THE COMPUTATION OF THE HODGKIN–SNAITH OPERATION IN $K_*(Z \times BU, Z/p)$

by FRIEDRICH HEGENBARTH

(Received 2nd November 1984)

Introduction

This paper builds on the work of V. P. Snaith [5] (in particular Section 6) and gives a more explicit determination of the result.

Recently J. E. McLure has given a satisfactory account of Dyer-Lashof operations in K-theory. For any E_{∞} -space Y and for any $r \ge 2$ there is a map

$$Q: K_{\alpha}(Y, Z/p^{r}) \to K_{\alpha}(Y, Z/p^{r-1})$$

with specific properties (see [3], Theorem 1). Earlier, L. Hodgkin [2] and V. P. Snaith [5] constructed an operation

$$\overline{Q}: K_{\alpha}(Y, Z/p) \rightarrow K_{\alpha}(Y, Z/p)/\operatorname{Ind}(Y),$$

where $\operatorname{Ind}(Y) = \{x^p \mid x \in K_a(Y, Z/p)\}\$ is the indeterminancy of \overline{Q} . (Throughout the paper p denotes an odd prime.) The construction of \overline{Q} given in [2] and [5] fails to go through if the Bockstein homomorphism β is nonzero. But as far as this paper is concerned [5] is correct (this is explained more fully in [1]). The relation between Q and \overline{Q} is as follows:

Let $x \in \text{Ker } \beta \subset K_*(Y, Z/p)$ and let $y \in K_*(Y, Z/p^2)$ be a lifting of x, then $\overline{Q}(x) = Q(y)$. The lifting y of x is not unique. It follows from the properties of Q that \overline{Q} is well defined mod Ind(Y). In this paper we study \overline{Q} and refer to it as the Hodgkin-Snaith operation.

To describe the main result we use the notation of [5].

Theorem 1. Let $D \subset K_0(Z \times BU, Z/p) = Z/p[u_0^{-1}, u_0, u_1, ...]$ denote the translates (under $u_0 \in K_0(1 \times BU, Z/p)$) of the decomposables in the algebra $K_0(0 \times BU, Z/p)$. Then, mod D,

$$p_0^{-p+1}\bar{Q}(u_k) = \sum_{m=0}^{p-1} (-1)^m u_{kp+m} \quad \text{if} \quad k \ge 1$$

$$u_0^{-p+1}\bar{Q}(u_0) = \sum_{m=1}^{p-1} (-1)^m u_m.$$

The elements u_0, u_1, u_2, \ldots are mod p reductions of integral classes. If x_0, x_1, x_2, \ldots denote their mod p^2 reductions then from the properties of Q follows immediately

41

FRIEDRICH HEGENBARTH

Theorem 2. The operation $Q: K_*(Z \times BU, Z/p^2) \rightarrow K_*(Z \times BU, Z/p)$ is given by

$$u_0^{-p+1}Q(x_k) = \sum_{m=0}^{p-1} (-1)^m u_{kp+m} \mod D \quad \text{if} \quad k \ge 1$$

and

$$u_0^{-p+1}Q(x_0) = \sum_{m=1}^{p-1} (-1)^m u_m \mod D.$$

The iterated operations \bar{Q}^t can be computed (using the formulas for $\bar{Q}(x \cdot y)$ and $\bar{Q}(x + y)$). In particular we obtain the following

Corollary 1. Let t be a positive integer. Then

$$u_0^{-p^t+1}\tilde{Q}^t(u_0) = \sum_{m=p^{t-1}}^{p^t-1} (-1)^m u_m \mod D.$$

The corollary can be applied to study the homomorphism $K_*(Q(S^0), Z/p) \to K_*(Z \times BU, Z/p)$ (induced from the canonical infinite loop map $Q(S^0) \to Z \times BU$). From [2] we know that $K_*(Q(S^0), Z/p) = Z/p[\theta_1^{-1}, \theta_1, \theta_p, \theta_{p^2}, ...]$, where θ_{p^t} represents $\overline{Q}^t(\theta_1)$. Therefore $K_*(Q_0(S^0), Z/p) = Z/p[\tilde{\theta}_1, \tilde{\theta}_2, ...]$, where $\tilde{\theta}_t = \theta_1^{-p^t} \theta_{p^t}$. By naturality $\tilde{\theta}_t$ is mapped to $u_0^{-p^t} \overline{Q}(u_0)$.

Corollary 2. Under the canonical homoporphism $K_*(Q_0(S^0), Z/p) \to K_0(0 \times BU, Z/p)$ the element $\tilde{\theta}_t$ is mapped to

$$u_0^{-1}\sum_{m=p^{t-1}}^{p^{t-1}}(-1)^m u_m$$

modulo decomposable elements.

I would like to thank the referee for his helpful advice.

1. Preliminaries

We have to recall the K-homology of $CP^{\infty} = BS^1$ and of $Z \times BU$. Let η be the canonical line bundle over CP^{∞} , and let $c = \eta - 1$. Since S^1 is an abelian group the multiplication induces a map $M:BS^1 \times BS^1 \to BS^1$. With this map $K^*(BS^1)$ and $K_*(BS^1)$ are well-known Hopf algebras. A description of $K_*(BS^1)$ will be given in Section 2.

Let $u_n \in K_0(BS^1)$ be defined by $\langle u_n, c^m \rangle = \delta_{n,m}$. We consider now c as a map $BS^1 \to BU$.

Lemma 1.1 (see [5], pp. 198 and 199). Let the image of u_n under the map

$$K_0(BS^1) \xrightarrow{c_*} K_0(BU) \xrightarrow{u_0} K_0(1 \times BU) \subset K_0(Z \times BU)$$

be also denoted by u_n . Then

$$K_{*}(Z \times BU) = Z[u_0^{-1}, u_0, u_1, \ldots].$$

(Note that $u_0, u_1, u_2, \ldots \in K_0(1 \times BU)$, $u_0 \in K_0(1 \times BU) \cong K_0(BU)$ corresponds to 1.)

We will also use the symbol u_n for the mod p reduction of u_n . Our goal is the computation of the indecomposable part of $\overline{Q}(u_k)$.

This computation is based on the following

Theorem 1.2. Let $k \ge 1$. The indecomposable part of $u_0^{-p} \overline{Q}(u_k)$ is equal to the image of

$$u_{kp} - \sum_{j=1}^{p-1} M_*(\psi_*^j u_{p-1} \otimes u_{kp}) \tag{(*)}$$

under $c_*: K_0(BS^1, Z/p) \to K_0(0 \times BU, Z/p)$, where ψ_*^j is the dual of the Adams operation ψ^j . The indecomposable part of $u_0^{-p} \overline{Q}(u_0)$ is equal to

$$-\sum_{j=1}^{p-1}\psi_*^j u_{p-1} \quad \text{under } c_*.$$

This theorem appears in the proof of Corollary 6.3.6 of [5]. It is not difficult to prove that the factor μ appearing in [5] is -1. The extra summand u_{kp} in (*) comes from

$$-\sum_{t} \frac{1}{|G_t|} i_*(u_{t_1} \otimes \cdots \otimes u_{t_p}) \text{ in Lemma 6.3.2 of [5]},$$

where the sum is taken over all ordered partitions $\mathbf{t} = (t_1, \dots, t_p)$ of kp with $t_1 \neq t_p$. This sum is therefore empty if k=0. A proof of 1.2 is also given in [1].

2. Proof of the Theorem

By Theorem 1.2 we have to calculate the element

$$\sum_{j=1}^{p-1} M_{*}(\psi_{*}^{j}u_{p-1} \otimes u_{kp}) \in K_{0}(BS^{1}, \mathbb{Z}/p),$$

i.e. their coefficients with respect to the basis u_1, u_2, \ldots

Theorem 1 follows immediately from

Proposition 2.1. For any $k \ge 0$ we have

$$\sum_{j=1}^{p-1} M_{*}(\psi_{*}^{j}u_{p-1} \otimes u_{kp}) = -\sum_{j=1}^{p-1} (-1)^{j}u_{kp+j} \text{ in } K_{0}(BS^{1}, \mathbb{Z}/p).$$

FRIEDRICH HEGENBARTH

In order to prove Proposition 2.1 we identify $K_0(BS^1)$ with a subring of Q[X] (see [4]). More precisely, there are the following standard facts:

(1) $K_0(BS^1)$ can be identified with the subring of Q[X] generated by the elements

$$\binom{X}{n} = X(X-1)\dots(X-n+1)/n!, n=0,1,\dots$$

The element u_n corresponds to $\begin{pmatrix} X \\ n \end{pmatrix}$.

(2) The operation ψ^j_* is given by $\psi^j_*(X) = jX$, or more generally $(\psi^j_* f)(X) = f(jX)$ for any polynomial f.

Proposition 2.1 is therefore equivalent to

Proposition 2.2. Mod p we have, for any $k \ge 0$,

$$\sum_{j=1}^{p-1} \binom{jX}{p-1} \binom{X}{kp} \equiv -\sum_{j=1}^{p-1} (-1)^j \binom{X}{kp+j}.$$

Proof. We use the identity $\binom{kp+j}{j}\binom{X}{kp+j} = \binom{X}{kp}\binom{X-kp}{j}$. If we reduce it mod p for 0 < j < p we obtain

$$\binom{X}{kp+j} \equiv \binom{X}{kp} \binom{X}{j}.$$

So it remains to prove

$$\sum_{j=1}^{p-1} {jX \choose p-1} \equiv -\sum_{j=1}^{p-1} {(-1)^{j} \binom{X}{j}} \mod p.$$

Hence we have to check that the two polynomials over \mathbb{F}_p are the same. But over \mathbb{F}_p they are both equal to X^{p-1} , since their values at X = a are 0 for $a = 0 \in \mathbb{F}_p$ and 1 for $a \in \mathbb{F}_p^*$.

Remark. In [4] it is shown that the elements $u_0, u_1, \ldots, u_{p-1}$ and $P_{l,t} = -\sum_{m=lp}^{(l+1)p'} (-1)^m u_m$, $1 \le l \le p-1$, $t \ge 1$ generate the subspace of $K_*(BS^1, Z/p)$ invariant under ψ_*^q (under the hypothesis p|q-1 and $p^2 \not\prec q-1$). The indecomposable part of $\overline{Q}^t(u_k)$ can be expressed by their images in $K_*(Z \times BU, Z/p)$. For example,

$$u_0^{-p^{l+1}}\bar{Q}(u_0) = -\sum_{l=1}^{p-1} P_{ll-1} \mod D.$$

REFERENCES

1. F. HEGENBARTH, K-Theorie des klassifizierenden Raumes der unendlichen symmetrischen Gruppe (Habilitations-schrift, Dortmund, 1984).

2. L. HODGKIN, Dyer-Lashof Operations in K-theory (London Math. Soc., Lecture notes series 11, 1974), 27-32.

3. J. MCLURE, Dyer-Lashof operations in K-theory, Bull. Amer. Math. Soc. 8 (1983), 67-72.

4. L. SCHWARTZ, Opérations d'Adams en K-homologie et applications, Bull. Soc. Math. France 109 (1981), 237-257.

5. V. P. SNAITH, Dyer-Lashof Operations in K-theory (Lecture Notes in Mathematics, Vol. 496, Springer Verlag, 1975), 103-294.

Friedrich Hegenbarth Abteilung Mathematik Universität Dortmund Postfach 500 500 4600 Dortmund 50 West-Germany