
NON-LOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS 

BUI AN TON 

Let G be a bounded open set of Rn with a smooth boundary dG. We consider 
the following elliptic boundary-value problem: 

m 

Au = / on G; BjU = ^ LjkCku on dG} j = 1, . . , m, 

where 4̂ and 1^ are, respectively singular integro-differential operators on G 
and on dG, of orders 2m and r̂  with r ; < 2m; Ĉ  are boundary differential 
operators, and LJ]C are linear operators, bounded in a sense to be specified. 

Let A 2 be the realization of A as an operator on L2(G) with the above 
boundary conditions. When the symbols aA, crj of A and Bj satisfy a strength
ened Shapiro-Lopatinskiï condition, we show, in § 2, that A2 is a Fredholm 
operator, the generalized eigenfunctions of A2 are complete in L2(G) and 
(^42 + A/ ) - 1 exists for large |X|, arg X = 6. We also prove the existence of a 
solution of (A2 + X/)w = / ( # , T^w, . . . , T2m-iu), where T;- are bounded, 
linear operators from PP"'2(G) into L2(G), f(x} fi, . . . , fom-i) has a linear 
growth in (fi, . . . , f2w»-i). 

The proofs depend on a result on elliptic boundary-value problems {A ; 2?y} 
containing a large parameter X, which is given in § 3. The notation, the defini
tions, and the results are given in § 1. 

Non-local elliptic boundary-value problems have been studied by 
Agranovic (2), Beals (4), Browder (6), Schechter (8), and others. 

1. Let G be a bounded open set of Rn, regular of class C°° with boundary 
dG. The generic point x of G is x = (xi, . . . , xn). Set Dj = i~ld/dx^ j = 1, 
...,71. For each w-tuple a = (a±, . . . , an) of non-negative integers, we write: 

Da = n D*' and I«I = é «i-
Let 5 be a non-negative integer; we denote by WS,2{G) the space 

TP.2(G) = {u: u in L2(G), D«u in L2(G); |a| ^ s] 

(the derivatives are taken in the sense of the theory of distributions). WS'2(G) 
is a Hilbert space with the norm 

IML2 = ) Z) I I ^ I I W H 
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1366 BUI AN TON 

and the obvious inner product. Set 

l l l«IIL* = {IMI?.* + |xr/mIM|„2,2}è, 
then 

lll«lll..*^(Z ixMMlUiV ^c|||«|||,.2 
(cf. Agranovic and Visik (3, p. 64)). 

Let <j>k, k = 1, . . . , N, be those functions of the finite partition of unity 
whose supports intersect the boundary dG. For s ^ 0, we define Ws,2(dG) as 
the completion of Cœ(dG) with respect to the norm 

(N ^ Y 

where \\<t>itu\\ws>i{Rn-i) is taken in local coordinates and is defined by means of 
the Fourier transforms: 

11 <M| | F..»(«»-i) = { j E n x (1 + \Z\2l\F(4>*u)\2dl;f. 

The space Ws,2(dG) is a Hilbert space. I t neither depends on the choice of 
local coordinates nor on the choice of the partition of unity. We set 

| |MII1.2= (IMISÎ2+ |xr/w|M|'o?2)*. 
We have that 

iii«iir«-4,2 ^ ciiiwiiis,2. 
Let u{x) be in C^iR^1), R+

n = {x: xn > 0}. Then the Hestenes formula 
defines a smooth continuation L of u to Lu in Ck(R?1). If u is in Wk'2(R+n), 
then ||Lw||Wr«'2(Bn) ^ C| M |TFS>2 (#.«)> s = 0, . . . , k. 

DEFINITION 1.1. (i) A is said to be an operator of order k in WS'2(G) if A is 
a bounded linear mapping from WS,2(G) into Ws~k'2(G). s and k are two non-
negative integers with s ^ k. 

(ii) A is said to be an operator almost of order k — 1 on WS,2(G) if A may be 
decomposed into A — A J + Ae", where Ae' is an operator of order k in WS,2(G) 
with norm less than e and Ae" is an operator of order k — 1 in WS,2(G). e is any 
given positive number. 

Consider the singular integral operators 

Amku(x) = Km I Ymk(x - y)\x - y\~nu(y) dy, u G L2(Rn), 
e_>0 •/\x-y\>e 

where Ymk(x) are the spherical functions on the unit sphere in Rn. 
Let a(x, £) be a positive homogeneous function of £ of degree 0. We expand 

a(x, £) as follows: 

*(*f£) = X) ym(hnk(x)Ymk(è), TO = 1. 
m, k 
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The operator A = Y^m,k amk(%)Amk associated with a- is a homogeneous 
singular integral operator on Rn with symbol o\ I t is of class (p, q) if 

a(x, £)€ C*(Rn; I ^ ' 2 ( 2 ) ) , 

where Cp(Rn;WQ,2(2)) is the space of functions f(x, •) on Rn with values in 
WQ'2(2,) and having x-continuous derivatives of order ^ p in Wq'2(2,). 2 is 
the unit sphere in Rn. 

DEFINITION 1.2. A singular integro-differential operator of class (p, q) of 
order s in Wk'2(Rn), s ^ k, is an operator of the form: 

A = £ AaD
a + T, 

\a\=s 

where Aa are homogeneous singular integral operators in Rn, of class (p, g), and 
T is an arbitrary linear operator almost of order s — 1 in Wk,2(Rn). A is homo
geneous if T = 0. 

The symbol of A, 

|a |=s 

w a positive homogeneous function of order s with respect to £, a-a(x, £) is £&e 
symbol of Aa. 

DEFINITION 1.3. (i) 4̂ = RÂL (where A is a homogeneous singular integro-
differential operator of class (p, q) of order s in Wk'2(Rn)y s ^ k, R is the 
restriction operator of functions from Rn to R+

n, and Lis the extension operator of 
functions from R+

n to Rn) is a singular integro-differential operator of class (p, q) 
and of order s in Wk'2(R+

n). 
(ii) A is called an admissible singular integro-differential operator on R+

n if 
for xn = 0 we have that 

«TA(*',<>,£',&) = E tr t(x ' ,£%* 
k=0 

and <r8(x', £') does not depend on £n. 

Hence, if a is the symbol of an admissible singular integro-differential 
operator of class (p, q) of order 5 in Wk,2(R+n), then ak(x', £') are positively 
homogeneous of degree s — k and are in Cp(Rn~1; Wq~1,2(?ï')), where 2 ' is the 
unit sphere in jRw_1. 

Let {Nk} be a finite open covering of cl(G) and {<pk} a finite partition of 
unity corresponding to Nk. Denote by \pk an infinitely differentiable function 
with compact support in Nk and \pk = 1 on the support of <j>k. 

We shall consider singular integro-differential operators on G of the form 

(1.1) A = £ M * f c + T, 
k 

where T is an operator almost of order 2m — 1 in W*t2(G) (s ^ 2m) and Ak is 
an admissible singular integro-differential operator of order 2m on R+

n if Nk 

is a boundary neighbourhood, and on Rn, otherwise. 
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We consider also operators on dG of the form 

(1.2) B, = £ ' <f>kB^k +Tj, j=l,...,m, 
k 

where the summation is taken over all the k corresponding to boundary 
neighbourhoods Nk. Bjk are given by 

-Bjk = 2^/ Bjk Dn , 

where B jk
l are singular integro-differential operators on Rn~1

f homogeneous of 
orders r ; — I. Tj is an operator almost of order —1 from WS'2(G) into 
W8~r>~2,2(dG).The symbol aA of A is defined as follows: it is a function 
&A(P, £) such that for points P in Nk, x in local coordinates, it coincides with 
the symbol aAk(x, £) of Ak. Similarly for aBj. 

DEFINITION 1.4. An admissible singular integro-differential operator A on G 
of the form (1.1) is said to be elliptic at a point P of G if 

*Ak(x, £) 9*0 for £9*0; P G Nk H G, 

and elliptic on G if it is elliptic at each point of G. 

The definition is invariant with respect to the choice of coordinate neigh
bourhoods and local coordinates. 

Ak is said to be properly elliptic at x0 = (#', 0) if <rAh{x', £', f ) = 0, considered 
as a polynomial in the complex variable f, has m roots in the upper half f-plane 
and m roots in the lower half-plane. Throughout the paper, we shall assume 
that the Ak are properly elliptic on Rn. 

DEFINITION 1.5. The elliptic boundary-value problem {A; Bj,j = 1, . . . , m) 
on G, where A and Bj are of the form (1.1) and (1.2), is said to be regular if for 
each k corresponding to boundary neighbourhoods Nk we have that 

Det( jc r^B^', r, r)ku(*', r, D F 1 ^ ) * o, 
where r, j = 1, . . . , m and C is a closed Jordan rectifiable curve in the upper 
half Ç-plane containing all the m roots of aAk(x

r, £', f) = 0. 

ASSUMPTION (1). Let {A; Bjy j = 1, . . . , m\ be a regular elliptic boundary 
problem on G. A and B3 are of the form (1.1) and (1.2). 

We assume that there exists a 6, 0 ^ 6 < 2ir, such that for every k corresponding 
to boundary neighbourhoods Nk we have that 

Det( Jc r^BJk(x\ r, r)ku(*', r, r) + xr1* 
where r, j = 1, . . . , m, arg X = 6, |X| ^ X0 > 0, and C is as in Definition 1.5. 

We now state the main results of the paper. 
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THEOREM 1.1. Let {A; Bj,j = 1, . . . , m\ be a regular elliptic boundary-value 
problem on G. The admissible singular integro-differential operator A is of the 
form (1.1), of class (s — 2m, q), and of order 2m. s ^ 2m and q> (n — l ) / 2 . 
The Bj are of the form (1.2), of class (s — r j , q — §), and °f orders r j with 
r j < 2m — 1. 

Suppose that there exists a 6 such that Assumption (1) is satisfied. Then 
(1) For all u in WS'2(G), we have that 

\\\u\\\St2^c{\\\(A + \I)u\\\s„2mt2+ f ) | | | ^ | | | ' s _ r y _ x , 2 | , 

where arg X = 6, |X| ^ X0 > 0, and C is independent of X and u. 
(2) For any (f, gh . . . , gm) in 

Ws' \G) X H Ws-ri-h\dG), s ^ 2m, 

there exists a unique solution u in WS,2(G) of 

(A + \I)u = f on G, BjU = gj on dG, j = 1, . . . , m. 

The proof of the theorem is long and will be given in § 3. The theorem has 
been proved by Agranovic and Visik (3) for the case when the operators A 
and Bj are differential operators (cf., also, Agmon (1)). 

THEOREM 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied. Let 
Ck, k = 1, . . . , m, be a set of boundary differential operators of orders vk with 
vk < 2m. Let Ljk, j , k = 1, . . . , m, be a set of compact {or bounded) linear 
operators from Ws-vk~h2(dG) into Ws~r^'2 (dG) (or into Ws~r^+€'2(dG) for 
some e > 0). Then 

(i) there exists a positive constant M, independent of X (arg X = 6) and u, such 
that j for all u in W8,2(G), 

,2^MJ\\\(A + \I)u\ -2m, 2 + ^ 

1/ m \ 
\\Bj — 2^1 LjkCk] 
W k=i / 

s ^ 2m, |X| ^ Xo > 0; 

(ii) let A2 be the realization of A as an operator on L2(G) with null boundary 
conditions 

m 
BjU — J 3 LjkCku = 0 on dG, j = 1, . . . , m. 

k=l 

Then (A 2 + XI)_1 exists and is defined on all of L2 (G). It is a compact operator 
on L2(G) with \\A2 + XI)"1!! g M/\\\for |X| è X0 > 0. 

THEOREM 1.3. Suppose that the hypotheses of Theorem 1.2 are satisfied. Then 
(i) there exists a positive constant M such that, for all u in WS,2(G), 

C m 

\\u\\s,2SM\\\Au\\s-2m,2+\\u\\»,2+ D 
V 3=1 

[ Bj — ZJ LjkCk ) d | s _ r i _ i , 2 | , 

5 ^ 2 m ; 
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(ii) A 2 is a Fredholm operator and ind(^42) = 0 (cf. Schechter (8). 

THEOREM 1.4. Suppose that the hypotheses of Theorem 1.2 are satisfied for 
s = 2m. Suppose, further, that there exist 6k, k = 1, . . . , N, 0 ^ 6k < 2T, for 
which assumption (1) is satisfied and such that the plane is divided by these rays 
arg X = 6k into angles which are less than 2m7r/n. Then the generalized eigen-
functions of A2 are complete in L2{G). 

The theorem extends for the case p = 2, a result of Agmon (1). 

THEOREM 1.5. Suppose that the hypotheses of Theorem 1.2 are satisfied for 
s = 2m. Letf(x, fi, . . . , f2w) oe a function measurable in x on G, continuous in 
(f i, • • • , f2m) with f(x, 0, . . . , 0) 9e 0. Suppose, further, that there exists a 
positive constant M such that 

i 2m-l 

| / (* ,f i , . . . , f 2J | ÛM<1 + £ If, 

Let Ti, . . . , r2 w_i be bounded linear operators from Wj,2{G) into L2(G) and let 
T2m be a bouuded linear operator from W2m~e'2(G) into L2(G), 0 < e. Then 

(i) for | \ | ^ X0 > 0, there exists a non-trivial solution u in W2m"2(G) of the 
elliptic boundary-value problem 

{A + \I)u = f(x, T\U, . . . , T2mu) on G, 
m 

BjU = 23 LjkCku on dG, j = 1, . . . , m; 
J c = l 

(ii) let (gh . . . , gm) be in 
m 

n w2m-rj-h'2(dG). 

There exists a solution u in W2m"2(G) of (A + \I)u = fix, T\u, . . . , T2mu) on 
G; BjU = gj on dG. 

2. In this section we shall give the proofs of Theorems 1.2-1.5, assuming 
Theorem 1.1. 

Proof of Theorem 1.2. (1) We establish the a-priori estimate. Suppose that 
part (i) of the theorem is not true. Then for any X with arg X = 6, |X| ^ X0 > 0, 
there would exist {un} with 

IIKHU2 = 1 
and 

m 

HI 04 + ^)un\\\s-2m,2 + ||«n||o,2 + Z) 
j=l 

From the weak compactness of the unit ball in a Hilbert space, we obtain a 
subsequence, which we may assume to be the original one, such that un-+ u 
weakly in WS,2{G) as n —» 00. Since un —> 0 in L2(G), we have that u = 0. 
Since G is a bounded open set of Rn, regular of class Cœ, it follows from the 

B, z 
k=l 

TjkCk •jun\ 
- r i - 4 , 2 • 
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Sobolev imbedding theorem that un —> 0 in WS~1,2{G) and un —» 0 weakly in 
pp-*'2(dG) as w —> oo. The operator Y,%=iLjkCk is a compact linear mapping 
from Ws~1,2(dG) into Ws~r>~*,2(dG), being the composition of a linear map
ping from Ws~*,2(dG) into T/P_,,A;~^2(dG) and a compact mapping from 
jp->*-*.2 i n t o ^ - ^ - ^ 2 ( a G ) 

Therefore E?=iL^C*«„ -^ 0 in T^—r»-*-2(aG) as n -> oo . 
Hence, J3^ n —> 0 in Ws~Tj~*'2(dG) as w —* oo, j = 1, . . . , m. In a similar 

fashion, we show that 

\t'-'i-h/vnBjUn _^ o in L2(dG), j = 1, . . . , w. 

On the other hand, from Theorem 1.1, we obtain the following: 

i l H i | s , 2 ^ Af| | | |(i4 + X)« w | | | s—2m,2 

Thus |||wn|||Sf2 —•> 0 as n —> <», which is a contradiction. Now take |X| suffi
ciently large and we obtain the a-priori estimate. 

(2) Let A2 be a linear operator on L2(G) defined as follows: 

D(A2) = \u:u in W2m'\G), Au in L2(G); 
m \ 

BjU = X) LjkCku on dG,j = 1, . . . , rar , 
y f c = l / 

4̂ 2^ = -4w if u is in D(^42). 

A2 is densely denned. Indeed, we have that Cc
œ(G) C D(A2). From the 

a-priori estimate and Proposition 16.1 of Agranovic (2, p. 99), we deduce that 
(A 2 + XI) is a closed operator on L2(G) with iV(^2 + X7) = {0}. We show 
that R(A2 + XI) = L2(G). L e t / be any element of L2(G), y an element of 
W2m"2(G), and suppose that 0 ^ / ^ 1. Consider the following elliptic 
boundary-value problem 

m 

(A + \I)u = f on G, BjU = t X) LjkCkv on dG, j = 1, . . . , m. 

From Theorem 1.1, we know that there exists a unique solution u in J^2W,2(G) 
of the above problem. Define the following non-linear mapping T(t) from 
[0, 1] X W2m'2(G) into W2m>2(G): 

T(t)v = u, 

where u is the unique solution of the above boundary-value problem. If we 
can show that T(l)u = u, i.e. T(l) has a fixed point, then u is in D(A2) and 

is in R(A2 + X7). Since / is an arbitrary element of L2(G), we have that 
R(A2 + XI) = L2(G). We verify that JT(J) satisfies the hypotheses of the 
Leray-Schauder fixed-point theorem. 

PROPOSITION 2.1. T(t) is a completely continuous operator from 
[0, 1] X W2m'2(G) into W2m'2(G). 
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Proof. T(t) is continuous. Let tn —» t, vn —> v in W2m"2(G). From Theorem 1.1 
we obtain the following: 

= ^ ) I l/l 10,2 + X ) II l - k j a A f o O I | |2m-ri- | ,2 ( . 
v- j,k=l J 

Thus 

\\un — U\ |2w,2 ^ M X) I I \LJkCk(tnVn — tv) I I t-ry-J.2. 

We immediately have that un—*u in W2m"2(G). T(t) is compact. Indeed, 
suppose that ||z>w||2w,2 = M. Then from the weak compactness of the unit ball 
in a Hilbert space, we have that vn —» v weakly in W2m'2(G), hence also weakly 
in W2mA'2(dG). But Tiï-iLjkCk is a compact operator from W2m-*'2(dG) into 
W**-n-l*(dG), thus 

D LjkCkvn^T, LjkCkv mW2m-Ti-h\dG) 
k=l k=l 

as well as in L2(dG). Therefore un —» w in T/PW,2(G). 

PROPOSITION 2.2. I — T(0) is a homeomorphism of W2m>2(G) into itself. If 
[I - T(t)]v = 0, 0 < t ^ 1, then II ̂ ||2m,2 = -̂ "> where M is independent of t. 

Proof. The first assertion follows directly from Theorem 1.1. Suppose that 
T{t)v = v\ then v is the solution of the boundary-value problem 

m 

{A + Xl)v = f on G, BjV = X LjkCk(tv) on dG, j = 1, . . . , w. 

In the first part of the proof of the theorem, we may, instead of considering 
the operator Ljky take the operator tLjk ; then we have that 

\\l>\\2m,2 ^ M | | / | | o , 2 , 

where M is independent of X, v, and t. 

Proof of Theorem 1.2 {continued). The operator T(£) satisfies all the 
conditions of the Leray-Schauder fixed-point theorem (the uniform continuity 
condition of the theorem is not necessary as observed by Browder in (7)). 
Therefore, T(l)u = u. Thus R(A2 + XI) = L2(G) and hence, (A2 + X/)"1 

exists and is defined on all of L2(G). Since the injection mapping from W2m"2(G) 
into L2(G) is compact, (A2 + X/) _ 1 is a compact linear mapping of L2(G) into 
itself and, moreover, from the a-priori estimate, it follows that 

\\(A2 + X/)-1!! ^ Af/|X| for |X| ^ Xo > 0. 

The theorem is proved. 

Proof of Theorem 1.3. (1) We establish the a-priori estimate by contra
diction. I t is similar to the first part of the proof of Theorem 1.2. We obtain a 
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contradiction by using the following estimate of Proposition 16.3 of Agranovic 
(2, p. 101): 

||W||,,2 è M^\\Au\\s-2m,2+ |M|o,2 + £ I \B/U \ |'s-r,-i,2f . 

(2) By standard arguments, we deduce from the a-priori estimate that A 2 is 
closed, N(A2) is of finite dimension, and that R(A2) is closed in L2(G). Hence 
A 2 is a semi-Fredholm operator. 

We now show that if Assumption (1) is satisfied, then A2 is a Fredholm 
operator and ind(A2) = dim N(A2) — codim R(A2) = 0. From Theorem 1.2, 
we have that 

(A2 + \I)(A2 + \I)-' = I, 

where I is the identity operator on L2(G). Thus 

^2(^2 + XI)"1 = I - \(A2+ \I)-K 

Since (A2 + X/) -1, considered as a mapping from L2(G) into itself, is com
pact, it follows from a well-known argument that / — X(^42 + X/) - 1 is a 
Fredholm operator and ind(7 — X(^42 + XI)-1) = 0- Hence A2{A2 + X/)_1 is 
a Fredholm operator and ind(^42(^2 + XI)_1) = 0. We can easily show that 
R(A2) = R(A2(A2 + X/)-1) and N(A2) = N(A2(A2 + X/)"1). Therefore, 
ind(^2) = ind (^ 2 (^ 2 + XI)'1) = 0. 

Proof of Theorem 1.4. Since (A2 + X/)_ 1 is a compact linear mapping of 
L2(G) into itself, the spectrum of A 2 is discrete and the eigenspaces are of 
finite dimension. With the hypotheses of the theorem, it follows from Theorem 
3.2 of Agmon (1, pp. 128-129) that the generalized eigenfunctions of A2 are 
complete in L2(G). Indeed, the proof in (1) depends only on the compactness 
of (A 2 + X/)"1 and on an estimate on the growth of the resolvent operator as 
in Theorem 1.2. 

Proof of Theorem 1.5. Let v be an element of W2m,2(G) and suppose that 
0 S t ^ 1. Consider the following elliptic boundary-value problem: 

{A + \I)u = f(x, tTiv, . . . , tT2mv) on G, 
m 

BjU = 23 LjkCkU on dG, j = 1, . . . , m. 

Since 
( 2 m - 1 ^ 

l/(*,fi, . . . , f 2 j | ÛM[I+ E IMJ, 

/ (#, £7\z;, . . . , tT2mv) is in L2(G). Define the non-linear mapping X(t) from 
[0, 1] X W2m'2(G) into ^2W '2(G) as follows: 

Z(t)v = u, 

where u is the unique solution of the above boundary-value problem. I t 
follows from Theorem 1.2 that %(t) is well-defined. 
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To prove the theorem, we show that X(t) satisfies the hypotheses of the 
Leray-Schauder fixed-point theorem. The proof is essentially the same as that 
given in (10). I t suffices to note that since T2m is a bounded linear mapping 
from W2m~*'2(G) into L2(G), it is a compact linear mapping from W2m"2(G) 
into L2(G). 

A similar argument (taking into account Theorem 1.1) gives the existence 
of a solution in W2m'2(G) of 

(A + \I)u = f(x, Tiu, . . . , T2mu) on G, BjU = gj on dG, j = 1, . . . , m. 

Finally, we note that with the estimate on 11(̂ 42 + ^ ) - 1 | | of Theorem 1.2 
for all X with |arg X| S n/2, we may show the existence of a solution of a non
local parabolic boundary-value problem of the form 

-~ + Au= f(x, t) on G X [0, T] ; 
m 

BjU = 22 Lj7cCku on dG X [0, T], j = 1, . . . , m\ 

u(x, 0) = Uo(x) on G, 

by using a result of Sobolevskiï (9) (cf. 10). 

3. We proceed to prove Theorem 1.1. As usual, we consider first the case of 
a half-space with A and Bj having constant symbols, then the case when A 
and Bj have symbols depending on x, but close (in a sense to be specified) to 
constant symbols, and finally, the case of a bounded open set G of Rn. 

THEOREM 3.1. Let {A ; Bjfj — 1, . . . , m) be a regular elliptic boundary-value 
problem on R+

n = {x: xn > 0}. The homogeneous singular integro-differential 
operators A and Bj are of orders 2m, r^ (jj < 2m — 1) with constant symbols crA(£) 
in WQ'2(2); ajtf) in Wq-*'2(2'), a > (n - l ) / 2 . Suppose that there exists a 
0, 0 S 0 < 2n,for which Assumption (1) is verified. Then 

(i) | | | ^ | | | 5 , 2 ^ M | | | | ( ^ + X i > | | | s _ 2 m , 2 + E \\\Bju\\\'s_Tj^ 

for all u in Ws'2(R+
n) and for all |X| ^ X0 > 0, arg X = 6. M is independent of 

X, u and s è 2m. 
(ii) The mapping s/u = \ (A + \I)u, B±uy . . . , Bmu} of Ws>2(R+

n) into 
m 

Ws~2m'\R+
n) X II W8'7^2^-1) 

is 1-1 and onto for large |X|. 
Proof. We follow (3) closely (cf. also 2 and 5). 
(i) To prove the a-priori estimate, it suffices to show it for u in 

C™(R+n U R!1-1). Since A is an admissible singular integro-differential operator 
on R+

n, we have that 
2m 

A = E AkDn
k; 

k=0 
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similarly, 

Bj = 2_j BjkDn, E 
k=0 

where Ak and Bjk are singular integro-differential operators on Rn~l, homo
geneous of orders 2m — k and r3 — k, respectively, with constant symbols. 

(a) Consider (A + \I)u = Lf = fo(x) on Rn, where L is the extension of 
/ to Rn. By taking the Fourier transform, we obtain 

(< (̂?) + X)Ô =/o(S) = I E **(£')&.* + X k 

A computation as in (3) yields |||«|||Sf2 ^ C|||/|||S_2W(2. 
(b) Consider the boundary-value problem: 

(A + \I)w = 0 on R+
n, Bjw = gj - BjU on Rn~\ j = 1, . . . , m. 

By taking the Fourier transform with respect to the tangential variables 
x = (xi, . . . , xn_i), we obtain 

2m 

E o*tt')A.*0(É', xn) + X0(É', jç.) = 0 , x„ > 0, 
fc=0 

£ c r # f t ' ) i ?Xe ' , 0) = £,(*') = g j - t l <r^)DMi', 0), 7 = 1 « , 

where fe) and | ;- denote the Fourier transforms of w and gj with respect to x. 
We seek a solution of the form 

m s* 

where C\,z> is a closed Jordan rectifiable curve in the upper half f-plane, 
containing in its interior all the m roots of 

2m 

x + E **(nr* = o, 
Â;=0 

considered as a polynomial in f. We are reduced to showing the solvability of 
a system of m equations with m unknowns, pT(i;'). Since Assumption (1) is 
verified, the system may be solved in a unique fashion. If we set 

*ri(É',x)= f r ^ ^ D i ^ ^ r t + xr1^ 
and if QTj(£', X) are the elements of the inverse of the transpose of the matrix 
(cTj), then 

m S* 

®(£,xn)= £ Q„(E', X)£,(f, X) r - ' e x p ^ f x J ^ ^ D + X]- 1 ^ . 

To take the inverse Fourier transform of w(£', xn), we need the following lemma. 
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LEMMA 3.1. (i) Let 

(f>a^xn) = Ça^exp(iÇxn)[aA(£,Ç) + X]_1df. 

Then 

<M£> Xn) = 0(|f| + \\\^my+^-"mexp(-dxn(\^ + \\\1/m)h), 

where d = min{Imf : f £ C] > 0. 
(ii) &,(£, X) = 0(|f| + |x| i /2»)^- '- ' / f r , j = 1, . . . , m. 

Proof. Set X = /j,2m and make the following change of variables: 

r = m 2 + |M|2)-*, /*' = M(|£|2 + IM|2)-% r = r (i?i2 + M2)-*. 
(1) We have that 

<M£, *.) = (l£|2 + |M|2) ( a +^+ 1-2 w ) / 20^(r, xw(|?|2 + |M |2)*), 

where 

** (£,«»)= f ft* exP ( if^) [^ (£, r) + Mawr1*. 
(i) As |f | —> oo, |£'| —» 1 and |// | —> 0. Thus, the roots with positive imagin

ary parts of 
2m 

GO*" + Z *»(*')*•* = o 
tend continuously to those of 

2m 

Z (̂/)r* = o. 
£=0 

Hence, there exists a closed curve C\ independent of fx and £ containing all the 
m roots with positive imaginary parts of 

2m 

(M)2m+ Z ".(*)*•* = 0 for large|?| . 

Therefore, for large |f|, we have that 
|<M£, *»)| ^ M e x p ( - ^ ( | f | 2 + |M|2)*)( |£ |2 + |M|2)(«+w-2-)/2. 

(ii) For small |£|, as |£| —> 0, |£'| —> 0 and |M'| —> 1. Thus, all the roots with 
positive imaginary parts of (ix'Ym + <TA(%\ f) = 0 tend continuously to those 
with positive imaginary parts of 1 + <rA(0, f) = 0. Again, we have a curve C2, 
in the upper half f-plane, independent of both fj, and £ containing all the m 
roots of (//)2W + <TA(£, f) = 0 for small |£|. Thus, 

<Mf, a») ^ ikf e x p ( - ^ ( | £ | 2 + |M|2)è)(|£|2 + |M|2)(«+^i-2-)/2. 

Combining (i) and (ii) we obtain the first part of the lemma. 
(2) Arguing as above, we have that 

QrA, X) = 0(|f| + | x | i / - )2—y. 
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Proof of Theorem 3.1. (i) (continued). As in (3), using Lemma 3.1 and the 
Parseval formula, we obtain: 

m 

I I k l I Is,2 S C X) |||/M||'-r;-è,2. 
Thus 

||M||at2 ^ CJ ||M||s,2 + Z) ll|gill|S-ri-è,2J ^ 

•c{11l/l 1 1 ^ , , + g I I I ^ I U U M } -

Therefore, if z> is such that {A + \I)v = f on i?+
w, 5 ^ = gy on jRn_1, we obtain 

| |MIL2^ C,|||[/|||,_2ro,2+ Ç HblU'wy-^j. 

(ii) Let (/, gi, . . . , gTO) be an element of 

m 

ws~2m'2(R+
n) x n w-^^sr1). 

i=i 

Then the unique solution u in Ws'2(R+
n) of 

(4 + \I)u = / on i?+w, Byw = g, on 2?-i , j = 1, . . . , m, 

is given by 

«(*) = F^kitë) + xr 'WMk» 

+ E ( ^ T ^ § Qn J c f r _ 1 exp(^xJ [c r A ( r , f ) + X ] - 1 ^ } ^ 

where Ff denotes the Fourier transform with respect to x. 
Because of Lemma 3.1, the expression is well-defined. 

THEOREM 3.2. Let {A ; Bjtj = 1, . . . , m\ be a regular elliptic boundary-value 
problem on R+

n. The singular integro-differential operators A and B û are of orders 
2m and rj (rj < 2m — 1), respectively. Suppose that there exists a 6, 0 ^ 0 < 
2ir,for which Assumption (1) is satisfied. Suppose further that 

max\\<rA(è,x) - <rA(£, 0)||ff,2 + X) max\\(rjk(x', £') - <rjk(0, ê')||«-i,2 = 5 

x j,k x 

for x near 0. Then 
(1) TTzere exists a constant M independent of X, arg X = 0, and of u such that 

\\\u\\\s,2 ^ M^\\\(A + \)u\\\s^2m,2+ Z I P ^ I I l U y - ^ j s è 2m; 

(2) Far ei>er;y (/, gi, . . . , gro) i» 

^s-2m'2(i?+") x n T F * - " - * ^ ^ 1 ) 
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there exists a unique solution u in Ws'2(R+n) of (A + X) u = f on R+
n\ BjU = gj 

on i£n _ 1 , j = 1, . . . , m. 

Proof. We prove the a-priori es t imate . We denote by AQ and B^ the 
principal pa r t s of A and B3, and by ^o(O) and Bj0(0) the homogeneous singular 
integro-difïerential operators with symbols crA(0, £) and <r;(0, £')• F rom 
Theorem 3.1, we obtain 

( m ) 
\s,2 ^ M^\\\(Ao(0) + \)u\\\s.2m,2 + Ç |||5,o(0>|HUy-i,2| 

^ M{\\\(A + X)^|||s_2m,2+ |||(^o(0) -4 0 H| | s _ 2 m , 2 

m 

+ \\\(A - ^0>|||s-2m,2 + Z'I lll-B#|||'s-r,-e,2 + 111(5,0 - £,)«|||'_ry-i.î 

+ | | | (^o-^o(0))^[ | | ' s_ r ; ._i,2 

(i) Since 4̂ is an admissible singular integro-differential operator on R+
n, it 

may be wri t ten as: A = RÂL + T, where T is an operator a lmost of order 

2m - 1 on Ws'2(R+
n). 

Therefore, \\(A — A0)u\\s-.2m,2 ^ e||w||, |2 + C(e) | |w| | ,_i | 2 and 

| X | ( S - 2 m ) / 2 m | | ^ _ A0)u\\o.2 ^ e\\\ < - * » ) ' » » | \ U\ \ 2m ,2 + C (e)\\\^-^/2m\\u\\2m.1>2. 

B u t 

IM|2m-i,2 ^ e/C(e)||w||2m,2 + K(e)I|tt|10,2, 

111(4 - i4o)tt|||^2w,2 ^ 2 € | | | « | | | , i 2 + CaCeJIXl-^ l lMlH,^ 

(ii) Similarly, 

rj Tj 

Bj= 2-J B j^Dn + 2^i TjjJJn , 
k==0 k=0 

where Tjk are linear operators a lmost of orders r3- — k — 1 on Ws~^'2(Rn~l). 
T h u s 

|(J3, - -B^o)w|||{-ri-4f2 ^ e | |H| | ' s_i,2 + C3(e)|X| — l / 2 w i | W 

(hi) W e consider |||C4o — ^-o(0))w|||s_2m,2. If <TA(%, J) is the symbol of 4 , 
then the symbol <rA(x, J) of 4 may be obtained from <rA(x, £) by the Hestenes 
formula and, moreover, 

max||o-i;(x, £) - ^ ( O , £)||fff2 ^ Cmax| |o-A(x, J) - o-A(0, £)||fff2, 

where C does no t depend on <rA. T h u s 

HI(4o - 4o(0))w| | | s_2 W ) 2 â C2 | | | ( i î0 - 4o(0) )L^ | | | 5 _ 2 m , 2 . 

Using Proposition 8.3 of Agranovic (2, p . 47) , we have t h a t 

| | | ( Jo - l o ( 0 ) ) L ^ | | | s _ 2 m , 2 ^ Czb\\\u\\\s,2 + C4(crA) |X|-1 /2- | |^ | | | s ,2 . 
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(iv) A similar argument yields: 

| | | (B i 0 - 3,o(0))«| | |Uy-M ^ C«||H||,,2 + C^M-^lWulW^. 

Therefore, by taking ô small and |X| sufficiently large, we obtain the a-priori 
estimate of the theorem. 

(2) We now show t h a t s / has a right inverse. I t follows from Theorem 3.1 
thatJ^o(O) has a right inverse Xo] thus 

j / £ o = j / o ( 0 ) î 0 + (*/ - j / o ) î o + (Se, - j / o ( 0 ) ) £ o 

= 1+ (J* - ^ o ) £ o + Çs/o - ^ o ( 0 ) ) î 0 . 
Set 

m 

g = (gl, • . . , g m ) a n d | | | C f , g ) | | | , , 2 = | | | / | | | S - 2 m , 2 + Z l l b l l l i - r y - 4 , 2 . 

Let u = Xo(ff g) withs/o(0)Xo(ff g) = (/, g) (Theorem 3.1). Then a computa
tion, as in the first part, yields 

HK^O -S/,(0))Xo(f, g)\\\,,t è IIHCf, g)|||S,2 

for <5 small and |X| sufficiently large. Also, 

\\\(sf-sfo)Z0(f,g)\\\£i\\\(f,i)\\\..* 

since ($/ — S/Q) is an operator almost of order —1 from WSi2(R+n) into 
W'-m'2(R+n) X IL^W8-'''-*-2^-1). Let 

Q = (</ - J^0)£o + («fl̂ o - ^ o ( 0 ) ) £ 0 ; 

then |||Q(f, g ) | | | . , 2^ i | | | ( f^ ) l l l . . 2 . Hence (7 + Ç)"1 exists. Take £ = 
£ o ( / + G)"1, t h e n j / 2 : = 7. 

Proof of Theorem 1.1. (1) We establish the a-priori estimate. Since G is a 
bounded open set of Rn, regular of class Cœ (cf. 5), there exist a finite open 
covering of c\(G) and a finite partition of unity 4>k corresponding to Nk. Let 
xf/jc be an infinitely difïerentiable function with compact support in Nk such 
that \j/k = 1 on the support of <j>k. We have that 

where 7" is an operator almost of order —1 from W8,2(G) into 

m 

Ws~2m'\G) X I I Ws-rj~h\dG) and J / * = (Ak + XI, S « , • . . , *«*), 

where Ak and Bjk are singular integro-differential operators on R+
n and on 

Rn~1
1 respectively. We also have that 

^fk{<t>icU) = j/jtiMkU) = <M^fc(*M) + Tk(fau), 
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where Tk is an operator almost of order —1 from Ws'2(R+n) into 

m 

Ws~2m'\R+
n) X II W^-^iR71'1) 

if Nk is a boundary neighbourhood and Tk is an operator almost of order — 1 
from Ws>2(R+n) into Ws~2m'2(R+

n) if Nk is an interior neighbourhood (cf. 2). 
From Theorem 3.2 and an easy computation we obtain 

|||<M|||S,2 ^ M\\\\<t>k(Ak + \)xf/ku\\\s-2m,2 + €|||^M|||Si2 

m ^ 

+ C(e)|Xr1/2m |i|^M | |!s,2+ £ || |**B#(M)|||i-r,-i.*f-

The norms are taken in local coordinates. On the other hand, we have that 

0*^*(lM) = <l>u8/(\frku) + (j)kTk(\pku), 

where Tk is an operator of the same type as Tk. Therefore 

|<M|||S,2 ^ Mj|||<fo04 + X)(^) | | | s_2 m ,2+ €|||^W|||S,2 

m ^ 

+ C(e)|Xr1/2m | | |^M | | |s,2+ £ | | [^5,(^M) | | | ' s_ r j-i .2h 
3=1 J 

We may write <j>k{A + \)(fau) = <j>k(A + X)u + 4>k(A + \)(\f/k — \)u and, 
similarly, for <j>kBjk{^ku). The operator <j>kS$'{\pk — 1) is again an operator 
almost of order —1 from WS,2(G) into 

m 

Ws-im'\G) X II Ws-ri-h\dG). 

Hence we finally obtain 

|||«|||,.s ^ M\\\\(A +X)M|||s_2m,2 + e|||M|||s,2+ C(€)iXr1/2m|||M|||s,2 

m \ 

+ Z ) \\\BJU\\\fS-Tj-hM • 
3=1 J 

Taking e small and |X| sufficiently large, we obtain the a-priori estimate. 
(2) We now construct the inverse oîs/. We have that 

N 

k=l 

For each k,sek has a right inverse Rk (Theorem 3.2). To simplify the notation, 
we write g = (gi, . . . , & » ) . Consider 

R(f,g) = £ trRrM 4>rg). 
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R is a bounded linear operator from Ws-2m'2(G) X U™=iWs-r^>2(dG) into 
WS>2(G). We have that 

N 

J*R(f,g) = E 4*sf*[*Jl,M **)**] + TR(f,g). 

Set wr = \prRT(<j>Tf, 4>Tg). We also have that 

(cf. 2, pp. 102, 75) rrA; is an operator almost of order —1 from WSt2(G) into 

m 

Ws~2m'\G) X I I W-T'-i-\dG). 

Hence 

^(f-g) = E hMrtfrRM, 4>rg) + ri?(/)g) 
7 - , A; 

+ E 4>kTrl[trRr{4>rf, 4>rg)] 
r,k 

+ E 4>*WAMrRr{4>rf, 4>rg)] ~ Mr<%? rRr{<t>rf, 4>rg))-
r,k 

Consider the first sum. I t is equal to (f, g). Set 

m 

llltts)lll.= 111/111̂ .2+ Z HblllU-^-
Then 

i ! i^(f .«) in. s «ma,«)in. + c(«)ixi-i/2miii(f, f)in,. 
In a similar fashion, we obtain the same bound for the third sum. Since 
^rhPk^r'] ~ tr^k&^A'] is an operator almost of order —1 from Ws,2(R+

n) into 
m 

Ws~2m'\R+
n) X I I W^-^iR71"1), 

we obtain the following upper bound for the last sum, namely, 

^ l l l ( f^) l l l .+ C(6) |X | -^ | | | ( f ,g) | | | . . 

Thus J^R(f, g) = (/, g) + SC</, g) with ||St|| ^ i for large |X|. Hence 
(J + Î ) - 1 exists andsé~ l = R(I + Z)~K 
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