
JFP 28, e21, 14 pages, 2018. c© Cambridge University Press 2018 1
doi:10.1017/S0956796818000199

F U N C T I O N A L P E A R L S

Parberry’s pairwise sorting network revealed

R A L F H I N Z E
Fachbereich Informatik, Technische Universität Kaiserslautern,

67653 Kaiserslautern, Germany
(e-mail: ralf-hinze@cs.uni-kl.de)

C L A R E M A R T I N
Department of Computing and Communication Technologies,

Oxford Brookes University, Wheatley, Oxford, OX33 1HX, England
(e-mail: cemartin@brookes.ac.uk)

1 Introduction

Batcher’s “merge exchange” sorting network, discussed in a previous pearl (Hinze &
Martin, 2018), remains one of the best practical algorithms for oblivious sorting, even
almost half a century after its inception. So it is surprising that an algorithm with exactly
the same level of performance, devised two decades later by Parberry (1992), has been
relatively overlooked. Perhaps a reason for its lack of celebrity is that Parberry’s design is
not immediately recognizable, whereas the Batcher method has a familiar ring, as a hard-
wired implementation of merge sort. Here we hope to rectify this imbalance by unraveling
Parberry’s algorithm and uncoupling its close relationship to Batcher’s.

Interestingly, Parberry derives his network using the zero-one principle (Knuth, 1998).
We abandon this traditional method, in favour of a feature of comparison networks that
we consider to be more fundamental: monotonicity. We shall see that this property, used
before to demystify Batcher’s merger (Hinze & Martin, 2018), also helps to shed some
light on Parberry’s design. To keep the pearl reasonably self-contained, we start with a
quick recap of the notation and Batcher’s construction.

2 Recap

Sorting networks work nicely if the underlying structure is a distributive lattice instead of
a total order (Bove & Coquand, 2006). We make the same assumption here, in particular:

x � a ∧ x � b ⇐⇒ x � a ↓ b (1a)

a ↑ b � x ⇐⇒ a � x ∧ b � x (1b)

These properties imply, for example, that minimum, or meet, and maximum, or join, are
monotonic. The ordering � is lifted pointwise to sequences of the same length, x � y ⇔
and (zip (�) x y). Here zip f combines sequences of equal length with f while the function

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199
https://orcid.org/0000-0001-5678-0286
mailto:ralf-hinze@cs.uni-kl.de
mailto:cemartin@brookes.ac.uk
https://doi.org/10.1017/S0956796818000199


2 R. Hinze and C. Martin

merge even

merge odds1

t1

s2

t2

u1

v1

u2

v2

o′
1

e′
1

o′
2

e′
2

o′
3

e′
3

o′
4

e′
4

o1

e1

o2

e2

o3

e3

o4

e4

s � t

init t � tail s

u � v

init v � tail u

o � e

init (init e) � tail (tail o)

ordered o

ordered e

o′ � e′

init e′ � tail o′

Fig. 1. Batcher’s odd-even merging network.

and conjoins the result. Binary operators ⊕, such as minimum and maximum, are lifted
similarly: x ⊕ y = zip (⊕) x y. Consequently, concatenation (·) is an order-embedding:

w · x � y · z ⇐⇒ w � y ∧ x � z (2)

and it interacts with lifted operations in an interesting way (middle-two interchange law):

(w · x) ⊕ (y · z) = (w ⊕ y) · (x ⊕ z) (3)

Now, Batcher’s “merge exchange” sorting network uses a standard divide-and-conquer
construction: the first and last halves of an input sequence are sorted independently and
then a merger is applied to the result (the pattern x ‖ y splits a sequence into two equal
halves and � is merge):

sort : An → An where n = 2k

sort 〈a〉 = 〈a〉
sort (x ‖ y) = sort x � sort y

Throughout we assume for simplicity that the length of the input to the sorter is an exact
power of two. The interesting aspect of Batcher’s design is his merger, which also relies
on divide-and-conquer: the input sequences are divided into odd and even sub-sequences
that are merged in parallel by recursively defined sub-networks (� is interleaving, so for
example, 〈1, 2〉� 〈3, 4〉 = 〈1, 3, 2, 4〉, and � is the cleaner, so-called because it performs
the final “clean-up” phase of the merger):

〈a〉 � 〈b〉 = 〈a ↓ b, a ↑ b〉
(s � t) � (u � v) = (s � u) � (t � v)

(〈a〉 · x) � (y · 〈b〉) = (〈a〉 · (x ↑ y)) � ((x ↓ y) · 〈b〉)
This recursive decomposition of the merger is illustrated in Figure 1, which merits care-
ful study. As a reminder, the data flow from left to right; the perpendicular comparators
( ) sort the values on their two input wires into vertically ascending order. The figure

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


Functional pearls 3

additionally integrates Hasse diagrams (depicted by small discs and dotted lines ) to
visualize the pre- and post-conditions of each phase, as indicated also by the formulae
above and below the diagrams. The sub-networks merge odd and merge even each fuse two
ordered sequences into one. The outputs are then fed into a final column of comparators,
representing the cleaner �, which produces the desired ordered output.

At first it seems rather magical that it is sufficient for the cleaner to compare only the
values on the inner adjacent wires. The construction can be disenchanted using the mono-
tonicity property of comparator networks: the pre-conditions of the two sub-mergers imply
the pre-condition of the cleaner. For the proof, we refer to the previous pearl (Hinze &
Martin, 2018). Interestingly, we shall see that the correctness of the cleaner also arises as
a special case of Parberry’s construction, but we are leaping ahead.

3 Parberry’s pairwise sorting network

The idea of Parberry’s design is to treat the 2 × n inputs as pairs. Sorting proceeds in
three steps. First, the pairs are sorted “internally” using n parallel 2-sorters, shown in
the first column of the diagram below. The first component of each pair of wires is
then at most the corresponding second component. Second, the pairs are sorted “exter-
nally” using two parallel n-sorters (sort odd and even below), so that consecutive pairs
are related by the pointwise ordering. The third phase (pair sort), which is “slightly more
complicated” (Parberry, 1992), then establishes the desired overall ordering.

w1

x1

w2

x2

...

wn

xn sort even

sort odd o1

e1

o2

e2

...

on

en

pair sort

s1

t1

s2

t2

...

sn

tn

The 2-sorters are, of course, just comparators; the n-sorters are given by “recursive
invocations” of Parberry’s scheme. So, like Batcher’s sorter, Parberry’s is based on divide-
and-conquer. The sub-problems are constructed differently however: the former halves the
inputs, while the latter uninterleaves them. There is one further difference: Parberry does
not use a merger. Instead, some work is done before the recursive invocations, and some
work is done afterwards.

The diagram translates into the following definition:

sortn : An → An where n = 2k

sort1 = id
sort2×n = isortn ; esortn ; pair-sortn
isortn (w � x) = (w ↓ x) � (w ↑ x)

esortn (s � t) = sortn s � sortn t

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


4 R. Hinze and C. Martin

where “;” is forward functional composition, isort and esort are the internal and external
sorters, and pair-sort denotes the third and final phase, the implementation of which we
seek to derive.

It is worth recording that the ordering initially established by the internal sort is pre-
served by the subsequent external sort. This is again due to the monotonicity property of
comparator networks (Hinze & Martin, 2018), which ensures that

y � z =⇒ sortn y � sortn z

Since w ↓ x � w ↑ x, we have sortn (w ↓ x) � sortn (w ↑ x). Thus, the input of pair-sortn is
an interleaving o � e with

o ordered ∧ o � e ∧ e ordered (4)

Notice the resemblance to the pre-condition of Batcher’s cleaner in Figure 1, which was
slightly stronger: the inputs additionally satisfied

init (init e) � tail (tail o) (5)

The nested invocations of init and tail are actually slightly awkward to work with. For
the derivation of pair-sort, it will be prudent to introduce some notation for suffixes and
prefixes, generalizing tail and init. This is what we do next.

4 A little theory of segments

Surprisingly, there seems to be no established notation for prefixes and suffixes. For exam-
ple, the language Haskell takes a positive approach to prefixes, take i x, and a negative
to suffixes, drop i x. With a positive mindset i specifies the number of elements retained,
rather than the number of elements discarded. We adopt a uniform approach, using the
symbol ∕ for drop and ∖ for its dual:

(∕) : (i : {0 . . . n}) × An → An−i

0∕x = x
(i + 1)∕(〈a〉 · x) = i∕x

(∖) : An × (i : {0 . . . n}) → An−i

x∖0 = x
(x · 〈a〉)∖(i + 1) = x∖i

Uniform, but negative: if x has length n, then the length of both x∖i and i∕x is n − i, so i∕x
is take (n − i) x. We stipulate that ∕ and ∖ bind more tightly than the other operators. Both
init and tail arise as special cases: tail x = 1∕x and init x = x∖1.

Turning to the properties, the operators enjoy pseudo-associative laws:

(x∖i)∖j = x∖(i + j) (6a)

i∕( j∕x) = (i + j)∕x (6b)

(i∕x)∖j = i∕(x∖j) (6c)

The last law expresses that a prefix of a suffix is the same as a suffix of a prefix, allowing
us to write i∕x∖j unambiguously without any parentheses.

Both (∖i) and (i∕) are monotonic:

x � y =⇒ x∖i � y∖i (7a)

x � y =⇒ i∕x � i∕y (7b)

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


Functional pearls 5

and they distribute over lifted operations:

(x ⊕ y)∖i = (x∖i) ⊕ (y∖i) (8a)

i∕(x ⊕ y) = (i∕x) ⊕ (i∕y) (8b)

A law that we will use repeatedly is the split property:

i + j = n ⇐⇒ x∖i · j∕x = x (9)

where x has length n and 0 � i, j � n. The lemma is particularly useful in conjunction with
the order-embedding (2) to simplify inequalities between sequences.

Using prefixes and suffixes, we can capture that a sequence is ordered1:

x ordered ⇐⇒ ∀k . x∖k � k∕x (10)

We assume that variables implicitly range over the domain of the operations involved here:
0 � k � n where n is the length of x. Note that the right-hand side is trivially true if x is the
empty sequence, written as 〈〉.

Prefixes and suffixes of an ordered sequence are clearly ordered as well:

x∖i ordered ⇐= x ordered (11a)

i∕x ordered ⇐= x ordered (11b)

Let us actually prove (11a) to illustrate some of the previous definitions and laws:

x∖i ordered

⇐⇒ { definition ordered (10) }
∀k . x∖i∖k � k∕x∖i

⇐⇒ { (6a) twice and commutativity of + }
∀k . x∖k∖i � k∕x∖i

⇐= { (∖i) monotonic (7a) }
∀k . x∖k � k∕x

⇐⇒ { definition ordered (10) }
x ordered

Minimum and maximum also preserve ordered sequences:

x ↓ y ordered ⇐= x ordered ∧ y ordered (12a)

x ↑ y ordered ⇐= x ordered ∧ y ordered (12b)

Finally, concatenations of non-empty sequences enjoy the link property:

x · y ordered ⇐⇒ x ordered ∧ last x � head y ∧ y ordered (13)

while non-empty interleavings satisfy the zig-zag property (Hinze & Martin, 2018), named
after the corresponding Hasse diagram, as shown in Figure 1:

x � y ordered ⇐⇒ x � y ∧ init y � tail x (14)

1 The previous pearl (Hinze & Martin, 2018) featured an alternative definition of “orderedness”. The proof that
the two definitions are equivalent is left as an instructive exercise to the reader.

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


6 R. Hinze and C. Martin

5 Deriving the pair sorter

Equipped with this machinery we are now ready to derive the third component of
Parberry’s sorter. We shall maintain the post-condition of the first two phases (4) as an
invariant:

inv (o � e) ⇐⇒ o ordered ∧ o � e ∧ e ordered (15)

This invariant can be seen as the essence of “pairwise sorting”. It states that both odd and
even sub-sequences are ordered (external ordering of pairs), and the former is at most the
latter (internal ordering of pairs).

5.1 Back to Batcher

Recall the similarity of the invariant to the pre-condition of Batcher’s cleaner column,
shown in Figure 1. The invariant (15) is only missing the conjunct (5). This suggests that
we might try to reuse the cleaner as part of the current design. We illustrate this in the
following sketch for the pair sorter. The diagram below again integrates Hasse diagrams,
annotated with formulae, to visualize the required or guaranteed order of elements. By the
zig-zag property (14), it suffices to show that init t � tail s (the zag) for the output s � t to
be ordered, as the invariant guarantees that s � t (the zig).

o1

e1

o2

e2

o3

e3

o4

e4

o5

e5

o6

e6

o7

e7

o8

e8

o′
1

e′
1

o′
2

e′
2

o′
3

e′
3

o′
4

e′
4

o′
5

e′
5

o′
6

e′
6

o′
7

e′
7

o′
8

e′
8

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

s7

t7

s8

t8

?

inv (o � e)

init s � tail t
inv (s � t)

init (init e′) � tail (tail o′)
inv (o′ � e′)

Our next task is to derive the unknown circuit in the box. We begin by expressing its
post-condition init (init e′) � tail (tail o′) using our notation for suffixes and prefixes as
e′∖2 � 2∕o′. We then adopt the classic technique of replacing the constant 2 by a
variable, i, to give an intermediate post-condition:

posti (s′ � t′) ⇐⇒ t′∖i � i∕s′ (16)

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


Functional pearls 7

where 1 � i � n and n is the length of output variables s′ and t′. A circuit that establishes
this condition is not hard to construct: we enforce the inequality by installing suitable
comparators. For example, if i = 2 and n = 6, the post-condition becomes

post2 (s′ � t′) ⇐⇒ 〈t′1, t′2, t′3, t′4〉� 〈s′
3, s′

4, s′
5, s′

6〉.
The diagram below shows four comparators that achieve this ordering; for instance t1 is
compared with s3. The braces indicate the prefixes and suffixes involved in this case.

s1 s′
1

t1 t′1

s2 s′
2

t2 t′2

s3 s′
3

t3 t′3

s4 s′
4

t4 t′4

s5 s′
5

t5 t′5

s6 s′
6

t6 t′6

s∖j

i∕s

t∖i

j∕t

s′∖j
=
s∖j

i∕s′

=
i∕s ↑ t∖i

t′∖i
=

i∕s ↓ t∖i

j∕t′

=
j∕t

inv (s � t) inv (s′ � t′)

t′∖i � i∕s′

In this example, clean2 (s � t), we have s′ = s∖4 · (2∕s ↑ t∖2) and t′ = (2∕s ↓ t∖2) · 4∕t.
This suggests the following generalized circuit:

cleani : A2×n → A2×n where n � 1
cleani (s � t) = (s∖j · (i∕s ↑ t∖i)) � ((i∕s ↓ t∖i) · j∕t) where i + j = n

The output s′ � t′ then satisfies t′∖i = i∕s ↓ t∖i and i∕s′ = i∕s ↑ t∖i so the post-
condition (16) holds by construction. Notice that Batcher’s cleaner � falls out as a special
case of this one: it is simply clean1.

To summarize, the circuit cleani (s � t) has been constructed to achieve the post-
condition t′∖i � i∕s′, but we also require that it maintains the invariant. So now we need
to derive the pre-condition that provides this guarantee.

5.2 Deriving the pre-condition

To recap, the output (s′ � t′) of the circuit cleani (s � t) needs to satisfy the invariant
inv (s′ � t′), defined in (15):

inv (s′ � t′) ⇐⇒ s′ ordered ∧ s′ � t′ ∧ t′ ordered

First, we show that s′ is ordered; the proof for t′ is similar.

s′ ordered

⇐⇒ { link property (13) and definition of s′ }
s∖j ordered ∧ last (s∖j) � head (i∕s ↑ t∖i) ∧ i∕s ↑ t∖i ordered

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


8 R. Hinze and C. Martin

⇐⇒ { s and t are ordered, (k∕), (∖k), and ↑ preserve orderedness

[(11a)–(12b)]}
last (s∖j) � head (i∕s ↑ t∖i)

⇐⇒ { head distributes over ↑ (8a) }
last (s∖j) � head (i∕s) ↑ head (t∖i)

⇐= { transitivity and a � a ↑ b }
last (s∖j) � head (i∕s)

⇐= { link property (13) }
s∖j · i∕s ordered

⇐⇒ { i + j = n, so s = s∖j · i∕s }
s ordered

To establish the remaining part of inv (s′ � t′), namely, s′ � t′, we work towards a situation
where we can apply the defining properties of minimum (1a) and maximum (1b):

s′ � t′

⇐⇒ { definitions of s′ and t′ }
s∖j · (i∕s ↑ t∖i) � (i∕s ↓ t∖i) · j∕t

⇐⇒ { ↓ and ↑ are idempotent }
(s∖j ↑ s∖j) · (i∕s ↑ t∖i) � (i∕s ↓ t∖i) · ( j∕t ↓ j∕t)

⇐⇒ { middle-two interchange law (3) }
(s∖j · i∕s) ↑ (s∖j · t∖i) � (i∕s · j∕t) ↓ (t∖i · j∕t)

⇐⇒ { split property (9) twice }
s ↑ (s∖j · t∖i) � (i∕s · j∕t) ↓ t

⇐⇒ { minimum (1a) and maximum (1b) }
s � i∕s · j∕t ∧ s � t ∧ s∖j · t∖i � i∕s · j∕t ∧ s∖j · t∖i � t

The second conjunct is immediate from the invariant (15) and the first and fourth are direct
consequences of it. The third conjunct is more challenging. The basic idea for establishing
the inequality s∖j · t∖i � i∕s · j∕t is to align suitable segments of the left- and right-hand
side, so that we can apply equivalence (2). As the segmentation depends on the relative
order of i and j, we have to make a case distinction:

i j

j i

�

i∕s j∕t

i∕s∖( j − i) i∕i∕s j∕t

s∖j t∖i∖i ( j − i)∕t∖i

s∖j t∖i

i j

j i

�

i∕s j∕t

i∕s j∕t∖j (i − j)∕j∕t

s∖j∖(i − j) j∕s∖j t∖i

s∖j t∖i

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


Functional pearls 9

As an aside, this step uses a central property of free monoids: equidivisibility: if u · v =
x · y, then there exists a sequence w such that either u · w = x and v = w · y or u = x · w
and w · v = y.

Case i � j (⇐⇒ 2 × i � n):

s∖j · t∖i � i∕s · j∕t

⇐⇒ { split property (9), see diagram above, (6a) and (6b) }
s∖i · j∕s∖j · t∖i � i∕s · j∕t∖j · i∕t

⇐⇒ { pointwise ordering (2) twice }
s∖i � i∕s ∧ j∕s∖j � j∕t∖j ∧ t∖i � i∕t

⇐= { definition ordered (10), (k∕) and (∖k) are monotonic (7a) and (7b) }
s ordered ∧ s � t ∧ t ordered

So, once again, the invariant (15) provides the guarantee that we seek.
Case i � j (⇐⇒ 2 × i � n): we reason

s∖j · t∖i � i∕s · j∕t

⇐⇒ { split property (9), see diagram above }
s∖j · t∖i∖i · ( j − i)∕t∖i � i∕s∖( j − i) · i∕i∕s · j∕t

⇐⇒ { (6a) and (6b) }
s∖j · t∖(2 × i) · ( j − i)∕t∖i � i∕s∖( j − i) · (2 × i)∕s · j∕t

⇐⇒ { pointwise ordering (2) }
s∖j � i∕s∖( j − i) ∧ t∖(2 × i) � (2 × i)∕s ∧ ( j − i)∕t∖i � j∕t

The first and third conjunct are consequences of the fact that the input sequences s and t
are ordered. The second conjunct, however, cannot be discharged. In other words, we
have reached the pre-condition that we sought to derive. The circuit cleani maintains the
invariant provided that its input satisfies the following pre-condition:

prei (s � t) ⇐⇒ t∖(2 × i) � (2 × i)∕s (17)

5.3 Cleaning up

We are now in a position to define the pair sorter. We have shown that the pre-condition
(17) guarantees that the circuit cleani (s � t) both maintains the invariant (15) and estab-
lishes the post-condition (16). Moreover, it is clear that prei (s � t) ⇐⇒ post2×i (s � t)
for i � n / 2, so there is only one logical way to connect the cleaners:

pair-sortn : A2×n → A2×n where n = 2k

pair-sort1 = id
pair-sort2×n = cleann ; pair-sortn

The circuit pair-sort2×n maintains the invariant. Its vacuous pre-condition pren (s � t)
ensures that it establishes the post-condition post1 (s′ � t′) ⇐⇒ init t′ � tail s′. Hence
the output (s′ � t′) is ordered, by the zig-zag property (14), as noted in Section 5.1.

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


10 R. Hinze and C. Martin

The diagram below illustrates the resulting circuit for n = 8, including pre- and post-
conditions as Hasse diagrams.

o1

e1

o2

e2

o3

e3

o4

e4

o5

e5

o6

e6

o7

e7

o8

e8

y1

z1

y2

z2

y3

z3

y4

z4

y5

z5

y6

z6

y7

z7

y8

z8

Figure 2 displays Parberry’s pairwise sorting network for n = 32. You are invited
to identify the three phases of the pairwise sorter. Interestingly, the sorter contains
tree-shaped sub-circuits to determine the overall minimum (on the top) and the overall
maximum (scattered in the middle) in �(log n) time.

6 The hidden merger

Parberry’s construction places the internal sorter in front of the external sorter: sort2×n =
isortn ; esortn ; pair-sortn. This arrangement is, however, not cast in stone. We can also
swap the two phases without compromising the correctness of the sorter:

sort2×n = esortn ; isortn ; pair-sortn

Thus, the internal sorter jointly with the pair sorter implements a merger! Quite amaz-
ingly, the resulting circuit is almost identical to Batcher’s merger. The main difference
is structural and concerns the “supply” of the two arguments: they are concatenated for
Batcher and interleaved for Parberry. To make this concrete, consider the following “one-
argument” version of Batcher’s merger, the specification of which, bmerge (s · t) = s � t,
unfolds to:

bmerge1 (〈a〉 ‖ 〈b〉) = 〈a ↓ b, a ↑ b〉
bmerge2×n ((s � t) ‖ (u � v)) = bmergen (s ‖ u) � bmergen (t ‖ v)

Contrast this with the recursive counterpart of Parberry’s merger:

pmerge1 (〈a〉� 〈b〉) = 〈a ↓ b, a ↑ b〉
pmerge2×n ((s � t) � (u � v)) = pmergen (s � u) � pmergen (t � v)

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


Functional pearls 11

Fig. 2. Parberry’s pairwise sorting network for n = 32.

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


12 R. Hinze and C. Martin

sort1 = id
sort2×n = esortn ; isortn ; pair-sortn
isortn = (odd ↓ even) � (odd ↑ even)

esortn = sortn � sortn

pair-sort1 = id
pair-sort2×n = cleann ; pair-sortn

sort1 = id
sort2×n = esortn ; pmergen

esortn = sortn � sortn

pmerge1 = isort1

pmerge2×n = ((odd � odd) ; pmergen)
� ((even � even) ; pmergen)

Fig. 3. Iterative and recursive implementation of Parberry’s “hidden” sorting network.

which we claim is identical to the iterative implementation derived in Section 5:

pmergen = isortn ; pair-sortn (18)

So, Parberry’s pairwise sorting network is obtained from Batcher’s “merge exchange”
sorting network by swapping some components and suitably rearranging the inputs and
outputs, using so-called bit-reversal permutations (Hinze, 2000).

Just in case you wonder, it is not the case that the two arrangements of internal and
external sorter are equivalent. The following diagram provides a simple counterexample:

isort2 ; esort2 =

1

0

0

1

0

1

0

1

�=

1

0

0

1

0

0

1

1

= esort2 ; isort2

The two arrangements only establish the same post-condition, our invariant (15).
Up to this point we have exclusively conducted pointwise calculations. However, expe-

rience shows that for structural proofs a point-free argument is preferable. To this end we
“functionalize” the operators we have seen before:

( f � g) x = f x � g x
( f � g) x = f x � g x

For example, we have clean1 = odd � even. We shall also need two projection functions as
a substitute for the use of interleavings in patterns:

odd (x � y) = x
even (x � y) = y

You may recognize the similarity to categorical products: � is pairing and odd and even
are the projection functions. Indeed, using the ingredients above we can define the arrow
part of a categorical product:

f � g = (odd ; f ) � (even ; g)

The function f is applied to the odd sub-sequence and g is applied to the even sub-
sequence, for example, esortn = sortn � sortn. For reference, Figure 3 lists the iterative and
the recursive versions of Parberry’s “hidden” sorter in a point-free style.

The proof of (18) proceeds by induction on k, where n = 2k .

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


Functional pearls 13

Base k = 0: the proposition holds trivially as pair-sort1 = id.
Step k > 1: we reason

pmerge2×n

= { definition of pmerge2×n }
((odd � odd) ; pmergen) � ((even � even) ; pmergen)

= { induction assumption (18) and definition of pair-sort }
((odd � odd) ; isortn ; cleann/2 ; . . . ; clean1) � ((even � even) ; isortn ; cleann/2 ; . . . ; clean1)

= { odd and even lemmata (19a)–(19d), see below }
(isort2×n ; cleann ; . . . ; clean2 ; (odd � odd)) � (isort2×n ; cleann ; . . . ; clean2 ; (even � even))

= { fusion: h ; ( f � g) = (h ; f ) � (h ; g) }
isort2×n ; cleann ; . . . ; clean2 ; ((odd � odd) � (even � even))

= { crossing lemma (20), see below }
isort2×n ; cleann ; . . . ; clean2 ; (odd � even)

= { definition of clean1 }
isort2×n ; cleann ; . . . ; clean2 ; clean1

= { definition of pair-sort }
isort2×n ; pair-sort2×n

The proof includes one or perhaps two non-obvious rewrites.
In the third step, we move odd � odd and even � even across the internal sorter and the

pair sorter, making use of the following equalities:

(odd � odd) ; isortn = isort2×n ; (odd � odd) (19a)

(even � even) ; isortn = isort2×n ; (even � even) (19b)

(odd � odd) ; cleani = clean2×i ; (odd � odd) (19c)

(even � even) ; cleani = clean2×i ; (even � even) (19d)

The proofs of the odd and even lemmata are all fairly straightforward and left as exercises.
There is a tiny structural mismatch between the recursive and the iterative version of the

hidden merger. In the second but last step, we have to counter for this, making use of the
fact that minimum and maximum are commutative, captured in the crossing lemma:

odd � even = (odd � odd) � (even � even) (20)

Notice that the isomorphism (odd � odd) � (even � even) swaps the values on the inner
adjacent wires. Again, we leave the proof as an exercise to the reader.

7 Conclusion

This concludes our homage to the neglected algorithm of Parberry. It has been satisfying
to reuse the idea from Hinze & Martin (2018) of motivating an algebraic derivation from
the visual intuition of pre- and post-conditions: once again the diagrams and algebra work
hand in hand. We have introduced a simple calculus of prefixes and suffixes to avoid the

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199


14 R. Hinze and C. Martin

need for offset calculations, which we found fun to use. We hope to see further applications
in the future.

The connection between the iterative and recursive mergers was originally observed
by Codish & Zazon-Ivry (2010), where a relational style is used for the definitions. We
consider this to be an unnecessary level of complexity for a deterministic algorithm. The
functional presentation used here shows instantly how the merger arises by simply swap-
ping the first two phases. Another difference is that our point-free proof is much more
succinct than the arguments given in Codish & Zazon-Ivry (2010) which rely heavily on
the use of indexed sequences. However, the authors make the further point that both the
cardinality networks (Codish & Zazon-Ivry, 2010) and the selection networks [Zazon-
Ivry & Codish (2012, unpublished data)] corresponding to Parberry’s method are actually
superior to those of Batcher. Further justification, if any is needed, for this unusual yet
ultimately simple design.

The description of the pairwise sorter suggests an obvious generalization, where we
have m parallel n-sorters followed by n parallel m-sorters. Can you devise a suitable n-tuple
sorter to finish off the sort?

Acknowledgements

Many thanks are due to Roland Backhouse and Ian Bayley for suggesting numerous
improvements regarding structure and presentation. In particular, Ian proposed some
valuable amendments to the narrative in Section 5.1 and Roland questioned the use of
subscripts, proposing an alternative presentation via catamorphisms. This is an intriguing
recommendation, but not adopted since it is beyond the scope of this paper.

References

Bove, A. & Coquand, T. (2006) Formalising bitonic sort in type theory. In Types for Proofs and
Programs, Filliâtre, J.-C., Paulin-Mohring, C. & Werner, B. (eds), Lecture Notes in Computer
Science, vol. 3839. Berlin, Heidelberg: Springer, pp. 82–97.

Codish, M. & Zazon-Ivry, M. (2010) Pairwise cardinality networks. In Proceedings of the 16th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR
2010. Berlin, Heidelberg: Springer-Verlag, pp. 154–172.

Hinze, R. (2000) Functional Pearl: Perfect trees and bit-reversal permutations. J. Funct. Program.
10(3), 305–317.

Hinze, R. & Martin, C. (2018) Functional Pearl: Batcher’s odd-even merging network revealed.
J. Funct. Program. 28(e14), 1–13.

Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd edn.
Reading, MA: Addison-Wesley Publishing Company.

Parberry, I. (1992) The pairwise sorting network. Parallel Process. Lett. 2(2&3), 205–211.

https://doi.org/10.1017/S0956796818000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000199

	FUNCTIONAL PEARLS
	Introduction
	Recap
	Parberry's pairwise sorting network
	A little theory of segments
	Deriving the pair sorter
	Back to Batcher
	Deriving the pre-condition
	Cleaning up

	The hidden merger
	Conclusion


