THE COMPUTATION OF THE HODGKIN-SNAITH OPERATION IN $K_{*}(Z \times B U, Z / p)$

by FRIEDRICH HEGENBARTH

(Received 2nd November 1984)

Introduction

This paper builds on the work of V. P. Snaith [5] (in particular Section 6) and gives a more explicit determination of the result.

Recently J. E. McLure has given a satisfactory account of Dyer-Lashof operations in K-theory. For any E_{∞}-space Y and for any $r \geqq 2$ there is a map

$$
Q: K_{\alpha}\left(Y, Z / p^{r}\right) \rightarrow K_{\alpha}\left(Y, Z / p^{r-1}\right)
$$

with specific properties (see [3], Theorem 1). Earlier, L. Hodgkin [2] and V. P. Snaith [5] constructed an operation

$$
\bar{Q}: K_{a}(Y, Z / p) \rightarrow K_{a}(Y, Z / p) / \operatorname{Ind}(Y),
$$

where $\operatorname{Ind}(Y)=\left\{x^{p} \mid x \in K_{\alpha}(Y, Z / p)\right\}$ is the indeterminancy of \bar{Q}. (Throughout the paper p denotes an odd prime.) The construction of \bar{Q} given in [2] and [5] fails to go through if the Bockstein homomorphism β is nonzero. But as far as this paper is concerned [5] is correct (this is explained more fully in [1]). The relation between Q and \bar{Q} is as follows:

Let $x \in \operatorname{Ker} \beta \subset K_{*}(Y, Z / p)$ and let $y \in K_{*}\left(Y, Z / p^{2}\right)$ be a lifting of x, then $\bar{Q}(x)=Q(y)$. The lifting y of x is not unique. It follows from the properties of Q that \bar{Q} is well defined $\bmod \operatorname{Ind}(Y)$. In this paper we study \bar{Q} and refer to it as the Hodgkin-Snaith operation.

To describe the main result we use the notation of [5].
Theorem 1. Let $D \subset K_{0}(Z \times B U, Z / p)=Z / p\left[u_{0}^{-1}, u_{0}, u_{1}, \ldots\right]$ denote the translates (under $u_{0} \in K_{0}(1 \times B U, Z / p)$) of the decomposables in the algebra $K_{0}(0 \times B U, Z / p)$.

Then, $\bmod D$,

$$
p_{0}^{-p+1} \bar{Q}\left(u_{k}\right)=\sum_{m=0}^{p-1}(-1)^{m} u_{k p+m} \quad \text { if } \quad k \geqq 1
$$

and

$$
u_{0}^{-p+1} \bar{Q}\left(u_{0}\right)=\sum_{m=1}^{p-1}(-1)^{m} u_{m}
$$

The elements $u_{0}, u_{1}, u_{2}, \ldots$ are $\bmod p$ reductions of integral classes. If $x_{0}, x_{1}, x_{2}, \ldots$ denote their $\bmod p^{2}$ reductions then from the properties of Q follows immediately

Theorem 2. The operation $Q: K_{*}\left(Z \times B U, Z / p^{2}\right) \rightarrow K_{*}(Z \times B U, Z / p)$ is given by

$$
u_{0}^{-p+1} Q\left(x_{k}\right)=\sum_{m=0}^{p-1}(-1)^{m} u_{k p+m} \bmod D \quad \text { if } k \geqq 1
$$

and

$$
u_{0}^{-p+1} Q\left(x_{0}\right)=\sum_{m=1}^{p \dot{-1}}(-1)^{m} u_{m} \bmod D .
$$

The iterated operations \bar{Q}^{t} can be computed (using the formulas for $\bar{Q}(x \cdot y)$ and $\bar{Q}(x+y)$). In particular we obtain the following

Corollary 1. Let t be a positive integer. Then

$$
u_{0}^{-p^{t}+1} \bar{Q}^{t}\left(u_{0}\right)=\sum_{m=p^{t-1}}^{p^{t}-1}(-1)^{m} u_{m} \bmod D .
$$

The corollary can be applied to study the homomorphism $K_{*}\left(Q\left(S^{0}\right), Z / p\right) \rightarrow K_{*}(Z \times$ $B U, Z / p$) (induced from the canonical infinite loop map $Q\left(S^{0}\right) \rightarrow Z \times B U$). From [2] we know that $K_{*}\left(Q\left(S^{0}\right), Z / p\right)=Z / p\left[\theta_{1}^{-1}, \theta_{1}, \theta_{p}, \theta_{p^{2}}, \ldots\right]$, where $\theta_{p^{t}}$ represents $\bar{Q}^{t}\left(\theta_{1}\right)$. Therefore $K_{*}\left(Q_{0}\left(S^{0}\right), Z / p\right)=Z / p\left[\tilde{\theta}_{1}, \tilde{\theta}_{2}, \ldots\right]$, where $\tilde{\theta}_{t}=\theta_{1}^{-p^{t}} \theta_{p^{r}}$. By naturality $\tilde{\theta}_{t}$ is mapped to $u_{0}^{-p^{t}} \bar{Q}\left(u_{0}\right)$.

Corollary 2. Under the canonical homoporphism $K_{*}\left(Q_{0}\left(S^{0}\right), Z / p\right) \rightarrow K_{0}(0 \times B U, Z / p)$ the element $\tilde{\theta}_{t}$ is mapped to

$$
u_{0}^{-1} \sum_{m=p^{t-1}}^{p^{t}-1}(-1)^{m} u_{m}
$$

modulo decomposable elements.
I would like to thank the referee for his helpful advice.

1. Preliminaries

We have to recall the K-homology of $C P^{\infty}=B S^{1}$ and of $Z \times B U$. Let η be the canonical line bundle over $C P^{\infty}$, and let $c=\eta-1$. Since S^{1} is an abelian group the multiplication induces a map $M: B S^{1} \times B S^{1} \rightarrow B S^{1}$. With this map $K^{*}\left(B S^{1}\right)$ and $K_{*}\left(B S^{1}\right)$ are well-known Hopf algebras. A description of $K_{*}\left(B S^{1}\right)$ will be given in Section 2.

Let $u_{n} \in K_{0}\left(B S^{1}\right)$ be defined by $\left\langle u_{n}, c^{m}\right\rangle=\delta_{n, m}$. We consider now c as a map $B S^{1} \rightarrow B U$.

Lemma 1.1 (see [5], pp. 198 and 199). Let the image of u_{n} under the map

$$
K_{0}\left(B S^{1}\right) \xrightarrow{c_{*}} K_{0}(B U) \xrightarrow{u_{0}} K_{0}(1 \times B U) \subset K_{0}(Z \times B U)
$$

be also denoted by u_{n}. Then

$$
K_{*}(Z \times B U)=Z\left[u_{0}^{-1}, u_{0}, u_{1}, \ldots\right]
$$

(Note that $u_{0}, u_{1}, u_{2}, \ldots \in K_{0}(1 \times B U), u_{0} \in K_{0}(1 \times B U) \cong K_{0}(B U)$ corresponds to 1.)
We will also use the symbol u_{n} for the $\bmod p$ reduction of u_{n}. Our goal is the computation of the indecomposable part of $\bar{Q}\left(u_{k}\right)$.

This computation is based on the following
Theorem 1.2. Let $k \geqq 1$. The indecomposable part of $u_{0}^{-p} \bar{Q}\left(u_{k}\right)$ is equal to the image of

$$
\begin{equation*}
u_{k p}-\sum_{j=1}^{p-1} M_{*}\left(\psi_{*}^{j} u_{p-1} \otimes u_{k p}\right) \tag{*}
\end{equation*}
$$

under $c_{*}: K_{0}\left(B S^{1}, Z / p\right) \rightarrow K_{0}(0 \times B U, Z / p)$, where ψ_{*}^{j} is the dual of the Adams operation ψ^{j}. The indecomposable part of $u_{0}^{-p} \bar{Q}\left(u_{0}\right)$ is equal to

$$
-\sum_{j=1}^{p-1} \psi_{*}^{j} u_{p-1} \quad \text { under } c_{*}
$$

This theorem appears in the proof of Corollary 6.3 .6 of [5]. It is not difficult to prove that the factor μ appearing in [5] is -1 . The extra summand $u_{k p}$ in $\left(^{*}\right)$ comes from

$$
-\sum_{t} \frac{1}{\left|G_{t}\right|} i_{*}\left(u_{t_{1}} \otimes \cdots \otimes u_{t p}\right) \text { in Lemma 6.3.2 of [5], }
$$

where the sum is taken over all ordered partitions $\mathbf{t}=\left(t_{1}, \ldots, t_{p}\right)$ of $k p$ with $t_{1} \neq t_{p}$. This sum is therefore empty if $k=0$. A proof of 1.2 is also given in [1].

2. Proof of the Theorem

By Theorem 1.2 we have to calculate the element

$$
\sum_{j=1}^{p-1} M_{*}\left(\psi_{*}^{j} u_{p-1} \otimes u_{k p}\right) \in K_{0}\left(B S^{1}, Z / p\right)
$$

i.e. their coefficients with respect to the basis u_{1}, u_{2}, \ldots

Theorem 1 follows immediately from

Proposition 2.1. For any $k \geqq 0$ we have

$$
\sum_{j=1}^{p-1} M_{*}\left(\psi_{*}^{j} u_{p-1} \otimes u_{k p}\right)=-\sum_{j=1}^{p-1}(-1)^{j} u_{k p+j} \text { in } K_{0}\left(B S^{1}, Z / p\right)
$$

In order to prove Proposition 2.1 we identify $K_{0}\left(B S^{1}\right)$ with a subring of $Q[X]$ (see [4]). More precisely, there are the following standard facts:
(1) $K_{0}\left(B S^{1}\right)$ can be identified with the subring of $Q[X]$ generated by the elements

$$
\binom{X}{n}=X(X-1) \ldots(X-n+1) / n!, n=0,1, \ldots
$$

The element u_{n} corresponds to $\binom{X}{n}$.
(2) The operation ψ_{*}^{j} is given by $\psi_{*}^{j}(X)=j X$, or more generally $\left(\psi_{*}^{j} f\right)(X)=f(j X)$ for any polynomial f.

Proposition 2.1 is therefore equivalent to

Proposition 2.2. $\operatorname{Mod} p$ we have, for any $k \geqq 0$,

$$
\sum_{j=1}^{p-1}\binom{j X}{p-1}\binom{X}{k p} \equiv-\sum_{j=1}^{p-1}(-1)^{j}\binom{X}{k p+j}
$$

Proof. We use the identity $\binom{k p+j}{j}\binom{X}{k p+j}=\binom{X}{k p}\binom{X-k p}{j}$. If we reduce it $\bmod p$ for $0<j<p$ we obtain

$$
\binom{X}{k p+j} \equiv\binom{X}{k p}\binom{X}{j} .
$$

So it remains to prove

$$
\sum_{j=1}^{p-1}\binom{j X}{p-1} \equiv-\sum_{j=1}^{p-1}(-1)^{j}\binom{X}{j} \bmod p .
$$

Hence we have to check that the two polynomials over \mathbb{F}_{p} are the same. But over \mathbb{F}_{p} they are both equal to X^{p-1}, since their values at $X=a$ are 0 for $a=0 \in \mathbb{F}_{p}$ and 1 for $a \in \mathbb{F}_{p}^{*}$.

Remark. In [4] it is shown that the elements $u_{0}, u_{1}, \ldots, u_{p-1}$ and $P_{l, t}=-\sum_{m=l p^{\prime}}^{(l+1) p^{t}}$ $(-1)^{m} u_{m}, 1 \leqq l \leqq p-1, t \geqq 1$ generate the subspace of $K_{*}\left(B S^{1}, Z / p\right)$ invariant under ψ_{*}^{q} (under the hypothesis $p \mid q-1$ and $p^{2} \npreceq q-1$). The indecomposable part of $\bar{Q}^{t}\left(u_{k}\right)$ can be expressed by their images in $K_{*}(Z \times B U, Z / p)$. For example,

$$
u_{0}^{-p^{t}+1} \overline{\mathcal{Q}}\left(u_{0}\right)=-\sum_{l=1}^{p-1} P_{t t-1} \bmod D
$$

REFERENCES

1. F. Hegenbarth, K-Theorie des klassifizierenden Raumes der unendlichen symmetrischen Gruppe (Habilitations-schrift, Dortmund, 1984).
2. L. Hodgkin, Dyer-Lashof Operations in K-theory (London Math. Soc., Lecture notes series 11, 1974), 27-32.
3. J. McLure, Dyer-Lashof operations in K-theory, Bull. Amer. Math. Soc. 8 (1983), 67-72.
4. L. Schwartz, Opérations d'Adams en K-homologie et applications, Bull. Soc. Math. France 109 (1981), 237-257.
5. V. P. SNaIth, Dyer-Lashof Operations in K-theory (Lecture Notes in Mathematics, Vol. 496, Springer Verlag, 1975), 103-294.

Friedrich Hegenbarth

Abteilung Mathematik
Universität Dortmund
Postrach 500500
4600 Dortmund 50
West-Germany

