
ON THE VANISHING OF A (G, *) PRODUCT 
IN A (G, a) SPACE 

K. SINGH 

In this paper, we shall construct a vector space, called the (G, a) space, 
which generalizes the tensor space, the Grassman space, and the symmetric 
space. Then we shall determine a necessary and sufficient condition that the 
(G, <J) product of the vectors x±, x2, . . . , xn is zero. 

1. Let G be a permutation group on I = {1, 2, . . . , n) and F, an arbitrary 
field. Let a be a linear character of G, i.e., a- is a homomorphism of G into the 
multiplicative group F* of F. 

For each i Ç / , let Vt be a finite-dimensional vector space over F. Consider 
the Cartesian product W = V1 X V2 X . . . X Vn. 

1.1. Definition. W is called a G-set if and only if Vt = Vga) for all i £ / , 
and for all g G G. 

1.2. Definition. A mapping / : W —> U, where £/ is a vector space over F, 
is called (G, <r) if and only if O i , w2, . . . , wn)/ = <r(g) (Ad), ^(2), . . . , ^ ( w ) ) / 
for all ^ G G, and w/j Ç F*, i = 1, 2, . . . , w. 

1.3. Definition. A vector space T over T7 is called a (G, <r) space of W if and 
only if there exists a mapping T oî W into 7" such that: 

(i) r is multilinear and (G, c), 
(ii) r has a "universal mapping property", i.e., if U is any vector space 

over F and / is any multilinear and (G, a-) mapping of W into [/, then there 
exists a unique linear transformation f oî T into £/ such that rf = f. 

1.4. THEOREM. Given G, a-, and a G-set W, there exists a (G, a) space over an 
arbitrary field F. Any two (G, a) spaces are isomorphic as vector spaces. 

Proof. Let F(W) denote the free vector space generated by W over an 
arbitrary field F. Let 12 be the smallest subspace of F(W) generated by the 
elements of the form 

Oi , . . . , aWi + pwt, . . . , wn) - a(wi, . . . ,wit . . . ,wn) 

- 0(wi, . . . , w>/, . . . , wn) 

and O i , w2, . . . , wn) - <r(g)(wgii), wg{2), . . . , w,(n)), for alH, i = 1, 2, . . . , », 
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and all g Ç G. Let T = F(W)/Q, be the quotient space and rj the natural 
linear transformation of F(W) onto T. If we take r to be the restriction of 77 
to W, then one can easily verify that T is a (G, 0-) space, with r as a multilinear 
and (G, a) mapping of W into T. 

The uniqueness of T, up to isomorphism, follows easily from the definition 
of a (G, a) space. 

In view of 1.4, we shall call T, the (G, 0-) space of W and denote it by 
P(W,G,<r). 

1.5. By taking particular values for G and a-, we obtain the classical spaces; 
for instance: 

If G = {e}, then 

W G . l ) = ® ^ , 
the tensor space; 

If G = 5W, and <r(g) = 1 if g is an even permutation and — 1 if g is an odd 
permutation, then P(W, G, a) = /\n F, the Grassman space; 

If G = Sn and c(g) = 1 for all g 6 G, then P(IF, G, 0-) = F(w), the sym­
metric space. 

1.6. Notation. If (wi, w2, . . . , ww) £ IF, we shall denote its image 
(wi, ^2, • • . , wn)r under r by Wi A w2 A . . . A wn and call it the (G, a-) 
product of Wi, w2, . . . , w». 

1.7. We shall now determine a necessary and sufficient condition that 
W\ A w2 A . . . A wn = 0. The conditions are known for the classical spaces 
(see [1; 2; 3; 4]). For the symmetric space V(n), this result is derived in [2] 
under the restriction that V is an ^-dimensional unitary space. 

2. Let U be a vector space over F, such that 

dim U è maxfdim F*, 1 ^ i S n}. 

Consider W'=UXUX...XU (n copies) and P(W', G, a). If 
/*: V'f —> U, 1 ^ i ^ n, are monomorphisms with.fi = fjy whenever Vt = Vjy 

then they induce an embedding of P(W, G, a) into P(W, G, a), such that the 
product Wi A w2 A . . . A wn in P(W, G, 0-) is mapped into the product 
/i(wi) A / 2 ^ 2 ) A . . . A/ n (w n ) in P(TF', G, a-). Therefore, without any 
restriction on the generality of the problem, we can assume that 
V1 = F2 = . . . = Vn = F (say). Then f = F X F X . . . X F (w copies). 
Let dim F = m and let {^1, y2, . . . , ym} be a basis of F. 

3. Some definitions. 

3.1. An element (wi, w2, . . . , ww) G IF is called a (G, 0-) element if and only 
if there exists g £ G such that o-(g) ^ 1 and wu wg^ are linearly dependent 
for all i £ I. 
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3.2. Two elements (wi, w2, . . . , wn) and (wit w2', . . . , w„') in W are said 
to be G-related if and only if there exists g Ç G such that w / = w0^) for all 
* € J. 

3.3. An element (wi, w2, . . . , wn) 6 IF is said to have the property P, if 
and only if for each i £ 7 and i ^ 2, either 2̂ ^ G (a>i, w2, . . . , w*-i} or ïe;< is 
independent of the set {ze/i, w2, . . . , W M } . 

3.4. An element (wi, w2, . . . , ww) Ç PF is called a trivial element if and 
only if Wi = 0 for some i. 

4. If (wi, w2l . . . , wn) € IF, is a trivial element, then clearly 

wi A ^2 A . . . A wn = 0. 

4.1. THEOREM. If (wi, W2J . . . , «O £ W is a non-trivial element, then it can 
be expressed in the form 

k 

(wh w2, . . . , wn) = o) + X) oLtTi 

for some non-negative integer k, where œ £ 12, at £ F, Tt £ W, and for each 
i, Ti has the property P and if i ^ j , then Tt and Tj are not G-r elated. 

Proof. Let {yi, y2, . . . , ym} be a basis of V. For each i £ 7, let 
Wi = L?=i bttjyj, and set ^4* = {j| l ^ j g w and &<, ^ 0}. 

Since (wi, w2l . . . , wre) is non-trivial, At will be non-empty. Let 
S = Ax X A2 X . . . X An (Cartesian product). H s £ S and 

5 = (si, S2, . . . , Sw ) , 

let bs = &i,si^2,s2 • • • bn,Sn. Clearly bs ^ 0. Define an equivalence relation on 
5 as follows. If s, t £ 5, then s ~ t ii and only if there exists g £ G such that 
^ = Sgd) for all i £ 7. Let .4 (5) denote the equivalence class containing 5 and 
let E be a set consisting of representatives of each of the equivalence classes 
{A(s)}. Now 

(wh w2,..., wn) = I X &i,*iy»ii X) ^2,S23
/s2» • • . , X bn,snysn) 

= \ E ^l.»!?*!» X &2,S23
,
S2, • • • , Z ) ^.«n?*» ) 

L NSl€Al S2€A2 SnGln ' 

~ 2 6i,ai( y81, X &2fS2» • • • i Z) *n.ftj«» / 

+ X &i.«i V ŝi» S b2lS2yS21 . . . , X &n.*J*»# 

— S b2tSAysuyS21.. . , 23 &n,*,y«n) 

+ . . . + X bltS1b2tS2 . . . ô»tSnCyni 3>S2,... , ySn). 
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Since each term in the square bracket is in 0, we have 

(wh w2l . . . , wn) = coo + X bs(yslJ yS2, . . . , y8n), 
ses 

where co0 G 0 and 6S G F. Now if £ € 4̂ (5), then tt = sgii) for some g £ G and 
all i G 7, or equivalently s* = tg-i^). Hence 

(yn, yt2, • • • > jtn) = [(y«i» 3^ , •, ytn) - ^(g"1)Cy^-^i)» • • • > y ^ o o ) ] 

= «fog - 1) + cr(g~1)(ySuyS2,. • • , 3 0 , 
where co(/, g_1) is equal to the term within the square brackets and is in 0. 
Therefore 

^ i , w2,. . . ,wn) = coo + £ X bMtig'1) 
s£E t£A(s) 

Set 

co = coo + X X) M O , g - 1) , b/ = X) X) <r(g-1)&«, 

and 

^ = Cy-i.ys,, • • - , 3 O ; 

we then have (wi, w2, . . . , «O = co + X^€# &/r s , which is the required 
form, satisfying the conditions stated in the theorem. 

4.2. In this section, we shall investigate the^coefficients b/, occurring in 4.1. 
Consider the nXm matrix M = (bitj), where Wi = ^^=ibitjyj, for 

i — 1, 2, . . . , n and wt 9e 0 for all i. For each s G £, s = (sly s2, . . . , sw), we 
define an w X w matrix il75 = (bitSj), obtained from M. Define 

H s = {g| g G G, a(g) = 1 and st = ^ ( 0 for all i G 7}. 

Clearly i7 s is a subgroup of G. Then the following propositions can be easily 
proved. 

4.3. PROPOSITION. If s and t are in S and s ~ t, then Hs and Ht are conjugate 
in G. In fact, if tt — sM for some g G G and all i G 7, then Ht = g~lHsg. 

4cA. PROPOSITION. Let s and t be in S and s ~ t. Let g and h be in G such that 
tt = Sgu) and tt = sh(i) for all i G 7. If (ysl, yS2, . . . , ySn) is not a (G, a) ele­
ment, then <r(g) = a(h). 

For each 5 G S, we have associated a matrix Ms and a subgroup Hs of G. 
Consider the coset decomposition of G with respect to Hs and let Gs be a set of 
representatives of these cosets. Let S* = {Ms\ s G S}. Define D: Sf —> F, as 

D(M8) = X °(h~l)bltSHl)b2,SH2) . . . bn,SHn). 
hCGs 

It can be easily verified that D is well-defined; i.e., it is independent of the set 
of representatives Gs. 
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4.5. PROPOSITION. Following the notation of 4.1, if s £ E, then bs' = D(MS). 
Further, if (ysii yS2, . . . , ySn) is not a (G, a) element, and t ~ s, then D(Mt) = 
a(g)D(Ms)J where g G G, such that tt = Sg^for ail i £ I. 

Proof, lî s = (si, s2, . . . , sn) G S and g G G, we shall write 
s0 = C ^ ( l ) , ^ ( 2 ) , • • • , Sg(n))-

Moreover, A (s) = {t\ t £ S, t ~ s] = {sg\ sg G S, g G G}. But if ^ and ^ are in 
4̂ (s), and Hsg = i75/£, then sga) = s^) for ail i G 7, since g/^-1 G ifs. There­

fore 4̂ (5) = {sg\ sg G 5, g G Gs}. Now 

= Z « • ( g " 1 ) ^ , «162,12, • • • , &n,«», 
*€A(s) 

where / = (/1, /2, . . . , *») 

s g es; 
g£Gs 

However, 

Hence 

bl,Sg(l)02,Sg(2) ' ' * 0n,Sg(n) ~ ^ 

^ °i.sg(i) — 0 for some i £ I 
*=$ Sgd) G At for some i 

bj = S <=r(g~1)bi,Sg(i)b2,sg(2) . . • &n.«„(„) = D(MS), 
g€Gs 

which proves the first assertion. Since t £ A(s), we have tt = sga) for some 
g £ G and all i G i". Then 

£ ( A Q = Z) ^(h~1)b1,tH1)b2,tH2) • • • 6n, «*(»), 

where G* is a set of coset representatives of Ht in G. Since /* = s^o, we have 
ha) = Sghd) for all i G 7. Hence 

(1) D(M,) = E ^(A_1)6i. 
heOt 

By 4.3, Hs = gHtg~x, and therefore [G:HS] = [G:i7*]. Also it can be easily 
shown that G/ = {gh\ h G Gt) is also a set of coset representatives of Hs in G. 
Therefore (1) becomes 

D(Mt) = 2J „(„-i\ *i.«afc(i)62,»flfc(ï) • • . bn,SgHn) 
h€Gt °A& ) 

= O-fV"1) E / ^ ( ^ ^ )^1 ,S^(1 )^ 2 ' S ^(2 ) ' * ' bn,Sgh(n) 

= er(g)Z>(JlO, 
which completes the proof. 
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We now restate the result in 4.1 as follows. 

4.6. THEOREM. If (wi, w2, . . . , wn) is a non-trivial element in W, then 
(wi, w2, . . . , wn) can be written in the form 

(2) (wlt w2, . . . , wn) = o) + X) D(Ms)(ysl, yS2, . . . , ySn), 
s£E 

where co Ç 0, and for each s G E, (ysl, yS2J . . . , ySn) has the property P ; moreover, 
if s,t £ E and s 9* t, then (y81, yS2, . . . , ySn) and (ytl, yt2, . . . , ytn) are not 
G-related. 

We shall call (2) a representation of (wly w2, . . . , wn) with respect to the 
basis \yh 3>2, . . . , ym) of V. 

4.7. Remark 1. HE' is another set of representatives of the equivalence 
classes, then 

(whw2,... ,w») = «' + ]£ -D(Afs0(y«i',y«'» • • • »y*»0, 

is another representation. By 4.5, if s' G 4̂ (5), and (y51, y52, . . . , 3 O is not a 
(G, cr) element, then D(MS) and D(MS>) are related by D(If , , ) = a(g)D(Ms), 
where s/ = s0a) for some g G G and all i G / . Moreover, <r(g) is uniquely 
determined by 4.4. 

Remark 2. lî s = (sly s2} . . . , sn) G 5, then (ysl, yS2J . . . , ;y5n) is a (G, a) 
element if and only if g G G such that a (g) 9^ 1 and st = ^ ( î ) for all i G / . 

5. Let (yi, v2, . . . , fln) be a non-trivial element of W. For each i £ I, let 
fl* = 2 ? = i aijyj- Consider the sets A t and S, as defined in 4.1. For each 5 G S, 
define fs: W —> F as follows. If (wi, w2, . . . , wn) G W and ^* = ]L?=i &*̂ ŷ  
i = 1, 2, . . . , n, set 

(Wl, W2, • • • , Wn)fs = X) °-fe""1)^l,s,(i)^2,Sff(2) • • • &«,*,(«), 

where Gs is a set of representatives of the cosets of Hs in G. 
One can easily show that fs is well-defined; i.e., it is independent of the 

choice of Gs. Then we have the following simple lemma. 

5.1. LEMMA. / , is multilinear and (G, a). 

6. We now come to our main problem stated in 1.7. We shall first prove a 
special case of the problem in the following lemma. 

6.1. LEMMA. Let (vi, v2l . . . , vn) be a non-trivial element in W which has the 
property P. Then v± A v2 A vn = 0 if and only if (vu v2, . . . , vn) is a (G, a) 
element. 

Proof ("if" part). (v1} v2, . . . , vn) being a (G, a) element implies that there 
exists g G G such that a (g) ^ 1 and vt and vg(i) are dependent for all i G / . 
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Moreover, since (vi, v2, . . . , vn) has the property P, we have vt = vg<<i) for all 
i G 7. Hence 

(1 - <r(g))(i>i, V2, . . . , vn) = (vi, v2, . . . , «>„) - o-(g)(»i, »2, . . . , vn) 

= Oi, »2, . . . , w») - o-(g)(^(i), Vgw, . . . , ZW)) G 12 

and since a(g) ^ 1, we have (vh v2, . . . , vn) £ 12 and hence 

»i A 2̂ A . . . A vn = (vi, v2, . . . , vn)r = (vu v2, . . . , vn)rç = 0 

("only if" part). Suppose that the assertion is false. Choose ai = 1 and at 

inductively as follows. a2 is the first index j such that Vj 9e V\; av is the first 
index j such that Vj is not any one of vai, va2, . . . , vav_1. If there are precisely 
k distinct vectors vu we have defined 1 = ai < a2 < . . . < ak S n. Clearly 
{z>i, va2, . . . , vali] is an independent set of vectors. Extend this to a basis 
{yi> 3̂ 2, . . . , Jm} of V, such that yt = vai, i = 1, 2, . . . , k ^ w. Then for 
each i G J, if i = a^ for some j , ^ = £ ? = i a ^ z , where a u = 1 if / = «^ and 
zero if Z ^ ay. If OCJ < i < a^+i, then ^ = */ai, for some f ^ / . In this case, 
Vi — ST=i ^u^zi where aiZ = 1 \i I = ay and zero if I F^ a^. And finally if 
an < i ^ n, then u* = flai>, for s o m e / g fe and vt = ]C?=i 0*0^, where au = 1 
if Z = a /̂ and zero if I ^ ay. Thus in every case A t is a singleton, i.e., 

if i = cuy, 
if a j < i < aj+1, where f <; j , 
if ak < i ^ n, where j ' ^ k. 

X An = {s} say, where saj = j , j = 1,2, ... ,k. 
Thus (»i, »2, . • • , »n) = (y*ii y«2» • • • > ?*»)> and, by our assumption, is not a 
(G, o-) element. Therefore by Remark 2, g £ G implies a (g) = 1 or st ^ s,(i) 

for some i 6 / . Define / s : W —» T7, as in § 5. Since fs is multilinear and a 
(G, o-) mapping, we have by the universal mapping property, as defined in 
1.3 (ii), a unique linear transformation/, of P(W, G, a) into F, which makes 
the following diagram 

F 

ifs 

At = 

Therefore^ = A1XA2X . . . 

P(W,G,a) 

commutative; i.e., r/s = / , . Now 

(Vi, Vi, . . . , Vn)f8 = ] C 0"(& )ditsh{i)a2t8h(2) ' • • an,sA(«). 
h<zGs 
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But if h G G s, and h G Hs, then either a (h) ^ 1 or st ^ sh(t) for some i G 7, 
and since (ysi, yS2J . . . , ySn) is not a (G, c) element, we have st 9e Shit) for 
some i G 7. Therefore s^) G 4̂Z-, since ^4* = {s*}. Hence, aijSh(i) = 0 and 
therefore 1̂,5̂ (1)̂ 2,5̂ (2) • • • an,sh(n) 

= 0. Thus 
(Vi, V2, . . . , S> n ) / s = a l , s ^ ( i ) a 2 , s ^ ( 2 ) • • • an,sh(n)i 

where h G Gs is the coset representative of i75. But then sha) = st for ail 
i G 7, and hence (z/i, z>2, • . . , *0/« = ai,sla2,S2 • • • Û^,*» = 1 ^ 0 . But since 
T/S = / „ we have (vh v2, . . . , »W)T/, ^ °> i-e-> faii »2, . . . , »n)r ^ 0, and hence 
vi A v2 A . . * A vn 9e 0, which is a contradiction. Therefore (vi, v2, . . . , ï>n) 
is a (G, 0-) element. 

We shall now prove our main result. 

6.2. THEOREM. Suppose that (vh v2, . . . , vn) G W is a non-trivial element. Let 

(3) K »2> • • • , v») = o>+^D(Ms)(ysl, 
yS2i • • • > y * n / 

&£ & representation with respect to a basis {yi, y2l . . . , yn] of V. Then a necessary 
and sufficient condition for v\ A v2 A . . . A vn to be zero is that for each s G E, 
either (ysl, yS2, . . . , ySn) is a (G, a) element or D(MS) = 0. 

Proof. Let E' = {s\ s G E, (ysi, yS2, . . . , ySn) is not a (G, or) element} ; E ' 
may be an empty set. Then (3) becomes 

(4) (vu V2,...,vn) = ù>+ X) D(M8)(y81, yS2, . . . , ySn) 
s£E—E' 

+ X I ' T O ^ j , y j . 
s£E' 

We shall prove the sufficiency first. E — E' is the index set that selects the 
non-vanishing terms in the sum (4). Thus 

(5) fa, v2, . . . ,vn) = co + X) 7)(M,)(y, l fyS2, . . . ,ySn). 
s^E—E' 

Now if s G E — E', then (ysl, yS2, . . . , ;y5n) is a (G, o-) element. Moreover, it 
has the property P. Therefore by 6.1, ysl A yS2 A . . . A ySn = 0. Thus on 
applying 77 to (5), we obtain vi A v2 A . . . A vn = 0. 

To prove the necessity, we assume it to be false; i.e., suppose that there 
exists 5 G E' such that D(MS) ^ 0. Define fs on W into F, as in § 5. Then by 
the universal mapping property, there exists a unique linear transformation 
fs on P(W, G, <J) into F, such that rfs = fs. Now in (4), for each s G E — E'', 
we have ys l A 3>S2 A . . . A ySn = 0 by 6.1. Hence, on applying rj to (4) 
we obtain 

(6) 0='£D(M,)(yn,yn,...,yJr,. 
s£E' 

Now we calculate each term of this sum. First we choose 5 G E', for which 
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D(MS) 9e 0. We know that such an s exists by our assumption. Then 

0^1» yS21 ' ' • J JsnUs = Z u a \ ^ )Csi,Sh(l)Cs2,Sh(2) ' * • ^Sn,Sh(n)J 

heGs 

where csitSh{i) = 1 if st = sha), and zero otherwise. Now since 5 £ £ ' , 
(3̂ i> y«2» • • • » 3 0 is n ° t a (6r, cr) element. Thus 

if A is a coset representative of iï"s, and zero otherwise. Therefore 

(7) (y si, y s*, • • • ,ySn)fs = l.. 

Next, for any t £ E', iî t ̂  s, then £ and 5 are not equivalent; thus for any 
h G G and in particular in Gs, t{• ̂  s^) for some i £ 7. Therefore 

(8 ) (y«lf 3̂  «2» • ' ' , ytnJjS = 2 ^ °"(^ )C*l,S*mC*2,S*(2) • • • Ctn,Sh(n) 
h£Gs 

= 0. 

However, from (6), we have 

ses7 

= X £>CW*)Gy«»:y«»... ,ySn)rfs 
s£E' 

= X D(Ms)(y81f yS2, . . . , y,n)/, 

= 2>(M,), using (7) and (8), 

which contradicts the fact that D(MS) =é 0, and this completes the proof. 
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