ON THE VANISHING OF A (G, s) PRODUCT
IN A (G, s) SPACE

K. SINGH

In this paper, we shall construct a vector space, called the (G, ¢) space,
which generalizes the tensor space, the Grassman space, and the symmetric
space. Then we shall determine a necessary and sufficient condition that the
(G, o) product of the vectors x1, 3, . . . , &, 1S zero.

1. Let G be a permutation group on I = {1,2,...,#} and F, an arbitrary
field. Let ¢ be a linear character of G, i.e., o is a homomorphism of G into the
multiplicative group F* of F.

For each 7 € I, let V; be a finite-dimensional vector space over F. Consider
the Cartesian product W= Vi X Vo X ... X V,.

1.1. Definition. W is called a G-set if and only if V; = V¢, for all ¢ € I,
and for all g € G.

1.2. Definition. A mapping f: W — U, where U is a vector space over F,
is called (G, ¢) if and only if (wy, wy, . .., wa)f = 0(g2) Wew, Wy, - -+ » Wy )f
forallg € Gyandw, € V,2=1,2,...,n.

1.3. Definition. A vector space T over F is called a (G, o) space of W if and
only if there exists a mapping 7 of Winto 7" such that:

(i) 7 is multilinear and (G, o),

(ii) T has a ‘“‘universal mapping property’, i.e., if U is any vector space
over F and f is any multilinear and (G, ¢) mapping of W into U, then there
exists a unique linear transformation f of 7 into U such that 7f = f.

1.4. THEOREM. Given G, o, and a G-set W, there exists a (G, o) space over an
arbitrary field F. Any two (G, ) spaces are isomorphic as vector spaces.

Proof. Let F(IW) denote the free vector space generated by W over an
arbitrary field F. Let @ be the smallest subspace of F(W) generated by the
elements of the form

(w1, ...,0w; + Bwy ..., W) —alwy, ..., Wiy..., W)
— Bwy, ..., w/ ..., W)
and ('wl, Woy o v vy wn) - O'(g) (wg(l), Wy(2)y « v+ s 'w‘,(,,)), for all ’L,’Ix = 1, 2, A (D
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and all g € G. Let T = F(W)/Q be the quotient space and # the natural
linear transformation of F(W) onto 7. If we take 7 to be the restriction of 7
to W, then one can easily verify that T"is a (G, o) space, with 7 as a multilinear
and (G, o) mapping of W into 7.

The uniqueness of 7', up to isomorphism, follows easily from the definition
of a (G, o) space.

In view of 1.4, we shall call T, the (G, o) space of W and denote it by
P(W,G, o).

1.5. By taking particular values for G and ¢, we obtain the classical spaces;
for instance:

If G = {e}, then
P(W) Gy 1) = ® V'iy
i=1

the tensor space;

If G =S, and ¢(g) = 1if gis an even permutation and —1 if g is an odd
permutation, then P(W, G, ¢) = A" V, the Grassman space;

If G=S,and o(g) =1 for all g € G, then P(W, G, s) = Vi, the sym-
metric space.

1.6. Notation. If (wi, ws, ..., w,) € W, we shall denote its image
(w1, wa, . .., w,)r under 7 by w; A w: A ... A w, and call it the (G, o)
product of w,, ws, . . ., W,.

1.7. We shall now determine a necessary and sufficient condition that
wr A wy A ... /A w, =0. The conditions are known for the classical spaces
(see [1; 2; 3; 4]). For the symmetric space V,, this result is derived in [2]
under the restriction that V is an #-dimensional unitary space.

2. Let U be a vector space over F, such that
dim U = max{dim V; 1 £ 7 =< #n}.

Consider W =UXUX ... X U (n copies) and P(W,G, o). If
fi: Vi— U, 1 £ ¢ £ n, are monomorphisms with f;, = f,, whenever V; = 7V,
then they induce an embedding of P(W, G, ¢) into P(W’, G, ¢), such that the
product w1 Aw: A ... Aw, in P(W,G, s) is mapped into the product
fi(wi) A fa(ws) A ... A fo(w,) in P(W,G, o). Therefore, without any
restriction on the generality of the problem, we can assume that
Vi=Vy=...=V,=7V (say). Then W=V X V X ... X V (n copies).
Let dim V = m and let {y1, 2, ..., ¥} be a basis of V.

3. Some definitions.

3.1. An element (wy, ws, . .., w,) € Wiscalled a (G, ¢) element if and only
if there exists g € G such that o¢(g) # 1 and w;, w,(; are linearly dependent
forallz € I.
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3.2. Two elements (w1, ws, ..., w,) and (w/, w,, . , w,)) in W are said
to be G-related if and only if there exists g € G such that w,/ = w,(, for all
i€ 1.

3.3. An element (wy, ws, ..., w,) € W is said to have the property P, if
and only if for each ¢ € I and ¢ = 2, either w; € {w,, w,, ..., w, 1} or w; is
independent of the set {ws, w,, . .., wi1}.

3.4. An element (wi, ws, ..., w,) € W is called a trivial element if and

only if w; = 0 for some 4.

4. If (w1, wo, ..., w,) € W, is a trivial element, then clearly
wi Awe A ... Aw, =0.
4.1. THEOREM. If (w1, we, ..., w,) € W is a non-trivial element, then it can

be expressed in the form
k
(’LU1,'ZU2, .o ,w,,) = W +Z:laiT¢

for some non-negative integer k, where w € Q, a; € F, T; € W, and for each
i, T; has the property P and if © # j, then T ; and T ; are not G-related.

Proof. Let {y1,¥2 ...,¥n} be a basis of V. For each 7 € I, let
w; = 2 j=1bs,y,and set A; = {j|1 £j < mand b,; 5= 0}.
Since (w1, ws, ..., w,) is non-trivial, 4; will be non-empty. Let
S =41 X 42 X ... X A, (Cartesian product). If s € S and
s = (31, S2) ¢ v vy sﬂ)r

let by = b1,5:02,55 « « - bn,s. Clearly by % 0. Define an equivalence relation on
S as follows. If s, ¢ € S, then s ~ ¢ if and only if there exists ¢ € G such that
t; = Sy for all ¢ € I. Let 4 (s) denote the equivalence class containing s and
let E be a set consisting of representatives of each of the equivalence classes

{A(s)}. Now
(wl, Wy o o o ,wn) = < Z b1,51y31; Z b2,s2yszy sy Z bn.sﬂ’.m)
s1€41 S2€A42 sn€dn
= [( Z 1,591y Z b2,55Ys21  + + s Z bn.snysn)
S1€41 s2€A2 sn€An
- Z b1,31<ysn Z b2,szy LI ] Z bn,snysn):,
S1€41 $2€A2 Sn€dn
+ Z bl,u[( s1y Z b2,32yszy ce ey Z bn.snysn)
s1€41 $2€A42 Sn€dn
- Z b2.sz<ysu Vsar e oo Z bn.s»ﬁ’s,.)]
$2€42 Sn€dn
+...+ Z b1,5102,5 « bn.s:.(ysu WATTIOR » Von)e
i
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Since each term in the square bracket is in Q, we have
(wlr Way v vt ,wn) = wo + Z bs(ysu Vsar o ooy ysn),
SES

where wo € Qand b, € F. Now if t € A(s), then t; = 5,5 for some g € G and
all 7 € I, or equivalently s; = ¢,-1(;. Hence

(3’m Vigy o ooy ytn) = [(ytlr Vigy oo ytn) - U(g_l) (ylg_l(l)’ ] yla*l(n))]
+ O.(g—l)<ylg_1(l)l Vig=tyr -+ - - ’yla‘l(n))
= ‘-"(t: g_l) + U(g—l)(ysu Vsay o v - y Von)s
where w(t, g~1) is equal to the term within the square brackets and is in Q.
Therefore
(W1 W2y v v ,71),,) = wo +Z E blw(tr g_l)
SEE  1EA(S)
+20 2 @0 Yoo - oy Vo)
SEE  IEA(S)
Set
w=w+, 2, bwtgh), b'=2 2 olghb,
SEE 1EA(S) SEE tEA(S)
and
Ts= Yor, Vsar oo - s Vsn)s
we then have (wi, ws, ..., w,) = 0 + > seubd/’Ts, which is the required

form, satisfying the conditions stated in the theorem.

4.2. In this section, we shall investigate theﬁcoefﬁcients by, occurring in 4.1.

Consider the n X m matrix M = (by,;), where w; = X>.7_10, v, for
1=1,2,...,nand w,; # 0 for all 2. For each s € .S, s = (51, 52, ..., S,), we
define an # X »n matrix M, = (b;,;;), obtained from M. Define

H,={glg € G,o(g) =1ands; = s,y forall ¢ € I}.

Clearly H is a subgroup of G. Then the following propositions can be easily
proved.

4.3. PROPOSITION. If s and t are in S and s ~ t, then H; and H, are conjugate
in G. In fact, if t; = Sy for some g € G and all ¢ € I, then H, = g7'H g.

4.4. PROPOSITION. Let s and t be in S and s ~ t. Let g and h be in G such that
by = Sgy and t; = Spy for all © € I If (Y51, Vszy o -+ Vsu) 1S m0t @ (G, ) ele-
ment, then a(g) = o(h).

For each s € S, we have associated a matrix M and a subgroup H, of G.
Consider the coset decomposition of G with respect to H and let G, be a set of
representatives of these cosets. Let ¥ = {M,|s € S}. Define D: ¥ — F, as

D(M,) = 3 o(E braab2ong - - - bavsign-

h€Gs

It can be easily verified that D is well-defined; i.e., it is independent of the set
of representatives G;.
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4.5. PROPOSITION. Following the notation of 4.1, if s € E, then by = D(M,).
Further, if (Vs1, Vsoy « + +» Vsn) 15 n0t @ (G, o) element, and t ~ s, then D(M,) =
a(g)D (M), where g € G, such that t; = sy for all 1 € 1.

Proof. If s = (51,52, ...,%) € Sand g € G, we shall write
Sg = (o0 g+« Sgm))-
Moreover, A (s) = {t|t € S,t ~ s} = {s,] s, €S, g € G}. Butif s, and s, are in
A(s), and Hyg = Hgh, then s,y = sy for all ¢ € I, since gh—! € H,. There-
fore A(s) = {s4| s, € S, g € G5}. Now
b = Z ‘T(g_l)bt

tEA(s)

= Z U(g—l)b1.11b2,lsy ey bn,lm

1EA(S)
where £ = (83,2, . .., 1)

-1
= Z O'(g )bl,sa(x)bZ,sa(z) see bn,Sg(n)'

Sg€S;
g€Gs
However,
b1y30(1)b2'30(2) P bn,sg(n) = 0
& bi50 = 0 forsomes € [
s, ¢ 4; for some ¢
s, ¢S,
Hence

by = Z U(g_l)bl.sy(x)bZ.Sg(z) e bn,8g<n) = D(Ms),

g€Gs

which proves the first assertion. Since ¢t € A (s), we have ¢; = s,(;) for some
g € Gand all z € I. Then
D(Mz) = MZG U(h—l)bl.th(l)bz,th(z) e bn.lh(n)’
t
where G, is a set of coset representatives of H, in G. Since ¢; = s,¢;), we have
ta(sy = Soneny for all z € I. Hence
1) D(M,) = Z U(h_l)blyﬂph(l)b2,80h(2) ce bn,sgh(n)-

heGt

By 4.3, H, = gH g™, and therefore [G:H] = [G:H,]. Also it can be easily
shown that G, = {gh| k € G} is also a set of coset representatives of H in G.
Therefore (1) becomes

DM, = "(llg__l_

—1 )bl,sh1b2,sh2 ~-~bn.sh
=2, O'(g ) oh(1) oh(2) oh(n)

1 -1 -1
= —— a(h b b .oub
o (g 1) ghEZGs’ ( g ) 1,sgh(1)Y2,80R(2) 7, Sgh(n)

= o(g)D (M),
which completes the proof.
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We now restate the result in 4.1 as follows.

4.6. THEOREM. If (wy, ws, ..., w,) 2s a non-trivial element in W, then
(w1, w2, . . ., W,) can be written in the form
(2) (wly 'ZU2, .. ywn) =w + XE;“D(MS)(ySU ys2y o ,ys,.),
where w € Q, and for each s € E, (Yo, Vsay - - - » Vsn) has the property P; moreover,
if s,t € E and s # t, then (Yo, ¥say - -+ Vsu) 18 (Y11, Vigy - - - V1) Qr€ MOt
G-related.

We shall call (2) a representation of (wi, ws, ..., w,) with respect to the

basis {y1, ¥2, . . - » ¥m} of V.

4.7. Remark 1. If E’ is another set of representatives of the equivalence
classes, then

(w1, wa, .., W,) = & + 'ZEE" D(My) (¥, Ysary - - - OR
is another representation. By 4.5, if s’ € A (s), and (¥4, ¥s5y - - - , ¥s) 1S DOt 2

(G, o) element, then D (M) and D (M) are related by D (M) = o(g)D(My),
where s;/ = s,;) for some g € G and all ¢ € I. Moreover, ¢(g) is uniquely
determined by 4.4.

Remark 2. If s = (s1, 82, ...,58,) €5, then (¥51, Y52, - - -, ¥sn) 18 @ (G, )
element if and only if g € G such that ¢(g) # 1 and s; = s, forall ¢ € I.

5. Let (91,9, ...,9,) be a non-trivial element of W. For each 7 € I, let
v; = 2. 5-1a:;¥; Consider the sets 4; and S, as defined in 4.1. For each s € S,
define f;: W — F as follows. If (wy, ws, ..., w,) € Wand w;, = 3> 5_1b.y,,
1 =12, ...,n, set

(wlv W2y oo vy wn)fs = ; O’(g_l)bl,sa(l)bzysa@) ce b"»-?ﬂ(n)’
g s
where G; is a set of representatives of the cosets of H; in G.

One can easily show that f; is well-defined; i.e., it is independent of the
choice of G;. Then we have the following simple lemma.

5.1. LEMMA. f, is multilinear and (G, 7).

6. We now come to our main problem stated in 1.7. We shall first prove a
special case of the problem in the following lemma.

6.1. LEMMA. Let (v1, v, . . ., ¥y) be a non-trivial element in W which has the
property P. Then vy A vs A v, = 0 if and only if (v1,v2,...,2,) 2s a (G, o)
element.

Proof (‘“if”" part). (v1, ve, ..., 9,) being a (G, o) element implies that there

exists g € G such that o(g) # 1 and v; and v,(; are dependent for all 7 € I.
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Moreover, since (v1, 92, . . ., ¥,) has the property P, we have v; = v,; for all

1 € I. Hence
A —=a(@)@,v2 ... ) = (01,9, ...,0) — c(g)(@y,vs...,0)
= (91,2 ...,%) — o(2) Ww, %, - -+, V) € Q
and since o(g) # 1, we have (v, s, ...,9,) € € and hence
NAVRA...AY = (01,0, ...,%)7 = 01,%,...,%)7 =0

(“only if”" part). Suppose that the assertion is false. Choose @y = 1 and «;
inductively as follows. a, is the first index j such that v; ¥ v1; @, is the first
index j such that v, is not any one of ¥4y, ¥y, . . . , U, _;. If there are precisely

E distinct vectors v;, we have defined 1 = a1 < a2 < ... < o = n. Clearly
{V1, Vagy - - - » Vaz} 1S an independent set of vectors. Extend this to a basis
{¥1, Y2 -« -y ¥m} Of V, such that y; = v,,2=1,2,...,k = m. Then for

each ¢ € I, if 1 = @, for some j, v; = > 7-1a:y;, where a;; = 1if I = a;and
zero if I # a; If a; < 7 < ayy, then v; = v, for some 7/ < j. In this case,
v; = >.7=1a:Y1;, where a;; = 1 if I = a; and zero if I # ay. And finally if
a, < 1 S n,thenv; = 94/, forsomej < kandv; = X 7-1a:y;, wherea;; =1
if I = ay and zero if I # ay. Thus in every case 4 ; is a singleton, i.e.,

{7l ifi=ay
Ay =13{/t fa; <7 <aji, wherej =j,

{7/} oy <7 =mn, wherej =<k
Therefore S = A1 X A2 X ... X 4, = {s} say, wheres.; = 7,7 =1,2,...,k.
Thus (v1, %2, -+ - %) = (Ys1» Vsas -+« » ¥su), and, by our assumption, is not a
(G, o) element. Therefore by Remark 2, g € G implies o(g) = 1 or s; 5 sy
for some ¢ € I. Define f;: W — F, as in § 5. Since f, is multilinear and a
(G, ¢) mapping, we have by the universal mapping property, as defined in
1.3 (ii), a unique linear transformation f; of P(W, G, ¢) into F, which makes
the following diagram

fs

w T P(W,G, o)

Y

commutative; i.e., 7f, = f;. Now

@102 0 ooy Va)fs = ; U(h_l)al.sh(x)a2,sh(2) o oo Onyshinye
€
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But if 7 € G, and k& ¢ H,, then either ¢(h) 5 1 or s; 5 sy for some 7 € I,

and since (Ys;, Vsor + - -, Vsa) 18 N0t a (G, 0) element, we have s; 5 suy for
some ¢ € I. Therefore s,y ¢ A, since 4, = {s;}. Hence, a; 4, = 0 and
therefore a1,5,,@2, 5002y + + + @nysngey = 0. Thus
(vly V2y o v vy vn)fs = al,sh(l)a2,sh(2) e an,sh(n)y

where & € G, is the coset representative of H;. But then s, = s; for all
1 € I, and hence (v1,9s, ..., %)fs = G1,502,55 - - - Gn,sn = 1 # 0. But since
7fs = fs, we have (vy, 03, . . ., 0,)7fs # 0, i.e., (V1, Vs, . .., )7 # 0, and hence
vy Avs A... /A9, # 0, which is a contradiction. Therefore (v1, v, ..., 7,)

is a (G, o) element.

We shall now prove our main result.

6.2. THEOREM. Suppose that (vy, v, . .., v,) € W is a non-trivial element. Let
3) (1,02, ...,%) = w +%D(Ms) Os1r Vsar v oo s Vsn)
be its representation with respect to a basis {y1, Y2, . . . , Yu} of V. Then a necessary
and sufficient condition for vi A\ ve A\ ... A v, to be zero is that for each s € E,
etther (Veoy, Vsar - - - » Vi) 28 @ (G, o) element or D(M,) = Q.

Proof. Let E' = {s|s € E, (W51, ¥s2) - - - » ¥su) 18 DOt 2 (G, 0) element}; E’

may be an empty set. Then (3) becomes

(4) (2)1,2)2,...,7)”)=w+ Z D(Ms)(yslvysm---rySn)

SEE—E’
+ Z D(A[s)(yslryszv ey ys")~

SEE’

We shall prove the sufficiency first. E — E’ is the index set that selects the
non-vanishing terms in the sum (4). Thus

(5) (7}1, U2y - v rvn) = w + E;E’ D(MS)(yslyyszy .. nyn)-

Now if s € E — E’, then (¥51, ¥sgy - - - » ¥sn) 15 a (G, o) element. Moreover, it
has the property P. Therefore by 6.1, y,, Ay A ... Ay, = 0. Thus on
applying 7 to (5), we obtain v; A va A ... A v, = 0.

To prove the necessity, we assume it to be false; i.e., suppose that there
exists s € E’ such that D(M;) # 0. Define f; on W into F, as in § 5. Then by
the universal mapping property, there exists a unique linear transformation
fson P(W, G, o) into F, such that 7f; = f,. Now in (4), for each s € E — E/,
we have yg, Ay, A ... Ay, =0 by 6.1. Hence, on applying n to (4)
we obtain

(6) 0= é,D(Ms)(ysuyszvo'onyn)"l-

Now we calculate each term of this sum. First we choose s € E’, for which
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D(M,) # 0. We know that such an s exists by our assumption. Then

-1
Ds1r Vsar + + + 2 Ysu)fs = hz a(h )631,sh(1)csa,sh(2) <o Csnysaqmy

€Gs

where ¢g;, 00y = 1 if s; = sp9, and zero otherwise. Now since s € E/,
(Vs1y Vsar + + + » Ysu) 1s DOt a (G, o) element. Thus

Cs1,sn1)Cs2,sh(2) * + » Csnsh(n) = 1
if 2 is a coset representative of Hy, and zero otherwise. Therefore
) (ysn Ysay v o - !ysn)f-? = 1.
Next, for any ¢t € E’, if ¢ # 5, then ¢ and s are not equivalent; thus for any

kh € G and in particular in Gy, ¢; # sucy for some ¢ € I. Therefore

-1
) GurVizy ooy Yeudfs = heZG o(h )cllysh(l)clz'Sh(Z) o+ Ctn,sh(ny

= 0.

However, from (6), we have

0 éID(Ms)(ysnysw---1y8n)7
é, D(Ms)<ys1» Vsar v ooy ys,.)'rfs

> D(M) Wi Ysar -+ -+ Ysufs

SEE’
D (M), using (7) and (8),
which contradicts the fact that D (M) £ 0, and this completes the proof.
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