NON-LOGAL ELLIPTIC BOUNDARY-VALUE PROBLEMS

BUI AN TON

Let G be a bounded open set of R^{n} with a smooth boundary ∂G. We consider the following elliptic boundary-value problem:

$$
A u=f \quad \text { on } G ; \quad B_{j} u=\sum_{k=1}^{m} L_{j k} C_{k} u \quad \text { on } \partial G, \quad j=1, \ldots, m,
$$

where A and B_{j} are, respectively singular integro-differential operators on G and on ∂G, of orders $2 m$ and r_{j} with $r_{j}<2 m ; C_{k}$ are boundary differential operators, and $L_{j k}$ are linear operators, bounded in a sense to be specified.

Let A_{2} be the realization of A as an operator on $L^{2}(G)$ with the above boundary conditions. When the symbols σ_{A}, σ_{j} of A and B_{j} satisfy a strengthened Shapiro-Lopatinskir condition, we show, in § 2, that A_{2} is a Fredholm operator, the generalized eigenfunctions of A_{2} are complete in $L^{2}(G)$ and $\left(A_{2}+\lambda I\right)^{-1}$ exists for large $|\lambda|, \arg \lambda=\theta$. We also prove the existence of a solution of $\left(A_{2}+\lambda I\right) u=f\left(x, T_{1} u, \ldots, T_{2 m-1} u\right)$, where T_{j} are bounded, linear operators from $W^{j, 2}(G)$ into $L^{2}(G), f\left(x, \zeta_{1}, \ldots, \zeta_{2 m-1}\right)$ has a linear growth in ($\zeta_{1}, \ldots, \zeta_{2 m-1}$).

The proofs depend on a result on elliptic boundary-value problems $\left\{A ; B_{j}\right\}$ containing a large parameter λ, which is given in $\S 3$. The notation, the definitions, and the results are given in § 1.

Non-local elliptic boundary-value problems have been studied by Agranovič (2), Beals (4), Browder (6), Schechter (8), and others.

1. Let G be a bounded open set of R^{n}, regular of class C^{∞} with boundary ∂G. The generic point x of G is $x=\left(x_{1}, \ldots, x_{n}\right)$. Set $D_{j}=i^{-1} \partial / \partial x_{j}, j=1$, \ldots, n. For each n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non-negative integers, we write:

$$
D^{\alpha}=\prod_{j=1}^{n} D_{j}^{\alpha_{j}} \quad \text { and } \quad|\alpha|=\sum_{j=1}^{n} \alpha_{j} .
$$

Let s be a non-negative integer; we denote by $W^{s, 2}(G)$ the space

$$
W^{s, 2}(G)=\left\{u: u \text { in } L^{2}(G), D^{\alpha} u \text { in } L^{2}(G) ;|\alpha| \leqq s\right\}
$$

(the derivatives are taken in the sense of the theory of distributions). $W^{s, 2}(G)$ is a Hilbert space with the norm

$$
\|u\|_{s, 2}=\left\{\sum_{|\alpha| \leqslant s}\left\|D^{\alpha} u\right\|_{L^{2}(G)}^{2}\right\}^{\frac{1}{2}}
$$

Received March 13, 1967.
and the obvious inner product. Set

$$
\left\|\|u\|_{s, 2}=\left\{\|u\|_{s, 2}^{2}+|\lambda|^{s / m} \mid\|u\|_{0,2}^{2}\right\}^{\frac{1}{2}},\right.
$$

then

$$
\left\|\|u\|_{s, 2} \leqq\left(\sum_{k=0}^{s}|\lambda|^{k / m}\|u\|_{s-k, 2}^{2}\right)^{\frac{1}{2}} \leqq C\right\|\|u\|_{s, 2}
$$

(cf. Agranovič and Višik (3, p. 64)).
Let $\phi_{k}, k=1, \ldots, N$, be those functions of the finite partition of unity whose supports intersect the boundary ∂G. For $s \geqq 0$, we define $W^{s, 2}(\partial G)$ as the completion of $C^{\infty}(\partial G)$ with respect to the norm

$$
\|u\|_{s, 2}^{\prime}=\left(\sum_{k=1}^{N}\left\|\phi_{k} u\right\|_{W^{s, 2\left(R^{n-1}\right)}}^{2}\right)^{\frac{1}{2}}
$$

where $\left\|\phi_{k} u\right\|_{W^{s, 2}\left(R^{n-1)}\right.}$ is taken in local coordinates and is defined by means of the Fourier transforms:

$$
\left\|\phi_{k} u\right\|_{W^{s, 2}\left(R^{n-1}\right)}=\left\{\int_{E^{n-1}}\left(1+|\xi|^{2 s}\right)\left|F\left(\phi_{k} u\right)\right|^{2} d \xi\right\}^{\frac{1}{2}}
$$

The space $W^{s, 2}(\partial G)$ is a Hilbert space. It neither depends on the choice of local coordinates nor on the choice of the partition of unity. We set

We have that

$$
\|u\|_{s, 2}^{\prime}=\left(\|u\|_{s, 2}^{2}+|\lambda|^{s / m}\|u\|_{0,2}^{2}\right)^{\frac{1}{2}} .
$$

$$
\left\|\left.\|u\|_{s-\frac{1}{2}, 2}^{\prime} \leqq C \right\rvert\,\right\| u \|_{s, 2} .
$$

Let $u(x)$ be in $C^{k}\left(R_{+}{ }^{n}\right), R_{+}{ }^{n}=\left\{x: x_{n}>0\right\}$. Then the Hestenes formula defines a smooth continuation L of u to $L u$ in $C^{k}\left(R^{n}\right)$. If u is in $W^{k, 2}\left(R_{+}{ }^{n}\right)$, then $\|L u\|_{W^{s, 2}\left(R^{n}\right)} \leqq C\|u\|_{W^{s, 2}\left(R_{+}{ }^{n}\right)}, s=0, \ldots, k$.

Definition 1.1. (i) A is said to be an operator of order k in $W^{s, 2}(G)$ if A is a bounded linear mapping from $W^{s, 2}(G)$ into $W^{s-k, 2}(G)$. s and k are two nonnegative integers with $s \geqq k$.
(ii) A is said to be an operator almost of order $k-1$ on $W^{s, 2}(G)$ if A may be decomposed into $A=A_{\epsilon}{ }^{\prime}+A_{\epsilon}{ }^{\prime \prime}$, where $A_{\epsilon}{ }^{\prime}$ is an operator of order k in $W^{s, 2}(G)$ with norm less than ϵ and $A_{\epsilon}{ }^{\prime \prime}$ is an operator of order $k-1$ in $W^{s, 2}(G) . \epsilon$ is any given positive number.

Consider the singular integral operators

$$
A_{m k} u(x)=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} Y_{m k}(x-y)|x-y|^{-n} u(y) d y, \quad u \in L^{2}\left(R^{n}\right)
$$

where $Y_{m k}(x)$ are the spherical functions on the unit sphere in R^{n}.
Let $\sigma(x, \xi)$ be a positive homogeneous function of ξ of degree 0 . We expand $\sigma(x, \xi)$ as follows:

$$
\sigma(x, \xi)=\sum_{m, k} \gamma_{m} a_{m k}(x) Y_{m k}(\xi), \quad \gamma_{0}=1
$$

The operator $A=\sum_{m, k} a_{m k}(x) A_{m k}$ associated with σ is a homogeneous singular integral operator on R^{n} with symbol σ. It is of class (p, q) if

$$
\sigma(x, \xi) \in C^{p}\left(R^{n} ; W^{q, 2}(\Sigma)\right)
$$

where $C^{p}\left(R^{n} ; W^{q, 2}(\Sigma)\right)$ is the space of functions $f(x, \cdot)$ on R^{n} with values in $W^{q, 2}(\Sigma)$ and having x-continuous derivatives of order $\leqq p$ in $W^{q, 2}(\Sigma) . \Sigma$ is the unit sphere in R^{n}.

Definition 1.2. A singular integro-differential operator of class (p, q) of order s in $W^{k, 2}\left(R^{n}\right), s \geqq k$, is an operator of the form:

$$
A=\sum_{|\alpha|=s} A_{\alpha} D^{\alpha}+T
$$

where A_{α} are homogeneous singular integral operators in R^{n}, of class (p, q), and T is an arbitrary linear operator almost of order $s-1$ in $W^{k, 2}\left(R^{n}\right)$. A is homogeneous if $T=0$.

The symbol of A,

$$
\sigma_{A}(x, \xi)=\sum_{|\alpha|=s} \sigma_{\alpha}(x, \xi) \xi^{\alpha}
$$

is a positive homogeneous function of order s with respect to $\xi, \sigma_{\alpha}(x, \xi)$ is the symbol of A_{α}.

Definition 1.3. (i) $A=R \widetilde{A} L$ (where \widetilde{A} is a homogeneous singular integrodifferential operator of class (p, q) of order s in $W^{k, 2}\left(R^{n}\right), s \geqq k, R$ is the restriction operator of functions from R^{n} to $R_{+}{ }^{n}$, and L is the extension operator of functions from $R_{+}{ }^{n}$ to R^{n}) is a singular integro-differential operator of class (p, q) and of order s in $W^{k, 2}\left(R_{+}{ }^{n}\right)$.
(ii) A is called an admissible singular integro-differential operator on $R_{+}{ }^{n}$ if for $x_{n}=0$ we have that

$$
\sigma_{A}\left(x^{\prime}, 0, \xi^{\prime}, \xi_{n}\right)=\sum_{k=0}^{s} \sigma_{k}\left(x^{\prime}, \xi^{\prime}\right) \xi_{n}^{k}
$$

and $\sigma_{s}\left(x^{\prime}, \xi^{\prime}\right)$ does not depend on ξ_{n}.
Hence, if σ is the symbol of an admissible singular integro-differential operator of class (p, q) of order s in $W^{k, 2}\left(R_{+}{ }^{n}\right)$, then $\sigma_{k}\left(x^{\prime}, \xi^{\prime}\right)$ are positively homogeneous of degree $s-k$ and are in $C^{p}\left(R^{n-1} ; W^{q-\frac{1}{2}, 2}\left(\Sigma^{\prime}\right)\right)$, where Σ^{\prime} is the unit sphere in R^{n-1}.

Let $\left\{N_{k}\right\}$ be a finite open covering of $\operatorname{cl}(G)$ and $\left\{\phi_{k}\right\}$ a finite partition of unity corresponding to N_{k}. Denote by ψ_{k} an infinitely differentiable function with compact support in N_{k} and $\psi_{k}=1$ on the support of ϕ_{k}.

We shall consider singular integro-differential operators on G of the form

$$
\begin{equation*}
A=\sum_{k} \phi_{k} A_{k} \psi_{k}+T \tag{1.1}
\end{equation*}
$$

where T is an operator almost of order $2 m-1$ in $W^{s, 2}(G)(s \geqq 2 m)$ and A_{k} is an admissible singular integro-differential operator of order $2 m$ on $R_{+}{ }^{n}$ if N_{k} is a boundary neighbourhood, and on R^{n}, otherwise.

We consider also operators on ∂G of the form

$$
\begin{equation*}
B_{j}=\sum_{k}^{\prime} \phi_{k} B_{j k} \psi_{k}+T_{j}, \quad j=1, \ldots, m \tag{1.2}
\end{equation*}
$$

where the summation is taken over all the k corresponding to boundary neighbourhoods N_{k}. $B_{j k}$ are given by

$$
B_{j k}=\sum_{l=0}^{\tau_{j}} B_{j k}^{l} D_{n}^{l}
$$

where $B_{j k}{ }^{l}$ are singular integro-differential operators on R^{n-1}, homogeneous of orders $r_{j}-l . T_{j}$ is an operator almost of order -1 from $W^{s, 2}(G)$ into $W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$.The symbol σ_{A} of A is defined as follows: it is a function $\sigma_{A}(P, \xi)$ such that for points P in N_{k}, x in local coordinates, it coincides with the symbol $\sigma_{A k}(x, \xi)$ of A_{k}. Similarly for $\sigma_{B_{j}}$.

Definition 1.4. An admissible singular integro-differential operator A on G of the form (1.1) is said to be elliptic at a point P of G if

$$
\sigma_{A k}(x, \xi) \neq 0 \quad \text { for } \xi \neq 0 ; \quad P \in N_{k} \cap G
$$

and elliptic on G if it is elliptic at each point of G.
The definition is invariant with respect to the choice of coordinate neighbourhoods and local coordinates.
A_{k} is said to be properly elliptic at $x_{0}=\left(x^{\prime}, 0\right)$ if $\sigma_{A_{k}}\left(x^{\prime}, \xi^{\prime}, \zeta\right)=0$, considered as a polynomial in the complex variable ζ, has m roots in the upper half ζ-plane and m roots in the lower half-plane. Throughout the paper, we shall assume that the A_{k} are properly elliptic on R^{n}.

Definition 1.5. The elliptic boundary-value problem $\left\{A ; B_{j}, j=1, \ldots, m\right\}$ on G, where A and B_{j} are of the form (1.1) and (1.2), is said to be regular if for each k corresponding to boundary neighbourhoods N_{k} we have that

$$
\operatorname{Det}\left(\int_{C} \zeta^{r-1} \sigma_{B j k}\left(x^{\prime}, \xi^{\prime}, \zeta\right)\left[\sigma_{A k}\left(x^{\prime}, \xi^{\prime}, \zeta\right)\right]^{-1} d \zeta\right) \neq 0
$$

where $r, j=1, \ldots, m$ and C is a closed Jordan rectifiable curve in the upper half ζ-plane containing all the m roots of $\sigma_{A_{k}}\left(x^{\prime}, \xi^{\prime}, \zeta\right)=0$.

Assumption (1). Let $\left\{A ; B_{j}, j=1, \ldots, m\right\}$ be a regular elliptic boundary problem on G. A and B_{j} are of the form (1.1) and (1.2).

We assume that there exists a $\theta, 0 \leqq \theta<2 \pi$, such that for every k corresponding to boundary neighbourhoods N_{k} we have that

$$
\operatorname{Det}\left(\int_{C} \zeta^{r-1} \sigma_{B j k}\left(x^{\prime}, \xi^{\prime}, \zeta\right)\left[\sigma_{A k}\left(x^{\prime}, \xi^{\prime}, \zeta\right)+\lambda\right]^{-1} d \zeta\right) \neq 0
$$

where $r, j=1, \ldots, m$, $\arg \lambda=\theta,|\lambda| \geqq \lambda_{0}>0$, and C is as in Definition 1.5.
We now state the main results of the paper.

Theorem 1.1. Let $\left\{A ; B_{j}, j=1, \ldots, m\right\}$ be a regular elliptic boundary-value problem on G. The admissible singular integro-differential operator A is of the form (1.1), of class $(s-2 m, q)$, and of order $2 m . s \geqq 2 m$ and $q>(n-1) / 2$. The B_{j} are of the form (1.2), of class $\left(s-r_{j}, q-\frac{1}{2}\right)$, and of orders r_{j} with $r_{j}<2 m-1$.

Suppose that there exists a θ such that Assumption (1) is satisfied. Then
(1) For all u in $W^{s, 2}(G)$, we have that

$$
\left\|\|u\|_{s, 2} \leqq C\left\{\| \|(A+\lambda I) u\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\left\|B_{j} u\right\|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\},\right.
$$

where $\arg \lambda=\theta,|\lambda| \geqq \lambda_{0}>0$, and C is independent of λ and u.
(2) For any (f, g_{1}, \ldots, g_{m}) in

$$
W^{s-2 m, 2}(G) \times \prod_{j=1}^{m} W^{s-\tau_{j}-\frac{1}{2}, 2}(\partial G), \quad s \geqq 2 m
$$

there exists a unique solution u in $W^{s, 2}(G)$ of

$$
(A+\lambda I) u=f \text { on } G, \quad B_{j} u=g_{j} \text { on } \partial G, \quad j=1, \ldots, m .
$$

The proof of the theorem is long and will be given in § 3 . The theorem has been proved by Agranovič and Višik (3) for the case when the operators A and B_{j} are differential operators (cf., also, Agmon (1)).

Theorem 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied. Let $C_{k}, k=1, \ldots, m$, be a set of boundary differential operators of orders ν_{k} with $\nu_{k}<2 m$. Let $L_{j k}, j, k=1, \ldots, m$, be a set of compact (or bounded) linear operators from $W^{s-\nu_{k}-\frac{1}{2}, 2}(\partial G)$ into $W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$ (or into $W^{s-r_{j}-\frac{1}{2}+\epsilon, 2}(\partial G)$ for some $\epsilon>0$). Then
(i) there exists a positive constant M, independent of $\lambda(\arg \lambda=\theta)$ and u, such that, for all u in $W^{s, 2}(G)$,

$$
\begin{array}{r}
\|u\|_{s, 2} \leqq M\left\{\| \|(A+\lambda I) u\| \|_{s-2 m, 2}+\sum_{j=1}^{m}\| \|\left(B_{j}-\sum_{k=1}^{m} L_{j k} C_{k}\right) u \|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}\right\} \\
s \geqq 2 m,|\lambda| \geqq \lambda_{0}>0
\end{array}
$$

(ii) let A_{2} be the realization of A as an operator on $L^{2}(G)$ with null boundary conditions

$$
B_{j} u-\sum_{k=1}^{m} L_{j k} C_{k} u=0 \text { on } \partial G, \quad j=1, \ldots, m .
$$

Then $\left(A_{2}+\lambda I\right)^{-1}$ exists and is defined on all of $L^{2}(G)$. It is a compact operator on $L^{2}(G)$ with $\left|\mid A_{2}+\lambda I\right)^{-1} \| \leqq M /|\lambda|$ for $|\lambda| \geqq \lambda_{0}>0$.

Theorem 1.3. Suppose that the hypotheses of Theorem 1.2 are satisfied. Then
(i) there exists a positive constant M such that, for all u in $W^{s, 2}(G)$,

$$
\|u\|_{s, 2} \leqq M\left\{\|A u\|_{s-2 m, 2}+\|u\|_{0,2}+\sum_{j=1}^{m}\left\|\left(B_{j}-\sum_{k=1}^{m} L_{j k} C_{k}\right) u\right\|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\},
$$

(ii) A_{2} is a Fredholm operator and ind $\left(A_{2}\right)=0$ (cf. Schechter (8).

Theorem 1.4. Suppose that the hypotheses of Theorem 1.2 are satisfied for $s=2 m$. Suppose, further, that there exist $\theta_{k}, k=1, \ldots, N, 0 \leqq \theta_{k}<2 \pi$, for which assumption (1) is satisfied and such that the plane is divided by these rays $\arg \lambda=\theta_{k}$ into angles which are less than $2 m \pi / n$. Then the generalized eigenfunctions of A_{2} are complete in $L^{2}(G)$.

The theorem extends for the case $p=2$, a result of Agmon (1).
Theorem 1.5. Suppose that the hypotheses of Theorem 1.2 are satisfied for $s=2 m$. Let $f\left(x, \zeta_{1}, \ldots, \zeta_{2 m}\right)$ be a function measurable in x on G, continuous in $\left(\zeta_{1}, \ldots, \zeta_{2 m}\right)$ with $f(x, 0, \ldots, 0) \neq 0$. Suppose, further, that there exists a positive constant M such that

$$
\left|f\left(x, \zeta_{1}, \ldots, \zeta_{2 m}\right)\right| \leqq M\left\{1+\sum_{j=1}^{2 m-1}\left|\zeta_{j}\right|\right\}
$$

Let $T_{1}, \ldots, T_{2 m-1}$ be bounded linear operators from $W^{j, 2}(G)$ into $L^{2}(G)$ and let $T_{2 m}$ be a bouuded linear operator from $W^{2 m-\epsilon, 2}(G)$ into $L^{2}(G), 0<\epsilon$. Then
(i) for $|\lambda| \geqq \lambda_{0}>0$, there exists a non-trivial solution u in $W^{2 m, 2}(G)$ of the elliptic boundary-value problem

$$
\begin{gathered}
(A+\lambda I) u=f\left(x, T_{1} u, \ldots, T_{2 m} u\right) \text { on } G, \\
B_{j} u=\sum_{k=1}^{m} L_{j k} C_{k} u \text { on } \partial G, \quad j=1, \ldots, m ;
\end{gathered}
$$

(ii) let $\left(g_{1}, \ldots, g_{m}\right)$ be in

$$
\prod_{j=1}^{m} W^{2 m-r_{j}-\frac{1}{2}, 2}(\partial G)
$$

There exists a solution u in $W^{2 m, 2}(G)$ of $(A+\lambda I) u=f\left(x, T_{1} u, \ldots, T_{2 m} u\right)$ on $G ; B_{j} u=g_{j}$ on ∂G.
2. In this section we shall give the proofs of Theorems $1.2-1.5$, assuming Theorem 1.1.

Proof of Theorem 1.2. (1) We establish the a-priori estimate. Suppose that part (i) of the theorem is not true. Then for any λ with $\arg \lambda=\theta,|\lambda| \geqq \lambda_{0}>0$, there would exist $\left\{u_{n}\right\}$ with

$$
\left\|\left\|u_{n}\right\|_{s, 2}=1\right.
$$

and
$\left\|\left\|(A+\lambda) u_{n}\right\|\right\|_{s-2 m, 2}+\left\|u_{n}\right\|_{0,2}+\sum_{j=1}^{m}\left\|\left(B_{j}-\sum_{k=1}^{m} L_{j k} C_{k}\right) u_{n}\right\| \|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime} \rightarrow \mathbf{0}$.
From the weak compactness of the unit ball in a Hilbert space, we obtain a subsequence, which we may assume to be the original one, such that $u_{n} \rightarrow u$ weakly in $W^{s, 2}(G)$ as $n \rightarrow \infty$. Since $u_{n} \rightarrow 0$ in $L^{2}(G)$, we have that $u=0$. Since G is a bounded open set of R^{n}, regular of class C^{∞}, it follows from the

Sobolev imbedding theorem that $u_{n} \rightarrow 0$ in $W^{s-1,2}(G)$ and $u_{n} \rightarrow 0$ weakly in $W^{s-\frac{1}{2}, 2}(\partial G)$ as $n \rightarrow \infty$. The operator $\sum_{k=1}^{m} L_{j k} C_{k}$ is a compact linear mapping from $W^{s-\frac{1}{2}, 2}(\partial G)$ into $W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$, being the composition of a linear mapping from $W^{s-\frac{1}{2}, 2}(\partial G)$ into $W^{s-\nu_{k}-\frac{1}{2}, 2}(\partial G)$ and a compact mapping from $W^{s-v_{k}-\frac{1}{2}, 2}$ into $W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$.

Therefore $\sum_{k=1}^{m} L_{j k} C_{k} u_{n} \rightarrow 0$ in $W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$ as $\mathrm{n} \rightarrow \infty$.
Hence, $B_{j} u_{n} \rightarrow 0$ in $W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$ as $n \rightarrow \infty, j=1, \ldots, m$. In a similar fashion, we show that

$$
\lambda^{\left(s-r_{j}-\frac{1}{2}\right) / 2 m} B_{j} u_{n} \rightarrow 0 \text { in } L^{2}(\partial G), \quad j=1, \ldots, m
$$

On the other hand, from Theorem 1.1, we obtain the following:

$$
\left\|\left|u_{n}\right|\right\|_{s, 2} \leqq M\left\{\left\|| |(A+\lambda) u_{n}\left|\left\|_{s-2 m, 2}+\sum_{j=1}^{m}| | B_{j} u_{n} \mid\right\|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}\right\} .\right.\right.
$$

Thus $\left\|\left|\left|u_{n}\right| \|_{s, 2} \rightarrow 0\right.\right.$ as $n \rightarrow \infty$, which is a contradiction. Now take $| \lambda \mid$ sufficiently large and we obtain the a-priori estimate.
(2) Let A_{2} be a linear operator on $L^{2}(G)$ defined as follows:

$$
\begin{aligned}
& D\left(A_{2}\right)=\left\{u: u \text { in } W^{2 m, 2}(G), A u \text { in } L^{2}(G) ;\right. \\
& \left.\qquad B_{j} u=\sum_{k=1}^{m} L_{j_{k}} C_{k} u \text { on } \partial G, j=1, \ldots, m\right\},
\end{aligned}
$$

$$
A_{2} u=A u \quad \text { if } u \text { is in } D\left(A_{2}\right)
$$

A_{2} is densely defined. Indeed, we have that $C_{c}{ }^{\infty}(G) \subset D\left(A_{2}\right)$. From the a-priori estimate and Proposition 16.1 of Agranovič (2, p.99), we deduce that $\left(A_{2}+\lambda I\right)$ is a closed operator on $L^{2}(G)$ with $N\left(A_{2}+\lambda I\right)=\{0\}$. We show that $R\left(A_{2}+\lambda I\right)=L^{2}(G)$. Let f be any element of $L^{2}(G), v$ an element of $W^{2 m, 2}(G)$, and suppose that $0 \leqq t \leqq 1$. Consider the following elliptic boundary-value problem

$$
(A+\lambda I) u=f \quad \text { on } G, \quad B_{j} u=t \sum_{k=1}^{m} L_{j k} C_{k} v \quad \text { on } \partial G, \quad j=1, \ldots, m
$$

From Theorem 1.1, we know that there exists a unique solution u in $W^{2 m, 2}(G)$ of the above problem. Define the following non-linear mapping $T(t)$ from $[0,1] \times W^{2 m, 2}(G)$ into $W^{2 m, 2}(G)$:

$$
T(t) v=u
$$

where u is the unique solution of the above boundary-value problem. If we can show that $T(1) u=u$, i.e. $T(1)$ has a fixed point, then u is in $D\left(A_{2}\right)$ and
is in $R\left(A_{2}+\lambda I\right)$. Since f is an arbitrary element of $L^{2}(G)$, we have that $R\left(A_{2}+\lambda I\right)=L^{2}(G)$. We verify that $T(t)$ satisfies the hypotheses of the Leray-Schauder fixed-point theorem.

Proposition 2.1. $T(t)$ is a completely continuous operator from $[0,1] \times W^{2 m, 2}(G)$ into $W^{2 m, 2}(G)$.

Proof. $T(t)$ is continuous. Let $t_{n} \rightarrow t, v_{n} \rightarrow v$ in $W^{2 m, 2}(G)$. From Theorem 1.1 we obtain the following:

$$
\left\|u_{n}\right\|_{2 m, 2} \leqq M\left\{\|f\|_{0,2}+\sum_{j, k=1}^{m} \mid\left\|L_{j k} C_{k}\left(t_{n} v_{n}\right)\right\| \|_{2 m-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\} .
$$

Thus

$$
\left\|u_{n}-u\right\|_{2 m, 2} \leqq M \sum_{j, k=1}^{m}\| \| L_{j k} C_{k}\left(t_{n} v_{n}-t v\right)\| \|_{2 m-\tau_{j}-\frac{1}{2}, 2 \cdot}^{\prime}
$$

We immediately have that $u_{n} \rightarrow u$ in $W^{2 m, 2}(G) . T(t)$ is compact. Indeed, suppose that $\left\|v_{n}\right\|_{2 m, 2} \leqq M$. Then from the weak compactness of the unit ball in a Hilbert space, we have that $v_{n} \rightarrow v$ weakly in $W^{2 m, 2}(G)$, hence also weakly in $W^{2 m-\frac{1}{2}, 2}(\partial G)$. But $\sum_{k=1}^{m} L_{j k} C_{k}$ is a compact operator from $W^{2 m-\frac{1}{2}, 2}(\partial G)$ into $W^{2 m-\tau_{j}-\frac{1}{2}, 2}(\partial G)$, thus

$$
\sum_{k=1}^{m} L_{j k} C_{k} v_{n} \rightarrow \sum_{k=1}^{m} L_{j k} C_{k} \vartheta \quad \text { in } W^{2 m-r_{j-\frac{1}{2}, 2}}(\partial G)
$$

as well as in $L^{2}(\partial G)$. Therefore $u_{n} \rightarrow u$ in $W^{2 m, 2}(G)$.
Proposition 2.2. $I-T(0)$ is a homeomorphism of $W^{2 m, 2}(G)$ into itself. If $[I-T(t)] v=0,0<t \leqq 1$, then $\|v\|_{2 m, 2} \leqq M$, where M is independent of t.

Proof. The first assertion follows directly from Theorem 1.1. Suppose that $T(t) v=v$; then v is the solution of the boundary-value problem

$$
(A+\lambda I) v=f \quad \text { on } G, \quad B_{j} v=\sum_{k=1}^{m} L_{j k} C_{k}(t v) \quad \text { on } \partial G, \quad j=1, \ldots, m
$$

In the first part of the proof of the theorem, we may, instead of considering the operator $L_{j k}$, take the operator $t L_{j k}$; then we have that

$$
\|v\|_{2 m, 2} \leqq M\|f\|_{0,2}
$$

where M is independent of λ, v, and t.
Proof of Theorem 1.2 (continued). The operator $T(t)$ satisfies all the conditions of the Leray-Schauder fixed-point theorem (the uniform continuity condition of the theorem is not necessary as observed by Browder in (7)). Therefore, $T(1) u=u$. Thus $R\left(A_{2}+\lambda I\right)=L^{2}(G)$ and hence, $\left(A_{2}+\lambda I\right)^{-1}$ exists and is defined on all of $L^{2}(G)$. Since the injection mapping from $W^{2 m, 2}(G)$ into $L^{2}(G)$ is compact, $\left(A_{2}+\lambda I\right)^{-1}$ is a compact linear mapping of $L^{2}(G)$ into itself and, moreover, from the a-priori estimate, it follows that

$$
\left\|\left(A_{2}+\lambda I\right)^{-1}|\| \leqq M /|\lambda| \quad \text { for }| \lambda \mid \geqq \lambda_{0}>0\right.
$$

The theorem is proved.
Proof of Theorem 1.3. (1) We establish the a-priori estimate by contradiction. It is similar to the first part of the proof of Theorem 1.2. We obtain a
contradiction by using the following estimate of Proposition 16.3 of Agranovič (2, p. 101):

$$
\|u\|_{s, 2} \leqq M\left\{\|A u\|_{s-2 m, 2}+\|u\|_{0,2}+\sum_{j=1}^{m}\left\|B_{j} u\right\|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}\right\} .
$$

(2) By standard arguments, we deduce from the a-priori estimate that A_{2} is closed, $N\left(A_{2}\right)$ is of finite dimension, and that $R\left(A_{2}\right)$ is closed in $L^{2}(G)$. Hence A_{2} is a semi-Fredholm operator.

We now show that if Assumption (1) is satisfied, then A_{2} is a Fredholm operator and $\operatorname{ind}\left(A_{2}\right)=\operatorname{dim} N\left(A_{2}\right)-\operatorname{codim} R\left(A_{2}\right)=0$. From Theorem 1.2, we have that

$$
\left(A_{2}+\lambda I\right)\left(A_{2}+\lambda I\right)^{-1}=I,
$$

where I is the identity operator on $L^{2}(G)$. Thus

$$
A_{2}\left(A_{2}+\lambda I\right)^{-1}=I-\lambda\left(A_{2}+\lambda I\right)^{-1}
$$

Since $\left(A_{2}+\lambda I\right)^{-1}$, considered as a mapping from $L^{2}(G)$ into itself, is compact, it follows from a well-known argument that $I-\lambda\left(A_{2}+\lambda I\right)^{-1}$ is a Fredholm operator and $\operatorname{ind}\left(I-\lambda\left(A_{2}+\lambda I\right)^{-1}\right)=0$. Hence $A_{2}\left(A_{2}+\lambda I\right)^{-1}$ is a Fredholm operator and $\operatorname{ind}\left(A_{2}\left(A_{2}+\lambda I\right)^{-1}\right)=0$. We can easily show that $R\left(A_{2}\right)=R\left(A_{2}\left(A_{2}+\lambda I\right)^{-1}\right)$ and $N\left(A_{2}\right)=N\left(A_{2}\left(A_{2}+\lambda I\right)^{-1}\right)$. Therefore, $\operatorname{ind}\left(A_{2}\right)=\operatorname{ind}\left(A_{2}\left(A_{2}+\lambda I\right)^{-1}\right)=0$.

Proof of Theorem 1.4. Since $\left(A_{2}+\lambda I\right)^{-1}$ is a compact linear mapping of $L^{2}(G)$ into itself, the spectrum of A_{2} is discrete and the eigenspaces are of finite dimension. With the hypotheses of the theorem, it follows from Theorem 3.2 of Agmon (1, pp. 128-129) that the generalized eigenfunctions of A_{2} are complete in $L^{2}(G)$. Indeed, the proof in (1) depends only on the compactness of $\left(A_{2}+\lambda I\right)^{-1}$ and on an estimate on the growth of the resolvent operator as in Theorem 1.2.

Proof of Theorem 1.5. Let v be an element of $W^{2 m, 2}(G)$ and suppose that $0 \leqq t \leqq 1$. Consider the following elliptic boundary-value problem:

$$
\begin{gathered}
(A+\lambda I) u=f\left(x, t T_{1} v, \ldots, t T_{2 m} v\right) \quad \text { on } G, \\
B_{j} u=\sum_{k=1}^{m} L_{j k} C_{k} u \quad \text { on } \partial G, \quad j=1, \ldots, m .
\end{gathered}
$$

Since

$$
\left|f\left(x, \zeta_{1}, \ldots, \zeta_{2 m}\right)\right| \leqq M\left\{1+\sum_{j=1}^{2 m-1}\left|\zeta_{j}\right|\right\}
$$

$f\left(x, t T_{1} v, \ldots, t T_{2 m} v\right)$ is in $L^{2}(G)$. Define the non-linear mapping $\mathfrak{I}(t)$ from $[0,1] \times W^{2 m, 2}(G)$ into $W^{2 m, 2}(G)$ as follows:

$$
\mathfrak{I}(t) v=u,
$$

where u is the unique solution of the above boundary-value problem. It follows from Theorem 1.2 that $\mathfrak{I}(t)$ is well-defined.

To prove the theorem, we show that $\mathfrak{I}(t)$ satisfies the hypotheses of the Leray-Schauder fixed-point theorem. The proof is essentially the same as that given in (10). It suffices to note that since $T_{2 m}$ is a bounded linear mapping from $W^{2 m-\epsilon, 2}(G)$ into $L^{2}(G)$, it is a compact linear mapping from $W^{2 m, 2}(G)$ into $L^{2}(G)$.

A similar argument (taking into account Theorem 1.1) gives the existence of a solution in $W^{2 m, 2}(G)$ of

$$
(A+\lambda I) u=f\left(x, T_{1} u, \ldots, T_{2 m} u\right) \quad \text { on } G, \quad B_{j} u=g_{j} \text { on } \partial G, \quad j=1, \ldots, m
$$

Finally, we note that with the estimate on $\left\|\left(A_{2}+\lambda I\right)^{-1}\right\|$ of Theorem 1.2 for all λ with $|\arg \lambda| \leqq \pi / 2$, we may show the existence of a solution of a nonlocal parabolic boundary-value problem of the form

$$
\begin{aligned}
\frac{\partial u}{\partial t}+A u & =f(x, t) & & \text { on } G \times[0, T] ; \\
B_{j} u & =\sum_{k=1}^{m} L_{j k} C_{k} u & & \\
u(x, 0) & =u_{0}(x) & & \text { on } g G \times[0, T], \quad j=1, \ldots, m ;
\end{aligned}
$$

by using a result of Sobolevskiĭ (9) (cf. 10).
3. We proceed to prove Theorem 1.1. As usual, we consider first the case of a half-space with A and B_{j} having constant symbols, then the case when A and B_{j} have symbols depending on x, but close (in a sense to be specified) to constant symbols, and finally, the case of a bounded open set G of R^{n}.

Theorem 3.1. Let $\left\{A ; B_{j}, j=1, \ldots, m\right\}$ be a regular elliptic boundary-value problem on $R_{+}{ }^{n}=\left\{x: x_{n}>0\right\}$. The homogeneous singular integro-differential operators A and B_{j} are of orders $2 m, r_{j}\left(r_{j}<2 m-1\right)$ with constant symbols $\sigma_{A}(\xi)$ in $W^{q, 2}(\Sigma) ; \sigma_{j}\left(\xi^{\prime}\right)$ in $W^{q-\frac{1}{2}, 2}\left(\Sigma^{\prime}\right), q>(n-1) / 2$. Suppose that there exists a $\theta, 0 \leqq \theta<2 \pi$, for which Assumption (1) is verified. Then

$$
\begin{equation*}
\left\|\|u\|_{s, 2} \leqq M\left\{\| \|(A+\lambda I) u\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\| \mid B_{j} u \|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}\right\}\right. \tag{i}
\end{equation*}
$$

for all u in $W^{s, 2}\left(R_{+}{ }^{n}\right)$ and for all $|\lambda| \geqq \lambda_{0}>0$, $\arg \lambda=\theta$. M is independent of λ, u and $s \geqq 2 m$.
(ii) The mapping $\mathscr{A} u=\left\{(A+\lambda I) u, B_{1} u, \ldots, B_{m} u\right\}$ of $W^{s, 2}\left(R_{+}{ }^{n}\right)$ into

$$
W^{s-2 m, 2}\left(R_{+}{ }^{n}\right) \times \prod_{j=1}^{m} W^{s-r_{j-\frac{1}{2}}^{2}, 2}\left(R^{n-1}\right)
$$

is 1-1 and onto for large $|\lambda|$.
Proof. We follow (3) closely (cf. also 2 and 5).
(i) To prove the a-priori estimate, it suffices to show it for u in $C_{c}{ }^{\infty}\left(R_{+}{ }^{n} \cup R^{n-1}\right)$. Since A is an admissible singular integro-differential operator on $R_{+}{ }^{n}$, we have that

$$
A=\sum_{k=0}^{2 m} A_{k} D_{n}{ }^{k}
$$

similarly,

$$
B_{j}=\sum_{k=0}^{\tau_{j}} B_{j k} D_{n}{ }^{k}
$$

where A_{k} and $B_{j k}$ are singular integro-differential operators on R^{n-1}, homogeneous of orders $2 m-k$ and $r_{j}-k$, respectively, with constant symbols.
(a) Consider $(A+\lambda I) u=L f=f_{0}(x)$ on R^{n}, where L is the extension of f to R^{n}. By taking the Fourier transform, we obtain

$$
\left(\sigma_{A}(\xi)+\lambda\right) \hat{u}=\hat{f}_{0}(\xi)=\left(\sum_{k=0}^{2 m} \sigma_{k}\left(\xi^{\prime}\right) \xi_{n}^{k}+\lambda\right) \hat{u} .
$$

A computation as in (3) yields $\left\|\|u\|_{s, 2} \leqq C\left|\|f \mid\|_{s-2 m, 2}\right.\right.$.
(b) Consider the boundary-value problem:

$$
(A+\lambda I) w=0 \text { on } R_{+}^{n}, \quad B_{j} w=g_{j}-B_{j} u \text { on } R^{n-1}, \quad j=1, \ldots, m .
$$

By taking the Fourier transform with respect to the tangential variables $\hat{x}=\left(x_{1}, \ldots, x_{n-1}\right)$, we obtain

$$
\begin{gathered}
\sum_{k=0}^{2 m} \sigma_{k}\left(\xi^{\prime}\right) D_{n}{ }^{k} \widehat{w}\left(\xi^{\prime}, x_{n}\right)+\lambda \widehat{w}\left(\xi^{\prime}, x_{n}\right)=0, \quad x_{n}>0, \\
\sum_{k=0}^{\tau_{j}} \sigma_{j k}\left(\xi^{\prime}\right) D_{n}{ }^{k} \widehat{w}\left(\xi^{\prime}, 0\right)=\hat{h}_{j}\left(\xi^{\prime}\right)=\hat{g}_{j}-\sum_{k=0}^{\tau_{j}} \sigma_{j k}\left(\xi^{\prime}\right) D_{n}^{k} \hat{u}\left(\xi^{\prime}, 0\right), \quad j=1, \ldots, m,
\end{gathered}
$$

where \widehat{w} and \hat{g}_{j} denote the Fourier transforms of w and g_{j} with respect to \hat{x}. We seek a solution of the form

$$
\widehat{w}\left(\xi^{\prime}, x_{n}\right)=\sum_{r=1}^{m} p_{r}\left(\xi^{\prime}\right) \int_{C_{\lambda, \xi}} \zeta^{r-1} \exp \left(i \zeta x_{n}\right)\left[\sigma_{A}\left(\xi^{\prime}, \zeta\right)+\lambda\right]^{-1} d \zeta
$$

where $C_{\lambda, \xi^{\prime}}$ is a closed Jordan rectifiable curve in the upper half ζ-plane, containing in its interior all the m roots of

$$
\lambda+\sum_{k=0}^{2 m} \sigma_{k}\left(\xi^{\prime}\right) \zeta^{k}=0
$$

considered as a polynomial in ζ. We are reduced to showing the solvability of a system of m equations with m unknowns, $p_{r}\left(\xi^{\prime}\right)$. Since Assumption (1) is verified, the system may be solved in a unique fashion. If we set

$$
c_{r j}\left(\xi^{\prime}, \lambda\right)=\int_{c_{\lambda, \xi^{\prime}}} \zeta^{r-1} \sigma_{j}\left(\xi^{\prime}, \zeta\right)\left[\sigma_{A}\left(\xi^{\prime}, \zeta\right)+\lambda\right]^{-1} d \zeta
$$

and if $Q_{r j}\left(\xi^{\prime}, \lambda\right)$ are the elements of the inverse of the transpose of the matrix $\left(c_{r j}\right)$, then

$$
\widehat{w}\left(\xi^{\prime}, x_{n}\right)=\sum_{r, j=1}^{m} Q_{r j}\left(\xi^{\prime}, \lambda\right) \hat{h}_{j}\left(\xi^{\prime}, \lambda\right) \int_{C_{\lambda, \xi^{\prime}}} \zeta^{r-1} \exp \left(i \zeta x_{n}\right)\left[\sigma_{A}\left(\xi^{\prime}, \zeta\right)+\lambda\right]^{-1} d \zeta
$$

To take the inverse Fourier transform of $\widehat{\omega}\left(\xi^{\prime}, x_{n}\right)$, we need the following lemma.

Lemma 3.1. (i) Let

$$
\phi_{\alpha \beta}\left(\xi, x_{n}\right)=\int_{C} \zeta^{\alpha^{\beta}} \xi^{\beta} \exp \left(i \zeta x_{n}\right)\left[\sigma_{A}(\xi, \zeta)+\lambda\right]^{-1} d \zeta
$$

Then

$$
\phi_{\alpha \beta}\left(\xi, x_{n}\right)=O\left(|\xi|+|\lambda|^{1 / 2 m}\right)^{\alpha+\beta+1-2 m} \exp \left(-d x_{n}\left(|\xi|^{2}+|\lambda|^{1 / m}\right)^{\frac{1}{2}}\right)
$$

where $d=\min \{\operatorname{Im} \zeta: \zeta \in C\}>0$.
(ii) $Q_{r j}(\xi, \lambda)=O\left(|\xi|+|\lambda|^{1 / 2 m}\right)^{2 m-r-r_{j}}, r, j=1, \ldots, m$.

Proof. Set $\lambda=\mu^{2 m}$ and make the following change of variables:

$$
\xi^{\prime}=\xi\left(|\xi|^{2}+|\mu|^{2}\right)^{-\frac{1}{2}}, \quad \mu^{\prime}=\mu\left(|\xi|^{2}+|\mu|^{2}\right)^{-\frac{1}{2}}, \quad \zeta^{\prime}=\zeta\left(|\xi|^{2}+|\mu|^{2}\right)^{-\frac{1}{2}}
$$

(1) We have that

$$
\phi_{\alpha \beta}\left(\xi, x_{n}\right)=\left(|\xi|^{2}+|\mu|^{2}\right)^{(\alpha+\beta+1-2 m) / 2} \phi_{\alpha \beta}\left(\xi^{\prime}, x_{n}\left(|\xi|^{2}+|\mu|^{2}\right)^{\frac{1}{2}}\right)
$$

where

$$
\phi_{\alpha \beta}\left(\xi, x_{n}\right)=\int_{C} \zeta^{\alpha} \xi^{\beta} \exp \left(i \zeta x_{n}\right)\left[\sigma_{A}(\xi, \zeta)+\mu^{2 m}\right]^{-1} d \zeta
$$

(i) As $|\xi| \rightarrow \infty,\left|\xi^{\prime}\right| \rightarrow 1$ and $\left|\mu^{\prime}\right| \rightarrow 0$. Thus, the roots with positive imaginary parts of

$$
\left(\mu^{\prime}\right)^{2 m}+\sum_{k=0}^{2 m} \sigma_{k}\left(\xi^{\prime}\right) \zeta^{k}=0
$$

tend continuously to those of

$$
\sum_{k=0}^{2 m} \sigma_{k}(I) \zeta^{k}=0
$$

Hence, there exists a closed curve C_{1} independent of μ and ξ containing all the m roots with positive imaginary parts of

$$
(\mu)^{2 m}+\sum_{k=0}^{2 m} \sigma_{k}(\xi) \zeta^{k}=0 \quad \text { for large }|\xi|
$$

Therefore, for large $|\xi|$, we have that

$$
\left.\left|\phi_{\alpha \beta}\left(\xi, x_{n}\right)\right| \leqq M \exp \left(-d x_{n}\left(|\xi|^{2}+|\mu|^{2}\right)^{\frac{1}{2}}\right)\left(|\xi|^{2}+|\mu|^{2}\right)^{(\alpha+\beta+1-2 m}\right)^{/ 2}
$$

(ii) For small $|\xi|$, as $|\xi| \rightarrow 0,\left|\xi^{\prime}\right| \rightarrow 0$ and $\left|\mu^{\prime}\right| \rightarrow 1$. Thus, all the roots with positive imaginary parts of $\left(\mu^{\prime}\right)^{2 m}+\sigma_{A}\left(\xi^{\prime}, \zeta\right)=0$ tend continuously to those with positive imaginary parts of $1+\sigma_{A}(0, \zeta)=0$. Again, we have a curve C_{2}, in the upper half ζ-plane, independent of both μ and ξ containing all the m roots of $\left(\mu^{\prime}\right)^{2 m}+\sigma_{A}\left(\xi^{\prime}, \zeta\right)=0$ for small $|\xi|$. Thus,

$$
\boldsymbol{\phi}_{\alpha \beta}\left(\xi, x_{n}\right) \leqq M \exp \left(-d x_{n}\left(|\xi|^{2}+|\mu|^{2}\right)^{\frac{1}{2}}\right)\left(|\xi|^{2}+|\mu|^{2}\right)^{(\alpha+\beta+1-2 m) / 2}
$$

Combining (i) and (ii) we obtain the first part of the lemma.
(2) Arguing as above, we have that

$$
Q_{r j}(\xi, \lambda)=O\left(|\xi|+|\lambda|^{1 / m}\right)^{2 m-r-r_{j}}
$$

Proof of Theorem 3.1. (i) (continued). As in (3), using Lemma 3.1 and the Parseval formula, we obtain:

$$
\|w\|_{s, 2} \leqq C \sum_{j=1}^{m}\left\|h_{j}\right\| \|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}
$$

Thus

$$
\begin{aligned}
& \|\mid w\|_{s, 2} \leqq C\left\{\left.\||u|\|\left\|_{s, 2}+\sum_{i=1}^{m}\right\|\left\|g_{j}\right\|\right|_{s-r_{j}-\frac{1}{2}, 2} ^{\prime}\right\} \leqq \\
& C\left\{\left\|\left|\left\|f\left|\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\left\|g_{j}\right\|\right|_{s-r_{j}-\frac{1}{2}}^{\prime}\right\}\right.\right.\right.
\end{aligned}
$$

Therefore, if v is such that $(A+\lambda I) v=f$ on $R_{+}{ }^{n}, B_{j} v=g_{j}$ on R^{n-1}, we obtain

$$
\|\mid v\|_{s, 2} \leqq C\left\{\left\|| | f\left|\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\right| g_{j}\right\| \|_{s-r_{j-\frac{1}{2}, 2}^{\prime}}^{\prime}\right\}
$$

(ii) Let $\left(f, g_{1}, \ldots, g_{m}\right)$ be an element of

$$
W^{s-2 m, 2}\left(R_{+}{ }^{n}\right) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2}, 2}\left(R^{n-1}\right)
$$

Then the unique solution u in $W^{s, 2}\left(R_{+}{ }^{n}\right)$ of

$$
(A+\lambda I) u=f \quad \text { on } R_{+}{ }^{n}, \quad B_{j} u=g_{j} \text { on } R^{n-1}, \quad j=1, \ldots, m,
$$

is given by

$$
\begin{aligned}
u(x) & =\left.F^{-1}\left\{\left[\sigma_{A}(\xi)+\lambda\right]^{-1} F(L f)\right\}\right|_{R+^{n}} \\
& +\left.\sum_{j=1}^{m}\left(F^{\prime}\right)^{-1}\left\{\sum_{r=1}^{m} Q_{r j} \int_{C} \zeta^{r-1} \exp \left(i \zeta x_{n}\right)\left[\sigma_{A}\left(\xi^{\prime}, \zeta\right)+\lambda\right]^{-1} d \zeta\right\} F^{\prime} g_{j}\right|_{R+n^{\prime}}
\end{aligned}
$$

where F^{\prime} denotes the Fourier transform with respect to \hat{x}.
Because of Lemma 3.1, the expression is well-defined.
Theorem 3.2. Let $\left\{A ; B_{j}, j=1, \ldots, m\right\}$ be a regular elliptic boundary-value problem on $R_{+}{ }^{n}$. The singular integro-differential operators A and B_{j} are of orders $2 m$ and $r_{j}\left(r_{j}<2 m-1\right)$, respectively. Suppose that there exists $a \theta, 0 \leqq \theta<$ 2π, for which Assumption (1) is satisfied. Suppose further that

$$
\max _{x}\left\|\sigma_{A}(\xi, x)-\sigma_{A}(\xi, 0)\right\|_{q, 2}+\sum_{j, k} \max _{x}\left\|\sigma_{j k}\left(x^{\prime}, \xi^{\prime}\right)-\sigma_{j k}\left(0, \xi^{\prime}\right)\right\|_{q-\frac{1}{2}, 2} \leqq \delta
$$

for x near 0 . Then
(1) There exists a constant M independent of $\lambda, \arg \lambda=\theta$, and of u such that

$$
\left\|\|u\|_{s, 2} \leqq M\left\{\| \|(A+\lambda) u\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\| \mid B_{j} u \|_{\left\lvert\, s-\tau_{j}-\frac{1}{2}\right., 2}^{\prime}\right\} s \geqq 2 m ;\right.
$$

(2) For every $\left(f, g_{1}, \ldots, g_{m}\right)$ in

$$
W^{s-2 m, 2}\left(R_{+}{ }^{n}\right) \times \prod_{j=1}^{m} W^{s-r_{j-\frac{1}{2}}^{2}, 2}\left(R^{n-1}\right)
$$

there exists a unique solution u in $W^{s, 2}\left(R_{+}{ }^{n}\right)$ of $(A+\lambda) u=f$ on $R_{+}{ }^{n} ; B_{j} u=g_{j}$ on $R^{n-1}, j=1, \ldots, m$.

Proof. We prove the a-priori estimate. We denote by A_{0} and $B_{j 0}$ the principal parts of A and B_{j}, and by $A_{0}(0)$ and $B_{j 0}(0)$ the homogeneous singular integro-differential operators with symbols $\sigma_{A}(0, \xi)$ and $\sigma_{j}\left(0, \xi^{\prime}\right)$. From Theorem 3.1, we obtain

$$
\begin{aligned}
& \left\|\|u\|_{s, 2} \leqq M\left\{\left\|| |\left(A_{0}(0)+\lambda\right) u\left|\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\right| B_{j 0}(0) u \mid\right\|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\}\right. \\
& \leqq M\left\{\| \|(A+\lambda) u\left\|_{s-2 m, 2}+\right\|\left\|\left(A_{0}(0)-A_{0}\right) u\right\|_{s-2 m, 2}\right. \\
& +\| \|\left(A-A_{0}\right) u\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\left\|B_{j} u\right\|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}+\| \|\left(B_{j 0}-B_{j}\right) u \|\left.\right|_{s-r_{j}-\frac{1}{2}, 2} ^{\prime} \\
& \left.+\| \|\left(B_{j 0}-B_{j 0}(0)\right) u\| \|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\} .
\end{aligned}
$$

(i) Since A is an admissible singular integro-differential operator on $R_{+}{ }^{n}$, it may be written as: $A=R \widetilde{A} L+T$, where T is an operator almost of order $2 m-1$ on $W^{s, 2}\left(R_{+}{ }^{n}\right)$.

Therefore, $\left\|\left(A-A_{0}\right) u\right\|_{s-2 m, 2} \leqq \epsilon\|u\|_{s, 2}+C(\epsilon)\|u\|_{s-1,2}$ and
$|\lambda|^{(s-2 m) / 2 m}\left\|\left(A-A_{0}\right) u\right\|_{0,2} \leqq \epsilon|\lambda|^{(s-2 m) / 2 m}\|u\|_{2 m, 2}+C(\epsilon)|\lambda|^{(s-2 m) / 2 m}\|u\|_{2 m-1,2}$.
But

$$
\begin{gathered}
\|u\|_{2 m-1,2} \leqq \epsilon / C(\epsilon)\|u\|_{2 m, 2}+K(\epsilon)\|u\|_{0,2} \\
\left\|\left\|\left(A-A_{0}\right) u\right\|_{s-2 m, 2} \leqq\left. 2 \epsilon\left|\|u\|_{s, 2}+C_{2}(\epsilon)\right| \lambda\right|^{-1 / 2 m}\right\|\|u\|_{s, 2}
\end{gathered}
$$

(ii) Similarly,

$$
B_{j}=\sum_{k=0}^{r_{j}} B_{j k} D_{n}^{k}+\sum_{k=0}^{r_{j}} T_{j k} D_{n}^{k}
$$

where $T_{j k}$ are linear operators almost of orders $r_{j}-k-1$ on $W^{s-\frac{1}{2}, 2}\left(R^{n-1}\right)$. Thus

$$
\left.\left.\left\|\left|\left(B_{j}-B_{j 0}\right) u\right|\right\|\right|_{s-r_{j}-\frac{1}{2}, 2} \leqq\left.\epsilon\left|\|u\|_{s-\frac{1}{2}, 2}+C_{3}(\epsilon)\right| \lambda\right|^{-1 / 2 m} \right\rvert\,\|u\|_{s, 2}
$$

(iii) We consider $\left\|\mid\left(A_{0}-A_{0}(0)\right) u\right\| \|_{s-2 m, 2}$. If $\sigma_{A}(x, \xi)$ is the symbol of A, then the symbol $\sigma_{\tilde{A}}(x, \xi)$ of \widetilde{A} may be obtained from $\sigma_{A}(x, \xi)$ by the Hestenes formula and, moreover,

$$
\max _{x}\left\|\sigma_{\tilde{A}}(x, \xi)-\sigma_{\tilde{A}}(0, \xi)\right\|_{q, 2} \leqq C \max _{x}\left\|\sigma_{A}(x, \xi)-\sigma_{A}(0, \xi)\right\|_{q, 2}
$$

where C does not depend on σ_{A}. Thus

$$
\left\|\left\|\left(A_{0}-A_{0}(0)\right) u\right\|\right\|_{s-2 m, 2} \leqq C_{2}\| \|\left(\widetilde{A}_{0}-\widetilde{A}_{0}(0)\right) L u \|_{s-2 m, 2} .
$$

Using Proposition 8.3 of Agranovič (2, p. 47), we have that

$$
\left\|\left|\left(\widetilde{A}_{0}-\widetilde{A}_{0}(0)\right) L u\left\|\left\|_{s-2 m, 2} \leqq\left. C_{3} \delta\left|\|u\|_{s, 2}+C_{4}\left(\sigma_{A}\right)\right| \lambda\right|^{-1 / 2 m}\right\|\right\| u \|_{s, 2} .\right.\right.
$$

(iv) A similar argument yields:

$$
\left\|\left|\left|\left(B_{j 0}-B_{j 0}(0)\right) u\left\|\left\|\left.\right|_{s-r_{j}-\frac{1}{2}, 2} ^{\prime} \leqq\left. C \delta\left|\|u\|_{s, 2}+C_{5}\left(\sigma_{j}\right)\right| \lambda\right|^{-1 / 2 m} \mid\right\| u\right\|_{s, 2}\right.\right.\right.
$$

Therefore, by taking δ small and $|\lambda|$ sufficiently large, we obtain the a-priori estimate of the theorem.
(2) We now show that \mathscr{A} has a right inverse. It follows from Theorem 3.1 that $\mathscr{A}_{0}(0)$ has a right inverse \mathfrak{I}_{0}; thus

$$
\begin{aligned}
\mathscr{A}_{0} & =\mathscr{A}_{0}(0) \mathfrak{I}_{0}+\left(\mathscr{A}-\mathscr{A}_{0}\right) \mathfrak{I}_{0}+\left(\mathscr{A}_{0}-\mathscr{A}_{0}(0)\right) \mathfrak{I}_{0} \\
& =I+\left(\mathscr{A}-\mathscr{A}_{0}\right) \mathfrak{I}_{0}+\left(\mathscr{A}_{0}-\mathscr{A}_{0}(0)\right) \mathfrak{T}_{0} .
\end{aligned}
$$

Set

$$
\left.g=\left(g_{1}, \ldots, g_{m}\right) \quad \text { and } \quad \| \mid f, g\right)\left|\left\|_{s, 2}=\right\|\left\|f\left|\left\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\right| g_{j}\right\| \|_{s-r_{j}-\frac{1}{2}, 2}\right.
$$

Let $u=\mathfrak{I}_{0}(f, g)$ with $\mathscr{A}_{0}(0) \mathfrak{I}_{0}(f, g)=(f, g)$ (Theorem 3.1). Then a computation, as in the first part, yields

$$
\left\|\left|\left|\left(\mathscr{A}_{0}-\mathscr{A}_{0}(0)\right) \mathfrak{I}_{0}(f, g)\| \|_{s, 2} \leqq \frac{1}{4}\|\mid(f, g)\| \|_{s, 2}\right.\right.\right.
$$

for δ small and $|\lambda|$ sufficiently large. Also,

$$
\left\|\left|| (\mathscr { A } - \mathscr { A } _ { 0 }) \mathfrak { I } _ { 0 } (f , g) | \left\|\leqq \frac{1}{4}\left|\|(f, g) \mid\| \|_{s, 2}\right.\right.\right.\right.
$$

since $\left(\mathscr{A}-\mathscr{A}_{0}\right)$ is an operator almost of order -1 from $W^{s, 2}\left(R_{+}{ }^{n}\right)$ into $W^{s-2 m, 2}\left(R_{+}{ }^{n}\right) \times \Pi_{j=1}^{m} W^{s-r_{j}-\frac{1}{2}, 2}\left(R^{n-1}\right)$. Let

$$
Q=\left(\mathscr{A}-\mathscr{A}_{0}\right) \mathfrak{I}_{0}+\left(\mathscr{A}_{0}-\mathscr{A}_{0}(0)\right) \mathfrak{I}_{0} ;
$$

then $\left|\left||Q(f, g)|\left\|_{s, 2} \leqq \frac{1}{2}| ||(f, g)|\right\|_{s, 2}\right.\right.$. Hence $(I+Q)^{-1}$ exists. Take $\mathfrak{I}=$ $\mathfrak{I}_{0}(I+Q)^{-1}$, then $\mathscr{A} \mathfrak{I}=I$.

Proof of Theorem 1.1. (1) We establish the a-priori estimate. Since G is a bounded open set of R^{n}, regular of class C^{∞} (cf. 5), there exist a finite open covering of $\operatorname{cl}(G)$ and a finite partition of unity ϕ_{k} corresponding to N_{k}. Let ψ_{k} be an infinitely differentiable function with compact support in N_{k} such that $\psi_{k}=1$ on the support of ϕ_{k}. We have that

$$
\mathscr{A}=\sum_{k=1}^{N} \boldsymbol{\phi}_{k} \mathscr{A}_{k} \psi_{k}+T,
$$

where T is an operator almost of order -1 from $W^{s, 2}(G)$ into

$$
W^{s-2 m, 2}(G) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2}, 2}(\partial G) \quad \text { and } \quad \mathscr{A}_{k}=\left(A_{k}+\lambda I, B_{1 k}, \ldots, B_{m k}\right)
$$

where A_{k} and $B_{j k}$ are singular integro-differential operators on $R_{+}{ }^{n}$ and on R^{n-1}, respectively. We also have that

$$
\mathscr{A}_{k}\left(\phi_{k} u\right)=\mathscr{A}_{k}\left(\phi_{k} \psi_{k} u\right)=\phi_{k} \mathscr{A}_{k}\left(\psi_{k} u\right)+T_{k}\left(\psi_{k} u\right),
$$

where T_{k} is an operator almost of order -1 from $W^{s, 2}\left(R_{+}{ }^{n}\right)$ into

$$
W^{s-2 m, 2}\left(R_{+}{ }^{n}\right) \times \prod_{j=1}^{m} W^{s-\tau_{j}-\frac{1}{2}, 2}\left(R^{n-1}\right)
$$

if N_{k} is a boundary neighbourhood and T_{k} is an operator almost of order - 1 from $W^{s, 2}\left(R_{+}{ }^{n}\right)$ into $W^{s-2 m, 2}\left(R_{+}{ }^{n}\right)$ if N_{k} is an interior neighbourhood (cf. 2).

From Theorem 3.2 and an easy computation we obtain

$$
\begin{aligned}
&\left\|\mid \phi_{k} u\right\| \|_{s, 2} \leqq M\left\{\left\|\phi_{k}\left(A_{k}+\lambda\right) \psi_{k} u\right\|\left\|_{s-2 m, 2}+\epsilon \mid\right\| \psi_{k} u\| \|_{s, 2}\right. \\
&\left.+C(\epsilon)|\lambda|^{-1 / 2 m}\left|\left\|\psi_{k} u\right\|_{s, 2}+\sum_{j=1}^{m}\| \| \phi_{k} B_{j k}\left(\psi_{k} u\right) \|\right|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\}
\end{aligned}
$$

The norms are taken in local coordinates. On the other hand, we have that

$$
\phi_{k} \mathscr{A}_{k}\left(\psi_{k} u\right)=\phi_{k} \mathscr{A}\left(\psi_{k} u\right)+\phi_{k} \widetilde{T}_{k}\left(\psi_{k} u\right),
$$

where \widetilde{T}_{k} is an operator of the same type as T_{k}. Therefore

$$
\begin{aligned}
& \left\|\left\|\phi_{k} u\right\|\right\|_{s, 2} \leqq M\left\{\left\|\left|\phi_{k}(A+\lambda)\left(\psi_{k} u\right)\right|\right\|\left\|_{s-2 m, 2}+\epsilon \mid\right\| \psi_{k} u\| \|_{s, 2}\right. \\
& \left.\quad+C(\epsilon)|\lambda|^{-1 / 2 m}\left|\left\|\psi_{k} u\right\|_{s, 2}+\sum_{j=1}^{m}\left\|\left|\phi_{k} B_{j}\left(\psi_{k} u\right)\right|\right\|\right|_{s-\tau_{j}-\frac{1}{2}, 2}^{\prime}\right\}
\end{aligned}
$$

We may write $\phi_{k}(A+\lambda)\left(\psi_{k} u\right)=\phi_{k}(A+\lambda) u+\phi_{k}(A+\lambda)\left(\psi_{k}-1\right) u$ and, similarly, for $\phi_{k} B_{j k}\left(\psi_{k} u\right)$. The operator $\phi_{k} \mathscr{A}\left(\psi_{k}-1\right)$ is again an operator almost of order - 1 from $W^{s, 2}(G)$ into

$$
W^{s-2 m, 2}(G) \times \prod_{j=1}^{m} W^{s-\tau_{j}-\frac{1}{2}, 2}(\partial G)
$$

Hence we finally obtain

$$
\begin{aligned}
&\|u\|_{s, 2} \leqq M\left\{\left|\left\|(A + \lambda) u \left|\left\|_{s-2 m, 2}+\left.\epsilon\left|\|u\|_{s, 2}+C(\epsilon)\right| \lambda\right|^{-1 / 2 m} \mid\right\| u \|_{s, 2}\right.\right.\right.\right. \\
&\left.+\sum_{j=1}^{m}\| \| B_{j} u \|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}\right\}
\end{aligned}
$$

Taking ϵ small and $|\lambda|$ sufficiently large, we obtain the a-priori estimate.
(2) We now construct the inverse of \mathscr{A}. We have that

$$
\mathscr{A} u=\sum_{k=1}^{N} \phi_{k} \mathscr{A}_{k}\left(\psi_{k} u\right)+T u .
$$

For each k, \mathscr{A}_{k} has a right inverse R_{k} (Theorem 3.2). To simplify the notation, we write $g=\left(g_{1}, \ldots, g_{m}\right)$. Consider

$$
R(f, g)=\sum_{r=1}^{N} \psi_{r} R_{r}\left(\phi_{r} f, \phi_{r} g\right)
$$

R is a bounded linear operator from $W^{s-2 m, 2}(G) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)$ into $W^{s, 2}(G)$. We have that

$$
\mathscr{A} R(f, g)=\sum_{r, k=1}^{N} \phi_{k} \mathscr{A}_{k}\left[\psi_{r} R_{r}\left(\phi_{r} f, \phi_{r} g\right) \psi_{k}\right]+T R(f, g)
$$

Set $u_{r}=\psi_{\tau} R_{r}\left(\phi_{\tau} f, \phi_{r} g\right)$. We also have that

$$
\phi_{k} \mathscr{A}_{k}\left[\psi_{k} \psi_{\tau} u_{r}\right]=\phi_{k} \mathscr{A}_{r}\left[\psi_{k} \psi_{r} u_{r}\right]+\phi_{k} T_{r k} u_{r}
$$

(cf. 2, pp. 102, 75) $T_{r k}$ is an operator almost of order -1 from $W^{s, 2}(G)$ into

$$
W^{s-2 m, 2}(G) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2}, 2}(\partial G)
$$

Hence

$$
\begin{aligned}
& \mathscr{A} R(f, g)=\sum_{r, k} \phi_{k} \psi_{k} \psi_{r} \mathscr{A}_{r} R_{r}\left(\phi_{T} f, \phi_{r} g\right)+T R(f, g) \\
&+\sum_{r, k} \phi_{k} T_{r k}\left[\psi_{r} R_{r}\left(\phi_{r} f, \phi_{r} g\right)\right] \\
&+\sum_{r, k} \phi_{k}\left\{\mathscr{A}_{r}\left[\psi_{k} \psi_{r} R_{r}\left(\phi_{r} f, \phi_{T} g\right)\right]-\psi_{k} \psi_{r} \mathscr{A}_{r} R_{r}\left(\phi_{r} f, \phi_{r} g\right)\right\}
\end{aligned}
$$

Consider the first sum. It is equal to (f, g). Set

$$
\left\|\left\|(f, g)\left|\left\|_{s}=\right\|\right| f \mid\right\|_{s-2 m, 2}+\sum_{j=1}^{m}\right\|\left\|g_{j}\right\| \|_{s-r_{j}-\frac{1}{2}, 2}^{\prime}
$$

Then

$$
\left\|\left|\left\|R (f , g) | \| _ { s } \leqq \epsilon \| | (f , g) \left|\left\|_{s}+C(\epsilon)|\lambda|^{-1 / 2 m}\right\|\|(f, g) \mid\|_{s}\right.\right.\right.\right.
$$

In a similar fashion, we obtain the same bound for the third sum. Since $\mathscr{A}_{r}\left[\psi_{k} \psi_{\tau} \cdot\right]-\psi_{r} \psi_{k^{\prime}} \mathscr{A}_{\tau}[\cdot]$ is an operator almost of order -1 from $W^{s, 2}\left(R_{+}{ }^{n}\right)$ into

$$
W^{s-2 m, 2}\left(R_{+}{ }^{n}\right) \times \prod_{j=1}^{m} W^{s-r_{j}-\frac{1}{2}, 2}\left(R^{n-1}\right),
$$

we obtain the following upper bound for the last sum, namely,

$$
\epsilon\left|\left\|(f , g) \left|\| _ { s } + C (\epsilon) | \lambda | ^ { - 1 / 2 m } | \| (f , g) \left\|\|_{s} .\right.\right.\right.\right.
$$

Thus $\mathscr{A} R(f, g)=(f, g)+\mathfrak{I}(f, g)$ with $\|\mathfrak{T}\| \leqq \frac{1}{2}$ for large $|\lambda|$. Hence $(I+\mathfrak{I})^{-1}$ exists and $\mathscr{A}^{-1}=R(I+\mathfrak{I})^{-1}$.

References

1. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary-value problems, Comm. Pure Appl. Math. 15 (1962), 119-147.
2. M. S. Agranovič, Elliptic singular integro-differential operators, Uspehi Mat. Nauk 20 (1965), no. 5, $3-120=$ Russian Math. Surveys 20 (1965), no. 5-6, 2-116.
3. M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk 19 (1964), no. 3, 53-161 = Russian Math. Surveys 19 (1964), no. 3, 53-157.
4. R. Beals, Nonlocal boundary-value problems for elliptic operators, Amer. J. Math. 87(1965), 315-362.
5. F. E. Browder, A-priori estimates for solutions of elliptic boundary-value problems. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22 (1960), 145-149, 160-169; III, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 404-410.
6. _- Nonlocal elliptic boundary-value problems, Amer. J. Math. 86 (1964), 735-750.
7. _Problèmes non-linéaires, Séminaires Math. Sup. (Univ. Montreal Press, Montreal, 1965).
8. M. Schechter, Nonlocal elliptic boundary-value problems, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 421-441.
9. P. E. Sobolevskiĭ, Equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obšč. 10 (1961), 297-350 = Amer. Math. Soc. Transl. (2) (49), 1-62.
10. B. A. Ton, On nonlinear elliptic boundary-value problems, Bull. Amer. Math. Soc. 72 (1966), 307-313.

Université de Montréal, Montréal, P.Q.;
University of British Columbia, Vancouver, B.C.

