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Abstract

We establish a novel relation between delete-free planning, an important task for the AI planning
community also known as relaxed planning, and logic programming. We show that given a
planning problem, all subsets of actions that could be ordered to produce relaxed plans for
the problem can be bijectively captured with stable models of a logic program describing the
corresponding relaxed planning problem. We also consider the supported model semantics of
logic programs, and introduce one causal and one diagnostic encoding of the relaxed planning
problem as logic programs, both capturing relaxed plans with their supported models. Our
experimental results show that these new encodings can provide major performance gain when
computing optimal relaxed plans, with our diagnostic encoding outperforming state-of-the-art
approaches to relaxed planning regardless of the given time limit when measured on a wide
collection of STRIPS planning benchmarks.

KEYWORDS: planning heuristics, answer set programming, optimal delete-free planning,
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1 Introduction

AI planning, an active research area of artificial intelligence, is the task of finding a

sequence of actions, called a plan, that when applied to a given initial state transforms

it to a state that satisfies all members of a given set of goal conditions. According to the

STRIPS formulation of AI planning, states and goal conditions are represented by sets of

atomic propositions, and each action can have separate sets of atomic propositions as its

preconditions, positive effects (also called add effects), and negative effects (also called

delete effects). Delete-free planning problems are those for which actions have no negative

effects. A given planning problem can be relaxed into a delete-free problem, optimal

solving of which provides lower bound of the optimal cost of the original problem. This

lower bound, denoted by h+, could be used as a heuristic in an A*-like search scheme

to find an optimal solution for the original problem. Computing h+ is, however, NP-

equivalent (Bylander 1994). Also, h+ is hard to approximate (Betz and Helmert 2009).

Optimally solving relaxed planning problems in an efficient way is important for mul-

tiple reasons. There have been many admissible heuristic functions that approximate h+
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in polynomial time by computing lower bounds. Examples are hmax heuristic (Bonet

and Geffner 2001), LM-cut heuristic (Helmert and Domshlak 2009), set-additive heuris-

tic (Keyder and Geffner 2008), and cost-sharing approximations of hmax (Mirkis and

Domshlak 2007). The informativeness of these heuristic functions cannot be evaluated

unless we can compute the exact value of h+. Using such a measure for informativeness

could lead to devising more informative heuristic functions. Moreover, efficient solving of

relaxed planning problems is in itself of importance, because there exist planning tasks

of interest for the AI community whose actions are all delete-free. Examples of such tasks

are the minimal seed-set problem (Gefen and Brafman 2011) and the problem of deter-

mining join orders in relational database query plan generation (Robinson et al. 2014).

Another reason for the importance of efficient optimal relaxed planning is the fact that

optimal plans for non-relaxed planning problems can always be produced by iterative

solving and reformulating relaxed planning tasks (Haslum 2012). By repeatedly finding

optimal plans for newly produced relaxed problems, while reformulating the non-relaxed

problem in each iteration, one can reach a point where the found optimal plan for the

last relaxed problem is actually an optimal plan for the original problem.

Several approaches to solving relaxed planning problems have previously been intro-

duced. The approaches include Boolean satisfiability (SAT) based encodings (Rankooh

and Rintanen 2022b), integer programming-based models (Imai and Fukunaga 2015;

Rankooh and Rintanen 2022a), and a minimum-cost hitting set-based method (Haslum

et al. 2012). In this work we take a new approach based on the stable and supported

models of logic programs (Gelfond and Lifschitz 1988; Marek and Subrahmanian 1992).

Such models provide the semantical basis for answer set programming (ASP); see, for

example, the overview by Brewka et al. (2011). The ASP paradigm offers general-purpose

modeling languages for knowledge representation and reasoning.

A typical encoding of a search problem in ASP aims at a one-to-one correspondence

between answer sets and the solutions of the problem. This is in perfect harmony with AI

planning where sequences of actions (plans) form solutions to problems at hand. Indeed,

many AI planning problems have been encoded as logic programs (Son and Balduccini

2018) and AI planning also played a role in the early development of the ASP paradigm

(Lifschitz 1999) in the first place. Both stable and supported models implement a form of

minimality, that is, atomic propositions are false by default. This is highly useful in the

context of AI planning since state predicates are falsified in this sense and the encodings

of planning problems can concentrate on specifying which state predicates become true

or remain true inertially. This tends to lead to more compact encodings compared to

those based on pure SAT and, furthermore, enable memory savings if native answer set

solvers are used for actual computations. The difference between stable and supported

models is also interesting in this setting, since ASP solvers may compute answer sets

based on either semantics. Stable models are also supported models but not vice versa

in general. The gap between the two semantics vanishes if a logic program is suitably

instrumented, for example, in terms of acyclicity constraints (Bomanson et al. 2016).

These observations open up new avenues when it comes to encoding planning problems

as logic programs as well as choosing an approach for computing plans as answer sets.

In this work, we establish a new relation between relaxed planning and logic programs.

We give an encoding of relaxed planning problems in ASP. We show that all subsets of

actions that could be ordered to produce relaxed plans can be bijectively captured with

stable models of the produced logic program. This enables the previously uninvestigated
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usage of off-the-shelf answer set solvers for computing the value of h+. While the sup-

ported model semantics of logic programs cannot be directly employed for this purpose,

we show how by guaranteeing acyclicity in an underlying graph of the logic program,

one may deploy supported models to harvest (optimal) relaxed plans of the planning

problem. The logic program produced in this way inherits the causal nature of our sta-

ble model-based encoding, in the sense that the direction of explanations provided by

the rules is from causes/preconditions to effects. By reversing this direction, we pro-

vide a diagnostic encoding, which while still using the supported model semantics of

logic programs, is shown to be more efficient than our causal encoding by our empirical

study. Our experimental results show that when given small time limits these new en-

codings can significantly outperform the previous approaches to relaxed planning when

measured on STRIPS planning benchmarks. Moreover, regardless of the used time limit,

our diagnostic supported model-based encoding enables Clasp (Gebser et al. 2015) to

solve more problems compared to the integer programming solver based state-of-the-art

method.

Logic programming has recently been employed for computing heuristics for lifted

planning tasks. Corrêa et al. 2021; 2022 employed Datalog programs to calculate hadd

(Bonet and Geffner 2001) and hFF (Hoffmann and Nebel 2001), respectively, for lifted

planning tasks. However, the objective of our work differs from theirs. While both hadd

and hFF are non-admissible estimations of h+ and can be computed in polynomial time

for ground instances, we aim to compute h+ itself. Furthermore, this work focuses on

ground planning tasks. Although the generalization of our current approach to lifted

planning is relatively simple, we leave it for future research.

The rest of this article is organized as follows. In Section 2, we recall basic concepts

and definitions of planning problems, relaxed planning, logic programs, and their stable

and supported model semantics. Then, in Section 3, we show how relaxed plans can

be captured with stable models of an encoding of relaxed planning problems into logic

programs. In Section 3, we first show how a logic program can be augmented with a

dynamically varying digraph whose acyclicity guarantees a shift in the semantics from

stable models to supported models. We then recall how vertex elimination can be used to

check whether a given digraph is acyclic. Based on the supported model semantics and

the vertex elimination method, we explain our causal and diagnostic encodings of relaxed

planning problems. We present practical evidence in Section 5 based on an experimental

evaluation of the resulting encoding for answer set and supported model optimization.

This analysis is based on 2212 problem instances from 84 STRIPS planning problem sets.

Finally, we conclude the paper in Section 6.

2 Preliminaries

Since we intend to establish a connection between AI planning and ASP, we provide

necessary formal definitions with respect to both of these paradigms.

2.1 AI planning and relaxed plans

A STRIPS planning problem is a 5-tuple Π = 〈X, I,A,G, cost〉 where X is a finite set of

Boolean state variables, also called atomic propositions. The initial state I and the set of

goal conditions G, are subsets of X. The finite set A is the set of actions. Each member �a
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of A is a triple 〈pre(�a), add(�a), del(�a)〉, where pre(�a), add(�a), and del(�a) are sets of atomic

propositions denoting the set of preconditions, positive effects, and negative effects of �a,

which are the atomic propositions that �a requires, adds, and deletes, respectively. The

cost function cost maps members of A to a non-negative integer. We use the vector

sign to distinguish actions from the corresponding atoms that represent them in logic

programs.

States are represented as subsets of X. The successor s′ = exec�a(s) of a state

s with respect to action �a ∈ A is defined if pre(�a) ⊆ s, where the definition is

s′ = (s \ del(�a)) ∪ add(�a). An action sequence �a1, ..., �an is executable (in state s) if

exec �a1,..., �an
(s) = exec �an

(...exec �a2
(exec �a1

(s))...) is defined. A plan for Π is a sequence π

of actions from A such that G ⊆ execπ(I). The cost of plan π = �a1, ..., �an for Π, is defined

by Σi=1,...,ncost(�ai). An optimal plan for Π is a plan with minimal cost.

For a given STRIPS planning problem Π = 〈X, I,A,G, cost〉, the delete relax-

ation (Bonet and Geffner 2001) is defined as Π+ = 〈X, I,A+, G, cost〉, where A+ is

defined from A by replacing the set of negative effects of each member of A with the

empty set. Without loss of generality, we can define Π+ = 〈X, ∅, A+, G, cost〉, with an

additional requirement that all members of I have been removed from G, and also from

the preconditions and effects of members of A+. We use this latter definition of relaxation

in the rest of the paper.

A plan for Π+ is called a relaxed plan for the original problem Π. The minimal cost of

plans of Π+ is denoted by h+(Π). If there is no relaxed plan for Π, we set h+(Π) to ∞.

2.2 Answer set programming

In this work, we consider logic programs that consist of rules of the forms:

a← b1 , . . . , bn, not c1 , . . . , not cm, (1)

{a} ← b1 , . . . , bn, not c1 , . . . , not cm. (2)

The symbols a, b1 , . . . , bn with n ≥ 0, and c1 , . . . , cm with m ≥ 0 occurring in the rules

are (propositional) atoms and “not” denotes negation by default. Rules of the forms

(1) and (2) are known as normal and choice rules, respectively (Simons et al. 2002).

Intuitively, each rule r gives a reason to derive its head head(r) = a if the conditions in

its body body(r) are met, that is, atoms involved can be either derived or not by other

rules. For a choice rule r of form (2), the derivation of head(r) is optional, enabling an

exception to head(r) being false by default. We write body+(r) and body−(r) for the sets
of atoms b1 , . . . , bn (resp. c1 , . . . , cm) occurring positively (resp. negatively) in body(r).

We say that r is a positive rule if body−(r) is empty.

The signature of a logic program P is the set of atoms At(P ) =
⋃

r∈P ({head(r)} ∪
body+(r)∪body−(r)) that occur in P . The positive dependency graph of P is DG+(P ) =

〈At(P ),�〉 where a� b holds for a, b ∈ At(P ) if head(r) = a and b ∈ body+(r) for some

rule r ∈ P . If a � b, we say that a depends on b, and also denote this by 〈a, b〉 ∈
DG+(P ).

An interpretation I ⊆ At(P ) determines which atoms a ∈ At(P ) are true (a ∈ I)

and which are false (a �∈ I). Then I satisfies a rule r ∈ P of form (1), denoted

I |= r, if the satisfaction of the body, denoted I |= body(r), implies that head(r) ∈ I,

that is, I |= head(r). For a choice rule r of form (2), I |= r unconditionally. More-

over, the interpretation I is a (classical) model of P if I |= r holds for every r ∈ P .
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Each positive normal program P has a unique least model LM(P ) obtained as the inter-

section
⋂{I ⊆ At(P ) | I |= P}.

Given an interpretation I, the reduct rI of r with respect to I is obtained by partially

evaluating the negative conditions of r. For a normal rule (1), rI = ∅ if ci ∈ I for some

1 ≤ i ≤ m and rI = {a ← b1 , . . . , bn} otherwise. For a choice rule (2), the latter

case additionally requires that a ∈ I. Finally, for an entire logic program P , the reduct

P I =
⋃

r∈P rI and I is a stable model of P iff I = LM(P I). For the purposes of this

work, it is also useful to distinguish the supporting rules of P with respect to I, denoted

by SRP (I), which are the normal rules whose bodies are satisfied, and the choice rules

whose bodies and heads are satisfied. Then, a model I |= P is supported (by P ) when

I = {head(r) | r ∈ SRP (I)}. Each stable model of P is supported, but supported models

are not necessarily stable, such as I = {a} for P = {a← a.}.

3 Relaxed plans captured with stable models of logic programs

Typically, modeling planning problems as answer set programs is done by assuming a

number of time steps for the output plan, which is also mirrored in the structure of the

produced logic program (Son et al. 2006). Here, however, we show that, as long as finding

relaxed plans are concerned, one can encode the planning problem in such a way that

there will be no need for a multi-step structure.

Let Π = 〈X, I,A,G, cost〉 be a relaxed STRIPS planning problem, Π+ =

〈X, ∅, A+, G, cost〉 be the delete relaxation of Π, and P be a logic program consisting

of rules of the form (1) g ← not g for every g ∈ G; (2) {a} ← q1 , . . . , qn for every �a ∈ A

with pre(�a) = {q1 , . . . , qn}; (3) p ← a for every �a ∈ A and p ∈ add(�a). Intuitively, the

first rule guarantees all goal atoms to be true in a model. The second rule explains the

necessary conditions for the execution of an action �a. The third rule enforces the positive

effects in case �a has been chosen to be in the model.

We show that more relaxed semantics of models could not play the same role.

Example 1 shows that neither the classical models nor the supported models of P are

generally suitable for capturing the relaxed plans of Π correctly.

Example 1

Consider a planning problem Π = 〈X, I,A,G, cost〉, where X = {p, q}, I = ∅, G = {p},
A = {�a,�b}, pre(�a) = add(�b) = {p}, add(�a) = pre(�b) = {q}, and the cost function cost

is arbitrary. This problem has no relaxed plan, as �a and �b are codependent. The logic

program P explained above consists of the following rules:

{a} ← p. {b} ← q.

q ← a. p← b.

p← not p.

It is easy to check that M = {a, b, p, q} is both a classical and a supported model for P .

However, P has no stable model, due to circularities involved in the encoding. �

We now formally show that P captures the relaxed plans of Π as its stable models.
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Theorem 1

There is a bijection f(A′) =
⋃

�a∈A′(add(�a) ∪ {a}) between all subsets A′ of A+ which

can be ordered to produce a relaxed plan for Π, and all stable models of P .

Proof

We first show that f is well-defined, that is, if π = �a1, ...,�am is a permutation of

members of A′ such that π is a relaxed plan for Π, then M = f(A′) is a stable model of

P . For every g ∈ G, g must be added by some action in π. Thus, the reduct PM consists

of rules of the form (1) a← q1 , . . . , qn for every �a ∈ π and pre(�a) = {q1 , . . . , qn}, and
(2) p ← a for every �a ∈ π and p ∈ add(�a). Clearly, M is model for PM . By bounded

induction on the lengths of prefixes of π, we show that M is a subset of any model for

PM . As we explained above, the initial state of the relaxed problem is (safely) assumed

to be an empty set. Therefore, �a1 cannot have any precondition. Thus, PM includes a

rule of the form (a1.), and add(�a1) ∪ {a1} is a subset of any model for PM . Assume

that for 1 ≤ j < m,
⋃

i=1,...,j add(�ai) ∪ {a1, ..., aj} is a subset of any model for PM .

Since �aj+1 is executable in exec�a1,...,�aj
(∅), pre(�aj+1) is a subset of

⋃
i=1,...,j add(�ai).

Because PM includes the two types of rules explained above for �aj+1, we conclude that⋃
i=1,...,j+1(add(�ai) ∪ {ai}) is a subset of any model for PM .

Clearly, f is injective. We now show that f is also surjective, that is, if M is a stable

model of P , then there exists A′ ⊆ A+ such that M = f(A′), and A′ can be permuted

to produce a relaxed plan for Π. Let A′ = {�a | a ∈ M}. We have G ⊆ M because for

every g ∈ G, P includes the rule g ← not g. The reduct PM consists of rules of the form

(1) a← q1 , . . . , qn for every �a ∈ A′ and pre(�a) = {q1 , . . . , qn} and (2) p← a for every

�a ∈ A′ and p ∈ add(�a). If p is added by some action �a ∈ A′, then clearly we must have

p ∈ M . On the other hand, for every p ∈ X if p ∈ M , then p is added by some action

�a ∈ A′, otherwise M \ {p} would also be a model for PM , contradicting that M is the

least model for PM . We conclude that M = f(A′) and if A′ can be ordered to produce

a sequence of actions executable in I, then that sequence is also a relaxed plan for Π.

For the sake of contradiction, assume that A′ cannot be ordered to produce a sequence

of actions executable in I. Let A′′ be a (possibly empty) proper subset of A′ such that

its members (if any) can be ordered to produce a sequence of actions executable in I,

and furthermore, let A′′ be maximal in the sense that there is no subset of A′ with such

a property that is also a proper superset of A′′. Let M ′ =
⋃

�a∈A′′ add(�a) ∪ {a | �a ∈ A′′}.
Clearly, M ′ is a proper subset of M . Let �a ∈ A′ and pre(�a) = {q1 , . . . , qn}. If �a ∈
A′′, M ′ trivially satisfies a ← q1 , . . . , qn. On the other hand, for every �a ∈ A′ \ A′′,
the maximality of A′′ implies that at least one precondition of �a is not in M ′, and

therefore, a ← q1 , . . . , qn is vacuously satisfied. We conclude that M ′ is a model for

PM , contradicting that M is the least model for PM .

Theorem 1 shows that if P is augmented with an optimization constraint requiring

minimization over the summation of the costs of actions in the answer sets, the cost of

an optimal stable model of P is equal to h+(Π).

The program P can be seen as a causal encoding of relaxed plans of P . That is

because the direction of explaining the logic of relaxed plan computation in P is from

preconditions to actions, and from actions to effects. In other words, the direction is from

causes to effects. Alternatively, a diagnostic encoding would explain the logic of relaxed
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plan computation from effects to actions, and from actions to preconditions. In the next

section, we show how this latter paradigm could be used for computing relaxed plans.

4 Relaxed plans captured with supported models of logic programs

In this section, we recall the instrumentation of logic programs with acyclicity constraint,

which allows capturing the stable models of a given logic program P with the supported

models of another program TrACYC(P ) which are acyclic with respect to an underlying

graph (Bomanson et al. 2016). We provide an adaptation of this method based on the

structure of program P explained above. We then review the so-called vertex elimination

method, used previously for cycle prevention in the produced models of SAT formulas

(Rankooh and Rintanen 2022c; Rankooh and Janhunen 2022). We next show how vertex

elimination could also be used to translate TrACYC(P ) to a new program Pc such that

the supported models of Pc represent acyclic supported models of TrACYC(P ), and thus,

stable models of P and relaxed plans of Π. Based on the structure of Pc, we introduce

another logic program Pd which describes the relaxed plans diagnostically. We prove that

the supported models of Pd represent those of Pc, thereby capturing the stable models

of P and relaxed plans of Π.

4.1 Instrumentation of logic programs with acyclicity constraint

We adopt the acyclicity translation TrACYC(P ) of a logic program P (Bomanson et al.

2016) that deploys special dependency atoms dep(x, y) to express the activation of the

respective arc 〈x, y〉 ∈ DG+(P ) in the acyclicity constraint. For the sake of the com-

pactness of the output program, instead of using the exact method, we customize the

translation method considering the structure of the program P explained above. In par-

ticular, we circumvent the introduction of dependency atoms for actions, by establishing

dependencies only between atoms of the original planning problem. This way, the under-

lying graphs for which acyclicity must be guaranteed become considerably smaller than

DG+(P ).

The idea is to instrument P explained in the previous section with additional rules

that capture well-support for atoms p ∈ X. For each pair 〈p, q〉, if there exists �a ∈ A such

that p ∈ add(a) and q ∈ pre(a), the potential dependency of p on q is expressed using a

choice rule {dep(p, q)} ← q. Also, atoms ws(a1, p) , . . . , ws(ak, p), for actions {�a1 , . . . ,�ak}
that add p enforce the well-support for p in terms of k rules p← ws(ai, p) for i = 1, ..., k.

For an atom p ∈ X, the rule (3) below captures the option that the well-support for p is

provided by some action �a such that pre(�a) = {q1 , . . . , qn} and p ∈ add(�a).

{ws(a, p)} ← dep(p, q1) , . . . , dep(p, qn). (3)

Also, the rule a ← ws(a, p) captures the atom a in the supported models, in the case

that it has been used to provide well-support for p. As in program P , we need a rule

g ← not g for every g ∈ G to guarantee that every goal atom has been produced.

For TrACYC(P ) obtained in this way, the distinction between stable and supported

models disappears if we insist on acyclic models I for which the digraph induced by the

set of arcs {〈a, b〉 | dep(a, b) ∈ I} is acyclic. We deploy the following result:
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Proposition 1 (Bomanson et al. (2016))

If M is a stable model of P , then TrACYC(P ) has an acyclic supported model N such that

M = N ∩At(P ). If N is an acyclic supported model of TrACYC(P ), then M = N ∩At(P )

is a stable model of P .

Example 2

Consider Π to be the planning problem of Example 1. The program TrACYC(P ) consists

of the following rules:

{dep(p, q)} ← q. {dep(q, p)} ← p.

{ws(a, q)} ← dep(q, p). {ws(b, p)} ← dep(p, q).

q ← ws(a, q). p← ws(b, p).

a← ws(a, q). b← ws(b, p).

p← not p.

It can easily be checked that M = {a, b, p, q, ws(a, q), ws(b, p), dep(p, q), dep(q, p)} is the

only supported model for TrACYC(P ). However, this model is not acyclic, as it contains

both dep(p, q) and dep(q, p). �

Similarly to the stable model-based encoding, TrACYC(P ) is a causal encoding, ex-

pressing the inference in the direction from preconditions to actions, and from actions

to effects. However, there are additional concepts in this encoding, namely dependencies

and well-support. In fact, in TrACYC(P ), preconditions are assumed to cause depen-

dencies, which in turn cause well-support and effects. Here, well-support atoms ws(a, p)

take the causal role that action atoms a have in P . The action atoms are only included

in TrACYC(P ) to represent their cost in the minimization constraint. The rules in Ex-

ample 2 establish the inference direction from preconditions to dependencies (the first

row), from dependencies to well-support (the second row), and from well-support to

effects (the third and the fourth rows). The final rule captures the goal condition (as

before).

4.2 Vertex elimination graphs

The concept of vertex elimination graphs has been recently shown effective for guaran-

teeing acyclicity in constraint programs with underlying graphs. The concept of vertex

elimination for digraphs was originally introduced by Rose and Tarjan (1975).

Given a digraph G = 〈V,E〉, an ordering of V is a bijection α : {1, . . . , n} → V . For a

vertex v, the fill-in of v, denoted by F (v), is the set of arcs from the in-neighbors of v to

the out-neighbors of v, formally defined by

F (v) = {〈x, y〉 | 〈x, v〉 ∈ E, 〈v, y〉 ∈ E, x �= y}. (4)

The v-elimination graph of G is produced by removing v from G, and adding the fill-in of

v to the resulting graph. Formally, G(v) = 〈V \ {v}, E(v) ∪ F (v)〉, where E(v) = {〈x, y〉 |
〈x, y〉 ∈ E, x �= v, y �= v}.

Given a digraph G and an ordering α of its vertices, the elimination process of G
according to α is the sequence G = G0,G1, . . . ,Gn−1, where Gi is the α(i)-elimination

graph of Gi−1 for i = 1, . . . , n− 1.
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The fill-in of the digraph G according to α, denoted by Fα(G), is the set of all arcs

added to G in the vertex elimination process. Formally, Fα(G) is defined by (5), where

Fi−1(α(i)) is the fill-in of α(i) in Gi−1:

Fα(G) =
|V |−1⋃

i=1

Fi−1(α(i)). (5)

The vertex elimination graph of G according to α, denoted by G∗α, is the union of all

graphs produced in the elimination process of G according to α:

G∗α = 〈V,E ∪ Fα(G)〉. (6)

For any digraph G, the number of arcs of the vertex elimination graph depends on

the ordering function α. It has been shown that the problem of finding the optimal

ordering function, the one resulting in the smallest number of arcs in the vertex elimi-

nation graph, is NP-complete (Rose and Tarjan 1975). Nevertheless, there are effective

heuristics for finding empirically useful orderings. Examples are the minimum fill-in and

minimum degree that accordingly choose a vertex for removal at each step during the

elimination process. One important property of vertex elimination is that if the original

graph G has a directed cycle, then G∗α will have a cycle of length 2, regardless of the

ordering α.

4.3 The causal encoding based on supported models

Consider TrACYC(P ) explained above. Let G be the graph of all dependencies of

TrACYC(P ). Formally, G = 〈X,E〉, where E = {〈p, q〉 | dep(p, q) ∈ At(TrACYC(P ))}.
Also, for each supported model M of TrACYC(P ), let GM be the graph of all depen-

dencies in M , that is, GM = 〈X,EM 〉, where EM = {〈p, q〉 | dep(p, q) ∈ M}. Assume

that α is an ordering of the members of X, G = G0,G1, . . . ,Gn−1 is the elimination pro-

cess of G according to α, and for i = 1, . . . , n, Fi−1(α(i)) is the fill-in of α(i) in Gi−1.

Let G∗α = 〈X,E∗〉 and G∗M,α = 〈X,E∗
M 〉 be the vertex elimination graphs of G and GM

according to α, respectively.

We produce the causal supported model semantics-based encoding of Π as logic pro-

gram Pc by adding the following rules to TrACYC(P ). For every 〈p, q〉 ∈ Fi−1(α(i)), add

dep(p, q)← dep(p, α(i)), dep(α(i), q). (7)

Also, for every p and q such that 〈p, q〉 ∈ G∗α and 〈q, p〉 ∈ G∗α, we add

f ← dep(p, q), dep(q, p), not f. (8)

Intuitively, for any vertex ordering α, and any supported model M of TrACYC(P ), the

rule (7) extends M by atoms representing the arcs in G∗M,α, the vertex elimination graph

of GM according to α, while the rule (8) guarantees that G∗M,α has no cycle of length 2.

Theorem 2

Let A′ be a subset of A+. There exists a permutation π of members of A′ such that π is

a relaxed plan for Π iff Pc has a supported model M such that A′ = {�a | a ∈M}.
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Proof

( =⇒ ) If Π has a relaxed plan π = �a1, ...,�am, then according to Theorem 1,⋃
i=1,...,m add(�ai) ∪ {a1, ..., am} is a stable model of P . By Proposition 1, TrACYC(P )

has an acyclic supported model N such that {a ∈ N | �a ∈ A+} = {a1, ..., am}. Let
GN = 〈X,EN 〉, where EN = {〈p, q〉 | dep(p, q) ∈ N}, and let G∗N,α = 〈X,E∗

N 〉 be the

vertex elimination graph of GN according to α. Since GN is acyclic, X can be ordered by

topological sorting according to GN . Now, if the vertex elimination process adds the arc

〈p, q〉, then p must be ordered before q by the topological sorting. Therefore, G∗N,α is also

acyclic. It should now be easy to check that N ∪ {dep(p, q) | 〈p, q〉 ∈ E∗
N} is a supported

model of Pc.

( ⇐= ) Let M be a supported model for Pc. We first show that M is acyclic. Let

GM = 〈X,EM 〉, where EM = {〈p, q〉 | dep(p, q) ∈ M}. Assume that k > 1 is the

smallest number for which there exist a cycle of length k in GM . Then there are atoms

dep(p1, p2), ..., dep(pk−1, pk), dep(pk, p1) in M . According to the rule (8), k cannot be

equal to 2. Let i = argmin1≤j≤kα
−1(pj). Then pi is the vertex in the mentioned cycle

that is eliminated before all other vertices in the cycle according to α. According to the

rule (7), dep(pi−1, pi+1) ∈M (with indices considered modulo k), and therefore GM has

a cycle of length k − 1, a contradiction. Let N = M ∩ At(TrACYC(P )). A straightfor-

ward investigation shows that N is a supported model of TrACYC(P ). By Proposition 1,

N ′ = N ∩ At(P ) is a stable model of P . Since A′ = {�a ∈ A+ | a ∈ N ′}, by Theorem 1,

there exists a permutation π of members of A′ such that π is a relaxed plan for Π.

4.4 The diagnostic encoding based on supported models

One major approach to solving problems in the AI planning field is to perform back-

ward search, also known as regression, in the search space (Ghallab et al. 2004). In this

approach, actions are assumed to act in reverse, that is, producing their preconditions

given they have some effects relevant to the current search node. The main drawback

of this approach is that it can easily produce dead-end states, which are not reachable

from the initial state. The notion of reversibility of actions has been shown to be quite

effective for detecting dead-end states. However, determining the reversibility of actions

is itself challenging, and might even need a logic program (Faber et al. 2022) of its own.

Nevertheless, the problem of detecting the dead-ends is an easy one in the case of relaxed

planning, and can be done in polynomial time as a preprocessing method (Hoffmann and

Nebel 2001). Therefore, this backward approach has promise to be efficient for relaxed

planning.

Inferring causes from effects can be understood as diagnostic inference (Russell and

Norvig 2020). In our causal encoding, we expressed the inference direction from precon-

ditions to dependencies, from dependencies to well-supports, and from well-supports to

effects. We can alternatively reverse all these directions to produce a diagnostic encoding.

In our diagnostic encoding Pd, we assume that all atoms could possibly be in the model

by using the rule {p} for every p ∈ X. However, if p is in the model, then it must have well-

support by at least one action. We establish this by adding {ws(a, p)} ← p for every �a ∈ A

such that p ∈ add(�a), and also f ← p, not ws(a1, p) , . . . , not ws(am, p), not f for p ∈ X

and all actions �a1, ...,�am that could add p. The first rule provides the possibility of well-

support atoms being in a supported model, while the second rule requires at least one of
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the well-support atoms to be in the model. To represent the inference from well-supports

to dependencies, we add dep(p, q) ← ws(a, p) for �a ∈ A, q ∈ pre(�a), and p ∈ add(�a). Fi-

nally, to establish the inference direction from dependencies to preconditions, we add q ←
dep(p, q). As in Pc, all rules in the forms of (7) and (8) must be included to enforce acyclic-

ity in the supported model. Moreover, we add a ← ws(a, p) for �a ∈ A and p ∈ add(�a),

to enable an action atom a to represent its cost in the minimization constraint, and also

g ← not g for every g ∈ G to guarantee that goal atoms are included in the model.

It is quite easy to check that if Pd has a supported modelM , thenM is also a supported

model of Pc. On the other hand, it can be shown in a straightforward manner that if N

is a supported model of Pc, then N \ L is a supported model of Pd, where L is the set

of atoms dep(p, q) for which there is no action �a such that ws(a, p) ∈ N and q ∈ pre(�a).

Thus, we have the following result:

Theorem 3

Let A′ be any subset of A+. The program Pd has a supported model M such that

A′ = {�a | a ∈M} iff Pc has a supported model N such that A′ = {�a | a ∈ N}.
Theorem 2 and Theorem 3 can be used to establish Corollary 1.

Corollary 1

Let A′ be any subset of A+. There exists a permutation π of members of A′ such that π

is a relaxed plan for Π iff Pd has a supported model M such that A′ = {�a ∈ A+ | a ∈M}.

5 Empirical results

We have implemented our encoding methods inside the HSP* planner (Haslum 2015).

The implementation is available under the ASPTOOLS collection1. All experiments have

been run on a cluster of Linux machines with Intel Xeon 2.40 GHz CPUs, using a time-

out of 1800 s per problem, and a memory limit of 8 GB. For our supported model-based

encodings, where vertex elimination is used, for determining the order of vertex elimina-

tion, we have implemented the minimum degree heuristic, that is, eliminating a vertex

with minimal total number of incoming and outgoing arcs in the graph produced after

the elimination of previously eliminated vertices.

Our three implemented encodings are (1) our stable model-based encoding P ; (2) our

causal supported model based encoding Pc; and (3) our diagnostic supported model-

based encoding Pd. As the solver we use Clasp 3.3.5, which is capable of optimizing

over both stable and supported models. The Clasp solver searches for stable models by

default. We enable the search for supported models only for our Pc and Pd encodings. As

the optimization strategy we use the unsatisfiable core (USC)-based search, which our

preliminary experiments showed to significantly outperform the branch-and-bound strat-

egy for the mentioned encodings. Although Clasp offers a variety of search strategies,

we only use the default one. Therefore, the solver parameters have not been tuned to

produce the best performance for our new methods. Henceforth, we refer to the method

obtained by combing Clasp with our P , Pc, and Pd encodings simply by the name of

the corresponding encoding.

1 https://github.com/asptools/software
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Fig. 1. Cumulative numbers of problems solved by the competing methods.

To evaluate the efficiency of our methods, we have compared them based on the

total time of encoding and solving with IP, the integer programming-based encod-

ing by Rankooh and Rintanen (2022a), which uses IBM ILOG CPLEX Optimization

Studio 20.12 as the optimizer. Regardless of the given time limit, IP has shown to

outperform previously introduced methods for optimal relaxed planning including the

Boolean satisfiability-based encoding used by Rankooh and Rintanen (2022b), the integer

programming-based model introduced by Imai and Fukunaga (2015), and the minimum-

cost hitting set-based method introduced by Haslum et al. (2012). Since IP has also been

implemented inside the HSP* planner (Haslum 2015), all competing methods share the

same code for reading the input problem, grounding, and preprocessing.

As benchmark problem sets, we use the STRIPS planning problem sets found in the

planning repository3. From IPC domains, domains from both optimal and so-called satis-

ficing tracks have been considered. In total, 2212 problem instances from 84 problem sets

are used for comparison. Note that this is exactly the benchmark set used by Rankooh

and Rintanen (2022a) for comparing IP with previously introduced methods.

The cumulative number of problems solved by all methods are presented in Figure

1. Out of the 2212 problems under evaluation, the cost of an optimal relaxed plan was

computed in 1800 s for 1980, 1982, 1894, and 1567 problems by IP, Pd, Pc, and P , respec-

tively. As it can be seen in Figure 1, our supported model-based encodings significantly

outperform the stable model-based one, with the diagnostic encoding performing visi-

bly faster than the causal one. Also, even though the number of problems solved within

1800 s by our diagnostic encoding is not much higher than that of IP, Pd solves problems

2 https://www.ibm.com/products/ilog-cplex-optimization-studio
3 https://github.com/AI-Planning/classical-domains
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considerably faster than IP. In fact, regardless of the time limit, Pd solves more problems

compared to any other solver. Particularly, Pd solves 1091 problems in less than 0.1 s,

more than double the 516 problems solved by IP within the same time limit.

6 Conclusions and future research

In this work, we study the previously uninvestigated application of ASP solvers to opti-

mal relaxed planning. Three different encodings of relaxed planning problems into logic

programs are provided, one based on the stable model semantics, and two based on

the supported model semantics of logic programs. According to our empirical results,

all our encodings enable Clasp to outperform the state-of-the-art method if the time

limit is small. Moreover, our diagnostic supported model-based method outperforms the

state-of-the-art solver on the studied benchmark problems regardless of the used time

limit.

One direction to extend the current work is to study the impact of our new encodings

and ASP solvers when employed for computing heuristic values inside state-of-the-art

planners. Since our best encoding enables Clasp to solve almost half of the studied

benchmark problems in less than one tenth of second, a direct usage of h+ computed by

Clasp seems to be promising. Also, the usage of USC as the optimization strategy allows

for computing lower bounds for h+ within any given time limit. It seems interesting to

study the informativeness of such lower bounds in comparison to other commonly used

heuristics such as LM-cut, another lower bound of h+, when given the same amount of

time for computation.
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