j$ on ∂G , $j = 1, \ldots, m$. Finally, we note that with the estimate on $||(A_2 + \lambda I)^{-1}||$ of Theorem 1.2 for all λ with $|\arg \lambda| \leq \pi/2$, we may show the existence of a solution of a non-local parabolic boundary-value problem of the form

$$\frac{\partial u}{\partial t} + Au = f(x, t) \quad \text{on } G \times [0, T];$$

$$B_{j}u = \sum_{k=1}^{m} L_{jk}C_{k}u \quad \text{on } \partial G \times [0, T], \quad j = 1, \dots, m;$$

$$u(x, 0) = u_{0}(x) \quad \text{on } G,$$

by using a result of Sobolevskii (9) (cf. 10).

n

3. We proceed to prove Theorem 1.1. As usual, we consider first the case of a half-space with A and B_j having constant symbols, then the case when A and B_j have symbols depending on x, but close (in a sense to be specified) to constant symbols, and finally, the case of a bounded open set G of \mathbb{R}^n .

THEOREM 3.1. Let $\{A; B_j, j = 1, ..., m\}$ be a regular elliptic boundary-value problem on $R_+^n = \{x: x_n > 0\}$. The homogeneous singular integro-differential operators A and B_j are of orders $2m, r_j (r_j < 2m - 1)$ with constant symbols $\sigma_A(\xi)$ in $W^{q,2}(\Sigma); \sigma_j(\xi')$ in $W^{q-\frac{1}{2},2}(\Sigma'), q > (n-1)/2$. Suppose that there exists a $\theta, 0 \leq \theta < 2\pi$, for which Assumption (1) is verified. Then

(i)
$$|||u|||_{s,2} \leq M \left\{ |||(A + \lambda I)u|||_{s-2m,2} + \sum_{j=1}^{m} |||B_{j}u|||_{s-r_{j}-\frac{1}{2},2} \right\}$$

for all u in $W^{s,2}(R_+^n)$ and for all $|\lambda| \ge \lambda_0 > 0$, $\arg \lambda = \theta$. M is independent of λ , u and $s \ge 2m$.

(ii) The mapping $\mathscr{A}u = \{(A + \lambda I)u, B_1u, \ldots, B_mu\}$ of $W^{s,2}(R_+^n)$ into

$$W^{s-2m,2}(R_{+}^{n}) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2},2}(R^{n-1})$$

is 1-1 and onto for large $|\lambda|$.

Proof. We follow (3) closely (cf. also 2 and 5).

(i) To prove the a-priori estimate, it suffices to show it for u in $C_c^{\infty}(R_+^n \cup R^{n-1})$. Since A is an admissible singular integro-differential operator on R_+^n , we have that

$$A = \sum_{k=0}^{2m} A_k D_n^k;$$

similarly,

$$B_j = \sum_{k=0}^{r_j} B_{jk} D_n^{k},$$

where A_k and B_{jk} are singular integro-differential operators on \mathbb{R}^{n-1} , homogeneous of orders 2m - k and $r_j - k$, respectively, with constant symbols.

(a) Consider $(A + \lambda I)u = Lf = f_0(x)$ on \mathbb{R}^n , where L is the extension of f to \mathbb{R}^n . By taking the Fourier transform, we obtain

$$(\sigma_A(\xi) + \lambda)\hat{u} = \hat{f}_0(\xi) = \bigg(\sum_{k=0}^{2m} \sigma_k(\xi')\xi_n^k + \lambda\bigg)\hat{u}.$$

A computation as in (3) yields $|||u|||_{s,2} \leq C|||f|||_{s-2m,2}$.

(b) Consider the boundary-value problem:

$$(A + \lambda I)w = 0$$
 on R_{+}^{n} , $B_{j}w = g_{j} - B_{j}u$ on R^{n-1} , $j = 1, ..., m$.

By taking the Fourier transform with respect to the tangential variables $\hat{x} = (x_1, \ldots, x_{n-1})$, we obtain

$$\sum_{k=0}^{2m} \sigma_k(\xi') D_n^{\ k} \widehat{w}(\xi', x_n) + \lambda \widehat{w}(\xi', x_n) = 0, \qquad x_n > 0,$$

$$\sum_{k=0}^{r_j} \sigma_{jk}(\xi') D_n^{\ k} \widehat{w}(\xi', 0) = \widehat{h}_j(\xi') = \widehat{g}_j - \sum_{k=0}^{r_j} \sigma_{jk}(\xi') D_n^{\ k} \widehat{u}(\xi', 0), \qquad j = 1, \dots, m,$$

where \hat{w} and \hat{g}_j denote the Fourier transforms of w and g_j with respect to \hat{x} . We seek a solution of the form

$$\widehat{w}(\xi', x_n) = \sum_{r=1}^m p_r(\xi') \int_{C_{\lambda, \xi'}} \zeta^{r-1} \exp(i\zeta x_n) [\sigma_A(\xi', \zeta) + \lambda]^{-1} d\zeta,$$

where $C_{\lambda,\xi'}$ is a closed Jordan rectifiable curve in the upper half ζ -plane, containing in its interior all the *m* roots of

$$\lambda + \sum_{k=0}^{2m} \sigma_k(\xi')\zeta^k = 0,$$

considered as a polynomial in ζ . We are reduced to showing the solvability of a system of *m* equations with *m* unknowns, $p_r(\xi')$. Since Assumption (1) is verified, the system may be solved in a unique fashion. If we set

$$c_{\tau j}(\xi',\lambda) = \int_{C_{\lambda,\xi'}} \zeta^{\tau-1} \sigma_j(\xi',\zeta) [\sigma_A(\xi',\zeta) + \lambda]^{-1} d\zeta$$

and if $Q_{\tau j}(\xi', \lambda)$ are the elements of the inverse of the transpose of the matrix $(c_{\tau j})$, then

$$\widehat{w}(\xi', x_n) = \sum_{\tau, j=1}^m Q_{\tau j}(\xi', \lambda) \widehat{h}_j(\xi', \lambda) \int_{C_{\lambda, \xi'}} \zeta^{\tau-1} \exp(i\zeta x_n) [\sigma_A(\xi', \zeta) + \lambda]^{-1} d\zeta.$$

To take the inverse Fourier transform of $\hat{w}(\xi', x_n)$, we need the following lemma.

LEMMA 3.1. (i) Let

$$\phi_{\alpha\beta}(\xi,x_n) = \int_C \zeta^{\alpha} \xi^{\beta} \exp(i\zeta x_n) [\sigma_A(\xi,\zeta) + \lambda]^{-1} d\zeta.$$

Then

$$\phi_{\alpha\beta}(\xi, x_n) = O(|\xi| + |\lambda|^{1/2m})^{\alpha+\beta+1-2m} \exp(-dx_n(|\xi|^2 + |\lambda|^{1/m})^{\frac{1}{2}}),$$

where $d = \min\{\operatorname{Im}\zeta: \zeta \in C\} > 0$.

(ii) $Q_{rj}(\xi, \lambda) = O(|\xi| + |\lambda|^{1/2m})^{2m-r-r_j}, r, j = 1, \ldots, m.$

Proof. Set $\lambda = \mu^{2m}$ and make the following change of variables:

$$\xi' = \xi(|\xi|^2 + |\mu|^2)^{-\frac{1}{2}}, \qquad \mu' = \mu(|\xi|^2 + |\mu|^2)^{-\frac{1}{2}}, \qquad \zeta' = \zeta(|\xi|^2 + |\mu|^2)^{-\frac{1}{2}}.$$

(1) We have that

$$\phi_{\alpha\beta}(\xi, x_n) = (|\xi|^2 + |\mu|^2)^{(\alpha+\beta+1-2m)/2} \phi_{\alpha\beta}(\xi', x_n(|\xi|^2 + |\mu|^2)^{\frac{1}{2}}),$$

where

$$\phi_{\alpha\beta}(\xi, x_n) = \int_C \zeta^{\alpha} \xi^{\beta} \exp(i \zeta x_n) [\sigma_A(\xi, \zeta) + \mu^{2m}]^{-1} d\zeta.$$

(i) As $|\xi| \to \infty$, $|\xi'| \to 1$ and $|\mu'| \to 0$. Thus, the roots with positive imaginary parts of

$$(\mu')^{2m} + \sum_{k=0}^{2m} \sigma_k(\xi') \zeta^k = 0$$

tend continuously to those of

$$\sum_{k=0}^{2m} \ \sigma_k(I) \zeta^k = 0.$$

Hence, there exists a closed curve C_1 independent of μ and ξ containing all the *m* roots with positive imaginary parts of

$$(\mu)^{2m}+\sum_{k=0}^{2m}\sigma_k(\xi)\zeta^k=0 \quad ext{for large } |\xi|.$$

Therefore, for large $|\xi|$, we have that

$$|\phi_{\alpha\beta}(\xi, x_n)| \leq M \exp(-dx_n(|\xi|^2 + |\mu|^2)^{\frac{1}{2}})(|\xi|^2 + |\mu|^2)^{(\alpha+\beta+1-2m)/2}.$$

(ii) For small $|\xi|$, as $|\xi| \to 0$, $|\xi'| \to 0$ and $|\mu'| \to 1$. Thus, all the roots with positive imaginary parts of $(\mu')^{2m} + \sigma_A(\xi', \zeta) = 0$ tend continuously to those with positive imaginary parts of $1 + \sigma_A(0, \zeta) = 0$. Again, we have a curve C_2 , in the upper half ζ -plane, independent of both μ and ξ containing all the *m* roots of $(\mu')^{2m} + \sigma_A(\xi', \zeta) = 0$ for small $|\xi|$. Thus,

$$\phi_{\alpha\beta}(\xi, x_n) \leq M \exp(-dx_n(|\xi|^2 + |\mu|^2)^{\frac{1}{2}})(|\xi|^2 + |\mu|^2)^{(\alpha+\beta+1-2m)/2}.$$

Combining (i) and (ii) we obtain the first part of the lemma.

(2) Arguing as above, we have that

$$Q_{rj}(\xi, \lambda) = O(|\xi| + |\lambda|^{1/m})^{2m-r-r_j}.$$

Proof of Theorem 3.1. (i) (continued). As in (3), using Lemma 3.1 and the Parseval formula, we obtain:

$$||w|||_{s,2} \leq C \sum_{j=1}^{m} |||h_j|||_{s-\tau_j-\frac{1}{2},2}^{\prime}$$

Thus

$$|||w|||_{s,2} \leq C \left\{ |||u|||_{s,2} + \sum_{i=1}^{m} |||g_{j}|||_{s-r_{j-\frac{1}{2},2}}^{\prime} \right\} \leq C \left\{ |||f|||_{s-2m,2} + \sum_{j=1}^{m} |||g_{j}|||_{s-r_{j-\frac{1}{2}}}^{\prime} \right\}.$$

Therefore, if v is such that $(A + \lambda I)v = f$ on R_{+}^{n} , $B_{j}v = g_{j}$ on R^{n-1} , we obtain

$$|||v|||_{s,2} \leq C \left\{ |||f|||_{s-2m,2} + \sum_{j=1}^{m} |||g_j|||'_{s-\tau_j-\frac{1}{2},2} \right\}.$$

(ii) Let (f, g_1, \ldots, g_m) be an element of

$$W^{s-2m,2}(R_{+}^{n}) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2},2}(R^{n-1}).$$

Then the unique solution u in $W^{s,2}(R_+^n)$ of

 $(A + \lambda I)u = f$ on R_{+}^{n} , $B_{j}u = g_{j}$ on R^{n-1} , j = 1, ..., m, is given by

$$u(x) = F^{-1}\{[\sigma_A(\xi) + \lambda]^{-1}F(Lf)\}\Big|_{R_{+}^n} + \sum_{j=1}^m (F')^{-1}\left\{\sum_{r=1}^m Q_{rj} \int_C \zeta^{r-1} \exp(i\zeta x_n)[\sigma_A(\xi',\zeta) + \lambda]^{-1}d\zeta\right\}F'g_j\Big|_{R_{+}^n},$$

where F' denotes the Fourier transform with respect to \hat{x} .

Because of Lemma 3.1, the expression is well-defined.

THEOREM 3.2. Let $\{A; B_j, j = 1, ..., m\}$ be a regular elliptic boundary-value problem on R_{+}^n . The singular integro-differential operators A and B_j are of orders 2m and r_j $(r_j < 2m - 1)$, respectively. Suppose that there exists a $\theta, 0 \leq \theta < 2\pi$, for which Assumption (1) is satisfied. Suppose further that

$$\max_{x} ||\sigma_{A}(\xi, x) - \sigma_{A}(\xi, 0)||_{q, 2} + \sum_{j, k} \max_{x} ||\sigma_{jk}(x', \xi') - \sigma_{jk}(0, \xi')||_{q - \frac{1}{2}, 2} \leq \delta$$

for x near 0. Then

(1) There exists a constant M independent of λ , arg $\lambda = \theta$, and of u such that

$$|||u|||_{s,2} \leq M \left\{ |||(A + \lambda)u|||_{s-2m,2} + \sum_{j=1}^{m} |||B_{j}u|||'_{s-r_{j}-\frac{1}{2},2} \right\} s \geq 2m;$$

(2) For every
$$(f, g_1, \ldots, g_m)$$
 in

$$W^{s-2m,2}(R_{+}^{n}) \times \prod_{j=1}^{m} W^{s-r_{j-\frac{1}{2},2}}(R^{n-1})$$

there exists a unique solution u in $W^{s,2}(R_{+}^{n})$ of $(A + \lambda) u = f$ on R_{+}^{n} ; $B_{i}u = g_{i}$ on R^{n-1} , i = 1, ..., m.

Proof. We prove the a-priori estimate. We denote by A_0 and B_{i0} the principal parts of A and B_{i} , and by $A_0(0)$ and $B_{i0}(0)$ the homogeneous singular integro-differential operators with symbols $\sigma_A(0, \xi)$ and $\sigma_i(0, \xi')$. From Theorem 3.1, we obtain

$$\begin{aligned} |||u|||_{s,2} &\leq M \bigg\{ |||(A_0(0) + \lambda)u|||_{s-2m,2} + \sum_{j=1}^m |||B_{j0}(0)u|||'_{s-r_j - \frac{1}{2},2} \bigg\} \\ &\leq M \bigg\{ |||(A + \lambda)u|||_{s-2m,2} + |||(A_0(0) - A_0)u|||_{s-2m,2} \\ &+ |||(A - A_0)u|||_{s-2m,2} + \sum_{j=1}^m |||B_ju|||'_{s-r_j - \frac{1}{2},2} + |||(B_{j0} - B_j)u|||'_{s-r_j - \frac{1}{2},2} \\ &+ |||(B_{j0} - B_{j0}(0))u|||'_{s-r_j - \frac{1}{2},2} \bigg\}. \end{aligned}$$

(i) Since A is an admissible singular integro-differential operator on R_{+}^{n} , it may be written as: $A = R\tilde{A}L + T$, where T is an operator almost of order 2m - 1 on $W^{s,2}(R_{+}^{n})$.

Therefore,
$$||(A - A_0)u||_{s-2m,2} \leq \epsilon ||u||_{s,2} + C(\epsilon)||u||_{s-1,2}$$
 and
 $|\lambda|^{(s-2m)/2m}||(A - A_0)u||_{0,2} \leq \epsilon |\lambda|^{(s-2m)/2m}||u||_{2m,2} + C(\epsilon)|\lambda|^{(s-2m)/2m}||u||_{2m-1,2}$.
But

$$\begin{aligned} ||u||_{2m-1,2} &\leq \epsilon/C(\epsilon)||u||_{2m,2} + K(\epsilon)||u||_{0,2}, \\ |||(A - A_0)u|||_{s-2m,2} &\leq 2\epsilon|||u|||_{s,2} + C_2(\epsilon)|\lambda|^{-1/2m}|||u|||_{s,2}. \end{aligned}$$

(ii) Similarly,

$$B_{j} = \sum_{k=0}^{r_{j}} B_{jk} D_{n}^{k} + \sum_{k=0}^{r_{j}} T_{jk} D_{n}^{k}$$

where T_{jk} are linear operators almost of orders $r_j - k - 1$ on $W^{s-\frac{1}{2},2}(\mathbb{R}^{n-1})$. Thus

 $|||(B_{i} - B_{i0})u|||_{s-r_{i}-\frac{1}{2},2} \leq \epsilon |||u|||_{s-\frac{1}{2},2} + C_{3}(\epsilon)|\lambda|^{-1/2m}|||u|||_{s,2}.$

(iii) We consider $|||(A_0 - A_0(0))u|||_{s-2m,2}$. If $\sigma_A(x, \xi)$ is the symbol of A, then the symbol $\sigma_{\tilde{A}}(x,\xi)$ of \tilde{A} may be obtained from $\sigma_A(x,\xi)$ by the Hestenes formula and, moreover,

$$\max_{x} ||\sigma_{\tilde{A}}(x,\xi) - \sigma_{\tilde{A}}(0,\xi)||_{q,2} \leq C \max_{x} ||\sigma_{A}(x,\xi) - \sigma_{A}(0,\xi)||_{q,2},$$

where C does not depend on σ_A . Thus

$$|||(A_0 - A_0(0))u|||_{s-2m,2} \leq C_2|||(\tilde{A}_0 - \tilde{A}_0(0))Lu|||_{s-2m,2}.$$

Using Proposition 8.3 of Agranovič (2, p. 47), we have that

$$|||(\tilde{A}_0 - \tilde{A}_0(0))Lu|||_{s-2m,2} \leq C_3\delta|||u|||_{s,2} + C_4(\sigma_A)|\lambda|^{-1/2m}|||u|||_{s,2}.$$

(iv) A similar argument yields:

$$|||(B_{j0} - B_{j0}(0))u|||'_{s-\tau_j-\frac{1}{2},2} \leq C\delta|||u|||_{s,2} + C_5(\sigma_j)|\lambda|^{-1/2m}|||u|||_{s,2}.$$

Therefore, by taking δ small and $|\lambda|$ sufficiently large, we obtain the a-priori estimate of the theorem.

(2) We now show that \mathscr{A} has a right inverse. It follows from Theorem 3.1 that $\mathscr{A}_0(0)$ has a right inverse \mathfrak{T}_0 ; thus

$$\begin{split} \mathscr{A}\mathfrak{T}_{\mathfrak{0}} &= \mathscr{A}_{\mathfrak{0}}(0)\mathfrak{T}_{\mathfrak{0}} + (\mathscr{A}-\mathscr{A}_{\mathfrak{0}})\mathfrak{T}_{\mathfrak{0}} + (\mathscr{A}_{\mathfrak{0}}-\mathscr{A}_{\mathfrak{0}}(0))\mathfrak{T}_{\mathfrak{0}} \ &= I + (\mathscr{A}-\mathscr{A}_{\mathfrak{0}})\mathfrak{T}_{\mathfrak{0}} + (\mathscr{A}_{\mathfrak{0}}-\mathscr{A}_{\mathfrak{0}}(0))\mathfrak{T}_{\mathfrak{0}}. \end{split}$$

Set

$$g = (g_1, \ldots, g_m)$$
 and $|||(f, g)|||_{s,2} = |||f|||_{s-2m,2} + \sum_{j=1}^m |||g_j|||'_{s-r_j-\frac{1}{2},2}$

Let $u = \mathfrak{T}_0(f, g)$ with $\mathscr{A}_0(0)\mathfrak{T}_0(f, g) = (f, g)$ (Theorem 3.1). Then a computation, as in the first part, yields

$$|||(\mathscr{A}_0 - \mathscr{A}_0(0))\mathfrak{T}_0(f, g)|||_{s,2} \leq \frac{1}{4}|||(f, g)|||_{s,2}$$

for δ small and $|\lambda|$ sufficiently large. Also,

$$|||(\mathscr{A} - \mathscr{A}_0)\mathfrak{T}_0(f, g)||| \le \frac{1}{4}|||(f, g)|||_{s,2}$$

since $(\mathscr{A} - \mathscr{A}_0)$ is an operator almost of order -1 from $W^{s,2}(R_+^n)$ into $W^{s-2m,2}(R_+^n) \times \prod_{j=1}^m W^{s-r_j-\frac{1}{2},2}(R^{n-1})$. Let

$$Q = (\mathscr{A} - \mathscr{A}_0)\mathfrak{T}_0 + (\mathscr{A}_0 - \mathscr{A}_0(0))\mathfrak{T}_0;$$

then $|||Q(f, g)|||_{s,2} \leq \frac{1}{2}|||(f, g)|||_{s,2}$. Hence $(I + Q)^{-1}$ exists. Take $\mathfrak{T} = \mathfrak{T}_0(I + Q)^{-1}$, then $\mathscr{A}\mathfrak{T} = I$.

Proof of Theorem 1.1. (1) We establish the a-priori estimate. Since G is a bounded open set of \mathbb{R}^n , regular of class C^{∞} (cf. 5), there exist a finite open covering of cl(G) and a finite partition of unity ϕ_k corresponding to N_k . Let ψ_k be an infinitely differentiable function with compact support in N_k such that $\psi_k = 1$ on the support of ϕ_k . We have that

$$\mathscr{A} = \sum_{k=1}^{N} \phi_k \mathscr{A}_k \psi_k + T,$$

where T is an operator almost of order -1 from $W^{s,2}(G)$ into

$$W^{s-2m,2}(G)$$
 $\times \prod_{j=1}^{m} W^{s-r_j-\frac{1}{2},2}(\partial G)$ and $\mathscr{A}_k = (A_k + \lambda I, B_{1k}, \ldots, B_{mk}),$

where A_k and B_{jk} are singular integro-differential operators on R_+^n and on R^{n-1} , respectively. We also have that

$$\mathscr{A}_{k}(\phi_{k}u) = \mathscr{A}_{k}(\phi_{k}\psi_{k}u) = \phi_{k}\mathscr{A}_{k}(\psi_{k}u) + T_{k}(\psi_{k}u)$$

where T_k is an operator almost of order -1 from $W^{s,2}(R_+^n)$ into

$$W^{s-2m,2}(R_{+}^{n}) \times \prod_{j=1}^{m} W^{s-r_{j-\frac{1}{2},2}}(R^{n-1})$$

if N_k is a boundary neighbourhood and T_k is an operator almost of order -1 from $W^{s,2}(R_+^n)$ into $W^{s-2m,2}(R_+^n)$ if N_k is an interior neighbourhood (cf. 2).

From Theorem 3.2 and an easy computation we obtain

$$\begin{aligned} |||\phi_{k}u|||_{s,2} &\leq M \bigg\{ |||\phi_{k}(A_{k}+\lambda)\psi_{k}u|||_{s-2m,2} + \epsilon |||\psi_{k}u|||_{s,2} \\ &+ C(\epsilon)|\lambda|^{-1/2m}|||\psi_{k}u|||_{s,2} + \sum_{j=1}^{m} |||\phi_{k}B_{jk}(\psi_{k}u)|||_{s-\tau_{j-\frac{1}{2},2}} \bigg\}. \end{aligned}$$

The norms are taken in local coordinates. On the other hand, we have that

$$\phi_k \mathscr{A}_k(\psi_k u) = \phi_k \mathscr{A}(\psi_k u) + \phi_k \widetilde{T}_k(\psi_k u),$$

where \tilde{T}_k is an operator of the same type as T_k . Therefore

$$\begin{aligned} |||\phi_{k}u|||_{s,2} &\leq M \bigg\{ |||\phi_{k}(A + \lambda)(\psi_{k}u)|||_{s-2m,2} + \epsilon |||\psi_{k}u|||_{s,2} \\ &+ C(\epsilon)|\lambda|^{-1/2m}|||\psi_{k}u|||_{s,2} + \sum_{j=1}^{m} |||\phi_{k}B_{j}(\psi_{k}u)|||_{s-r_{j-\frac{1}{2},2}}^{\prime} \bigg\}. \end{aligned}$$

We may write $\phi_k(A + \lambda)(\psi_k u) = \phi_k(A + \lambda)u + \phi_k(A + \lambda)(\psi_k - 1)u$ and, similarly, for $\phi_k B_{jk}(\psi_k u)$. The operator $\phi_k \mathscr{A}(\psi_k - 1)$ is again an operator almost of order -1 from $W^{s,2}(G)$ into

$$W^{s-2m,2}(G) \times \prod_{j=1}^{m} W^{s-r_j-\frac{1}{2},2}(\partial G).$$

Hence we finally obtain

$$|||u|||_{s,2} \leq M \left\{ |||(A + \lambda)u|||_{s-2m,2} + \epsilon |||u|||_{s,2} + C(\epsilon)|\lambda|^{-1/2m}|||u|||_{s,2} + \sum_{j=1}^{m} |||B_{j}u|||_{s-\tau_{j-\frac{1}{2},2}}^{j} \right\}.$$

Taking ϵ small and $|\lambda|$ sufficiently large, we obtain the a-priori estimate. (2) We now construct the inverse of \mathscr{A} . We have that

$$\mathscr{A}u = \sum_{k=1}^{N} \phi_k \mathscr{A}_k(\psi_k u) + Tu.$$

For each k, \mathscr{A}_k has a right inverse R_k (Theorem 3.2). To simplify the notation, we write $g = (g_1, \ldots, g_m)$. Consider

$$R(f,g) = \sum_{r=1}^{N} \psi_r R_r(\phi_r f, \phi_r g).$$

https://doi.org/10.4153/CJM-1968-137-4 Published online by Cambridge University Press

R is a bounded linear operator from $W^{s-2m,2}(G) \times \prod_{j=1}^{m} W^{s-r_j-\frac{1}{2},2}(\partial G)$ into $W^{s,2}(G)$. We have that

$$\mathscr{A}R(f,g) = \sum_{r,k=1}^{N} \phi_k \mathscr{A}_k [\psi_r R_r(\phi_r f, \phi_r g) \psi_k] + TR(f,g).$$

Set $u_r = \psi_r R_r(\phi_r f, \phi_r g)$. We also have that

$$\boldsymbol{\phi}_k \mathscr{A}_k [\boldsymbol{\psi}_k \boldsymbol{\psi}_r \boldsymbol{u}_r] = \boldsymbol{\phi}_k \mathscr{A}_r [\boldsymbol{\psi}_k \boldsymbol{\psi}_r \boldsymbol{u}_r] + \boldsymbol{\phi}_k T_{rk} \boldsymbol{u}_r$$

(cf. 2, pp. 102, 75) $T_{\tau k}$ is an operator almost of order -1 from $W^{s,2}(G)$ into

$$W^{s-2m,2}(G)$$
 \times $\prod_{j=1}^{m} W^{s-\tau_j-\frac{1}{2},2}(\partial G).$

Hence

$$\begin{aligned} \mathscr{A}R(f,g) &= \sum_{\tau,k} \phi_k \psi_k \psi_\tau \mathscr{A}_\tau R_\tau(\phi_\tau f, \phi_\tau g) + TR(f,g) \\ &+ \sum_{\tau,k} \phi_k T_{\tau k} [\psi_\tau R_\tau(\phi_\tau f, \phi_\tau g)] \\ &+ \sum_{\tau,k} \phi_k \{\mathscr{A}_\tau [\psi_k \psi_\tau R_\tau(\phi_\tau f, \phi_\tau g)] - \psi_k \psi_\tau \mathscr{A}_\tau R_\tau(\phi_\tau f, \phi_\tau g)\}. \end{aligned}$$

Consider the first sum. It is equal to (f, g). Set

$$|||(f,g)|||_{s} = |||f|||_{s-2m,2} + \sum_{j=1}^{m} |||g_{j}|||'_{s-\tau_{j-\frac{1}{2},2}}$$

Then

$$|||TR(f, g)|||_{s} \leq \epsilon |||(f, g)|||_{s} + C(\epsilon)|\lambda|^{-1/2m}|||(f, g)|||_{s}.$$

In a similar fashion, we obtain the same bound for the third sum. Since $\mathscr{A}_r[\psi_k\psi_r\cdot] - \psi_r\psi_k\mathscr{A}_r[\cdot]$ is an operator almost of order -1 from $W^{s,2}(R_+^n)$ into

$$W^{s-2m,2}(R_{+}^{n}) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2},2}(R^{n-1}),$$

we obtain the following upper bound for the last sum, namely,

$$\epsilon |||(f, g)|||_{s} + C(\epsilon) |\lambda|^{-1/2m} |||(f, g)|||_{s}.$$

Thus $\mathscr{A}R(f, g) = (f, g) + \mathfrak{T}(f, g)$ with $||\mathfrak{T}|| \leq \frac{1}{2}$ for large $|\lambda|$. Hence $(I + \mathfrak{T})^{-1}$ exists and $\mathscr{A}^{-1} = R(I + \mathfrak{T})^{-1}$.

References

- S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary-value problems, Comm. Pure Appl. Math. 15 (1962), 119–147.
- M. S. Agranovič, Elliptic singular integro-differential operators, Uspehi Mat. Nauk 20 (1965), no. 5, 3-120 = Russian Math. Surveys 20 (1965), no. 5-6, 2-116.
- 3. M. S. Agranovič and M. I. Višik, *Elliptic problems with a parameter and parabolic problems of general type*, Uspehi Mat. Nauk 19 (1964), no. 3, 53-161 = Russian Math. Surveys 19 (1964), no. 3, 53-157.
- 4. R. Beals, Nonlocal boundary-value problems for elliptic operators, Amer. J. Math. 87(1965), 315–362.

- 5. F. E. Browder, A-priori estimates for solutions of elliptic boundary-value problems. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22 (1960), 145-149, 160-169; III, Nederl, Akad, Wetensch, Proc. Ser. A 64 = Indag, Math. 23 (1961), 404-410.
- 6. Nonlocal elliptic boundary-value problems, Amer. J. Math. 86 (1964), 735-750.
 7. Problèmes non-linéaires, Séminaires Math. Sup. (Univ. Montreal Press, Montreal, 1965).
- 8. M. Schechter, Nonlocal elliptic boundary-value problems, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 421-441.
- 9. P. E. Sobolevskii, Equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obšč. 10 (1961), 297-350 = Amer. Math. Soc. Transl. (2) (49), 1-62.
- 10. B. A. Ton, On nonlinear elliptic boundary-value problems, Bull. Amer. Math. Soc. 72 (1966), 307-313.

Université de Montréal. Montréal. P.O.: University of British Columbia, Vancouver, B.C.