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Abstract

In noncommutative algebraic geometry an Artin–Schelter regular (AS-regular) algebra is one of the main
interests, and every three-dimensional quadratic AS-regular algebra is a geometric algebra, introduced by
Mori, whose point scheme is either P2 or a cubic curve in P2 by Artin et al. [‘Some algebras associated to
automorphisms of elliptic curves’, in: The Grothendieck Festschrift, Vol. 1, Progress in Mathematics, 86
(Birkhäuser, Basel, 1990), 33–85]. In the preceding paper by the authors Itaba and Matsuno [‘Defining
relations of 3-dimensional quadratic AS-regular algebras’, Math. J. Okayama Univ. 63 (2021), 61–86],
we determined all possible defining relations for these geometric algebras. However, we did not check
their AS-regularity. In this paper, by using twisted superpotentials and twists of superpotentials in
the Mori–Smith sense, we check the AS-regularity of geometric algebras whose point schemes are
not elliptic curves. For geometric algebras whose point schemes are elliptic curves, we give a simple
condition for three-dimensional quadratic AS-regular algebras. As an application, we show that every
three-dimensional quadratic AS-regular algebra is graded Morita equivalent to a Calabi–Yau AS-regular
algebra.

2020 Mathematics subject classification: primary 16W50; secondary 16S37, 16D90, 16E65.

Keywords and phrases: AS-regular algebras, Calabi–Yau algebras, elliptic curves, geometric algebras,
Koszul algebras, superpotentials.

1. Introduction

In noncommutative algebraic geometry, an Artin–Schelter regular (AS-regular) alge-
bra, introduced by Artin and Schelter [1], is one of the main interests. Artin et al.
[3] proved that there exists a one-to-one correspondence between three-dimensional
AS-regular algebras and regular geometric pairs. This work convinced us that algebraic
geometry is very useful for studying even noncommutative algebras. Dubois-Violette
[6] and Bocklandt et al. [5] showed that every three-dimensional quadratic AS-regular
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algebra A is isomorphic to a derivation-quotient algebraD(w) of a twisted superpoten-
tial w, and Mori and Smith [13] showed that such w is unique up to nonzero scalar mul-
tiples. So it is interesting to study AS-regular algebras using both algebraic geometry
and twisted superpotentials. In fact, Mori and Smith [14] classified three-dimensional
quadratic Calabi–Yau AS-regular algebras by using superpotentials.

In our previous paper [10], in terms of geometric algebras defined by Mori [12],
we determined all possible defining relations for geometric algebras whose point
schemes are either P2 or cubic curves in P2 and classified them up to graded algebra
isomorphism and up to graded Morita equivalence. However, in [10], we did not
check the AS-regularity of these classified geometric algebras. So, one of the aims
of this paper is to check their AS-regularity. Note that Iyudu and Shkarin [11]
recently gave a list of defining relations of three-dimensional AS-regular algebras by
using twisted superpotentials, but gave no proof of AS-regularity of these algebras.
For geometric algebras listed in [10, Theorem 3.1], we give a list of candidates of
twisted superpotentials to serve our purposes (see Proposition 3.1). By using this
list, we give a complete list of superpotentials whose derivation-quotient algebras are
three-dimensional quadratic Calabi–Yau AS-regular algebras whose point schemes are
not elliptic curves (see Theorem 3.3). By using a twist of a superpotential (in the
sense of [13]), we show that the potentials listed in Proposition 3.1 are in fact twisted
superpotentials and their derivation-quotient algebras are three-dimensional quadratic
AS-regular algebras (see Theorems 3.4 and 3.5). For a geometric algebra A whose
point scheme is an elliptic curve in P2, we give a simple condition that A is AS-regular
(see Theorem 4.3). As an application of Corollary 3.7 and Theorem 4.3, we prove the
following theorem (see Theorem 4.4).

THEOREM 1.1. For every three-dimensional quadratic AS-regular algebra A, there
exists a Calabi–Yau AS-regular algebra S such that A and S are graded Morita
equivalent.

Theorem 1.1 tells us that, for a three-dimensional quadratic AS-regular algebra A, the
study of the noncommutative projective scheme ProjncA of A in the sense of Artin and
Zhang [2] is reduced to the study of ProjncS for the Calabi–Yau AS-regular algebra S.
Note that [17, Example 14] gave one example of a three-dimensional cubic AS-regular
algebra which is not graded Morita equivalent to any Calabi–Yau AS-regular
algebra.

This paper is organized as follows. In Section 2 we recall the definition of an
AS-regular algebra defined by Artin and Schelter [1], a Calabi–Yau algebra by
Ginzburg [8], a twisted superpotential and a twist of a superpotential in the sense
of [13]. We also recall Zhang’s twist and twisted algebras from [19] and some lemmas
that are needed to show our Theorem 1.1. Moreover, we recall the definitions of a
geometric algebra for quadratic algebras introduced by Mori [12], and the result of our
previous paper [10]. In Section 3 we prove Theorem 1.1 for geometric algebras whose
point schemes are not elliptic curves. Finally, in Section 4, we prove Theorem 1.1 for
geometric algebras whose point schemes are elliptic curves in P2.
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[3] AS-regularity of geometric algebras 195

2. Preliminaries

Throughout this paper, let k be an algebraically closed field of characteristic 0.
A graded k-algebra means an N-graded algebra A =

⊕
i∈N Ai. A connected graded

k-algebra A is a graded k-algebra such that A0 = k. We denote by GrMod A the category
of graded right A-modules and graded right A-module homomorphisms and we say
that two graded k-algebras A and B are graded Morita equivalent if the two categories
GrMod A and GrMod B are equivalent.

2.1. AS-regular algebras and Calabi–Yau algebras. Let A be a connected graded
k-algebra finitely generated by elements of positive degree. We recall that

GKdim A := inf
{
α ∈ R | dimk

( n∑
i=0

Ai

)
≤ nα for all n � 0

}

is called the Gelfand–Kirillov dimension of A.

DEFINITION 2.1 [1, page 171]. A connected graded k-algebra A is called a
d-dimensional Artin–Schelter regular (AS-regular ) algebra if A satisfies the following
conditions:

(i) gldim A = d < ∞;
(ii) GKdim A < ∞;

(iii) (Gorenstein condition) ExtiA(k, A) �
{

k if i = d,
0 if i � d.

Any three-dimensional AS-regular algebra A finitely generated in degree 1 is a
graded algebra isomorphic to an algebra of the form

k〈x, y, z〉/( f1, f2, f3) (quadratic case) or k〈x, y〉/(g1, g2) (cubic case),

where the fi are homogeneous polynomials of degree 2 and the gi are homoge-
neous polynomials of degree 3 [1, Theorem 1.5 (i)]. In this paper, we focus on
three-dimensional quadratic AS-regular algebras.

Let V be a three-dimensional k-vector space and T(V) the tensor algebra of V .
We choose a basis {x1, x2, x3} of V . Also, for an algebra T(V)/(R), we choose a basis
{ f1, f2, f3} of R ⊂ V⊗2. We set x := (x1, x2, x3)t and f := ( f1, f2, f3)t, where, for a matrix
N, Nt means the transpose of N. There is a unique 3 × 3 matrix M with entries in V
such that f = Mx (see [1, page 177]). From [3, page 34], T(V)/(R) is called standard
if there are bases for V and R such that the entries in xtM are also a basis for R.

THEOREM 2.2 [3, Theorem 1]. Let V be a three-dimensional k-vector space and R a
three-dimensional subspace of V⊗2. Then T(V)/(R) is a three-dimensional AS-regular
algebra if and only if T(V)/(R) is standard and the common zero locus in P2 of the
2 × 2 minors of the matrix M in the above is empty.

Here, we recall the definition of a Calabi–Yau algebra introduced by [8].
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DEFINITION 2.3 [8, Definition 3.2.3]. A k-algebra S is called a d-dimensional
Calabi–Yau algebra if S satisfies the following conditions:

(i) pdSe S = d < ∞;

(ii) ExtiSe (S, Se) �

⎧⎪⎪⎨⎪⎪⎩S if i = d,
0 if i � d

(as right Se-modules),

where Se = Sop ⊗k S is the enveloping algebra of S.

For example, it is known that an nth polynomial ring k[x1, x2, . . . , xn] is
n-dimensional Calabi–Yau.

We remark that, for a 3-dimensional quadratic AS-regular algebra A, the quadratic
dual A! of A is a Frobenius algebra by [18, Proposition 5.10]. Hence, we can consider
the Nakayama automorphism νA! of A!. By using the following consequence proved by
Reyes et al. [16], we can determine whether these algebras A are Calabi–Yau algebras
or not.

LEMMA 2.4 [16, comments after the proof of Example 1.4]. Let A be a
three-dimensional quadratic AS-regular algebra. Then A is Calabi–Yau if and only if
the Nakayama automorphism νA! of A! is the identity (that is, A! is symmetric).

2.2. Twisted algebras. In this subsection we recall the notions of twisting system
and twisted algebra introduced by Zhang [19].

A set of graded k-linear automorphisms of A, say θ = {θi | i ∈ N}, is called a twisting
system of A if θn(aθl(b)) = θn(a)θn+l(b) for all l, m, n ∈ N and all a ∈ Al, b ∈ Am [19,
Definition 2.1]. Let θ = {θi | i ∈ N} be a twisting system of A. Then a new graded
and associative multiplication ∗ on the underlying graded k-vector space

⊕
i∈N Ai is

defined by

a ∗ b := aθl(b) for all a ∈ Al, b ∈ Am.

We denote by 1θ the identity with respect to ∗. The graded k-algebra (
⊕

i∈N Ai, ∗, 1θ)
is called the twisted algebra of A by θ and is denoted by Aθ [19, Definition 2.3]. Any
graded algebra automorphism θ ∈ Aut A defines a twisting system of A by {θi}i∈N. The
twisted algebra of A by this twisting system is denoted by Aθ instead of A{θ

i}i∈N that is
called the twist of A by θ.

LEMMA 2.5 [19, Theorem 3.5]. Let A and A′ be two connected graded k-algebras with
A1 � 0. Then A′ is isomorphic to a twisted algebra of A if and only if GrMod A and
GrMod A′ are equivalent.

LEMMA 2.6 [19, Theorem 5.11 (b)]. Let A be a connected graded k-algebra and θ be
a twisting system of A. Then A is a three-dimensional quadratic AS-regular algebra
if and only if the twist Aθ of A by θ is also a three-dimensional quadratic AS-regular
algebra.
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2.3. Derivation-quotient algebras. We now recall the definitions of super-
potentials, twisted superpotentials and derivation-quotient algebras from [5].
Also, we recall the definition of a twist of a superpotential due to [13] (see
Definition 2.9).

Fix a basis {x1, x2, x3} for V . For w ∈ V⊗3, there exist unique wi ∈ V⊗2 such that
w =
∑3

i=1 xi ⊗ wi. Then the partial derivative of w with respect to xi (i = 1, 2, 3) is
∂xi (w) := wi, and the derivation-quotient algebra of w is

D(w) := T(V)/(∂x1 w, ∂x2 w, ∂x3 w).

Note that we call an element w ∈ V⊗3 a potential in this paper. We define the k-linear
map ϕ: V⊗3 −→ V⊗3 by ϕ(v1 ⊗ v2 ⊗ v3) := v3 ⊗ v1 ⊗ v2. We write GL(V) for the general
linear group of V .

DEFINITION 2.7 [5, Introduction], [13, Definition 2.5]. Let w be a potential in V⊗3.

(1) If ϕ(w) = w, then w is called a superpotential.
(2) If there exists θ ∈ GL(V) such that (θ ⊗ id ⊗ id)ϕ(w) = w, then w is called a

twisted superpotential.

REMARK 2.8. By Dubois-Violette [6] and Bocklandt et al. [5], every three-dimensional
quadratic AS-regular algebra A is isomorphic to a derivation-quotient algebra D(w)
of a twisted superpotential w (see [6, Theorem 5] and [5, Theorem 6.8]), and
by Mori and Smith [13], such w is unique up to nonzero scalar multiples (see
[13, Proposition 2.12]).

DEFINITION 2.9 [13, page 390]. For a superpotential w ∈ V⊗3 and θ ∈ GL(V),

wθ := (θ2 ⊗ θ ⊗ id)(w)

is called a Mori–Smith twist (MS twist) of w by θ.

For a potential w ∈ V⊗3, we set

Aut (w) := {θ ∈ GL(V) | (θ⊗3)(w) = λw, ∃ λ ∈ k \ {0}}.

For a potential w ∈ V⊗3, it follows from [13, Lemma 3.1] that Aut (w) is a subset of
AutD(w).

LEMMA 2.10 [13, Proposition 5.2]. For a superpotential w ∈ V⊗3 and θ ∈ Aut (w), we
have thatD(wθ) � D(w)θ.

LEMMA 2.11. If w ∈ V⊗3 is a superpotential and θ ∈ Aut (w), then the MS twist wθ of
a superpotential w by θ is a twisted superpotential.

PROOF. Let w ∈ V⊗3 be a superpotential and θ ∈ Aut (w). By definition, there exists
λ ∈ k \ {0} such that (θ⊗3)(w) = λw. We set θ′ := λ−1θ3 in GL(V). Since w is a
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superpotential,

(θ′ ⊗ id ⊗ id)(ϕ(wθ)) = (θ′ ⊗ id ⊗ id)(id ⊗ θ2 ⊗ θ)(ϕ(w))

= λ−1(θ3 ⊗ θ2 ⊗ θ)(w) = λ−1(θ2 ⊗ θ ⊗ id)(λw) = wθ,

so the MS twist wθ is a twisted superpotential. �

REMARK 2.12. If θ ∈ GL(V) \ Aut (w), then the MS twist wθ of a superpotential w ∈
V⊗3 by θ need not be a twisted superpotential. Indeed, let w := x3 ∈ V⊗3. Since ϕ(w) =
w, we see that w is a superpotential. Take

θ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
in GL3(k). Then wθ = (θ2 ⊗ θ ⊗ id)(w) = xyx. Since, for any θ′ ∈ GL(V), (θ′ ⊗ id ⊗
id)(ϕ(wθ)) = θ′(x)xy � wθ, the MS twist wθ is not a twisted superpotential. Note that
we have θ � Aut (w) by (θ⊗3)(w) = y3 � w.

DEFINITION 2.13. Let w ∈ V⊗3 be a potential.

(1) A potential w is called regular if the derivation-quotient algebra D(w) is a
three-dimensional quadratic AS-regular algebra.

(2) A potential w is called Calabi–Yau if the derivation-quotient algebra D(w) is a
three-dimensional Calabi–Yau AS-regular algebra.

REMARK 2.14. By Bocklandt [4], every three-dimensional quadratic Calabi–Yau
AS-regular algebra is isomorphic to a derivation-quotient algebra D(w) of a super-
potential w [4, Theorem 3.1].

LEMMA 2.15 [13, Corollary 4.5]. Let w ∈ V⊗3 be regular. Then w is Calabi–Yau if and
only if it is a superpotential.

LEMMA 2.16. If w is a Calabi–Yau superpotential and θ ∈ Aut (w), then the MS twist
wθ of a superpotential w by θ is a regular twisted superpotential.

PROOF. Let w ∈ V⊗3 be a Calabi–Yau superpotential and θ ∈ Aut (w). By Lemma 2.11,
the MS twist wθ of w by θ is a twisted superpotential, so it is sufficient to show that wθ is
regular. Since w is Calabi–Yau,D(w) is Calabi–Yau AS-regular, and since θ ∈ Aut (w),
by Lemma 2.10, we have that D(wθ) � D(w)θ. Since it holds from Lemma 2.6 that
AS-regularity is preserved by twisting, D(wθ) is AS-regular; that is, the MS twist wθ

is regular. �

EXAMPLE 2.17. We set w := (xyz + yzx + zxy) − (zyx + yxz + xzy) ∈ V⊗3. Then we see
that ϕ(w) = w. So, w is a superpotential. The derivation-quotient algebra of w is

D(w) = k〈x, y, z〉/(∂xw, ∂yw, ∂zw)

= k〈x, y, z〉/(yz − zy, zx − xz, xy − yx) = k[x, y, z].
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It is known that a polynomial ring k[x, y, z] is Calabi–Yau AS-regular. So, by Definition
2.13 (2), w is a Calabi–Yau superpotential. We take

θ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
α 0 0
0 β 0
0 0 γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
in GL3(k). Calculating the MS twist wθ of the superpotential w by θ, we obtain

wθ = (θ2 ⊗ θ ⊗ id)(w)

= (α2βxyz + β2γyzx + αγ2zxy) − (βγ2zyx + αβ2yxz + α2γxzy).

Therefore, the derivation-quotient algebra of wθ is

D(wθ) = k〈x, y, z〉/(∂xw, ∂yw, ∂zw)

= k〈x, y, z〉/(α2βyz − α2γzy, β2γzx − αβ2xz,αγ2xy − βγ2yx)

= k〈x, y, z〉/(βyz − γzy, γzx − αxz,αxy − βyx).

Since Aut (w) = GL (V), we see that θ ∈ Aut (w). By Lemma 2.16, wθ is a regular
twisted superpotential, so,D(wθ) is an AS-regular algebra.

2.4. Geometric algebras. Let (E,OE) be a scheme where OE is the structure sheaf
on E. An invertible sheaf on E is defined to be a locally free OE-module of rank 1. For
a quadratic algebra A = T(V)/(R), we set

V(R) := {(p, q) ∈ P(V∗) × P(V∗) | f (p, q) = 0 for all f ∈ R}.

Let E ⊂ P(V∗) be a closed k-subscheme and σ an automorphism of E. For the rest of
the paper, we fix

(a) π : E → P(V∗) is the embedding,
(b) L := π∗(OP(V∗)(1)).

In this case, L becomes an invertible sheaf on E. The map

μ : H0(E,L) ⊗ H0(E,L)→ H0(E,L) ⊗ H0(E,Lσ)→ H0(E,L ⊗OE Lσ)

of k-vector spaces is defined by v ⊗ w �→ v ⊗ wσ where Lσ = σ∗L and wσ = w ◦ σ.
For a quadratic algebra, a geometric algebra was introduced by Mori [12].

DEFINITION 2.18 [12, Definition 4.3]. A quadratic algebra A = T(V)/(R) is called
geometric if there is a pair (E,σ) where E ⊂ P(V∗) is a closed k-subscheme, and σ
is a k-automorphism of E such that

• (G1):V(R) = {(p,σ(p)) ∈ P(V∗) × P(V∗) | p ∈ E}, and
• (G2): R = kerμ with the identification

H0(E,L) = H0(P(V∗),OP(V∗)(1)) = V as k-vector spaces.

When A satisfies condition (G2), we write A = A(E,σ).
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Let A = T(V)/(R) be a quadratic algebra. If A = A(E,σ) is a geometric algebra,
then E is called the point scheme of A. If E is reduced, then condition (G2) is equivalent
to condition (G2′):

R = { f ∈ V ⊗ V | f |V(R) = 0}
(see [12]).

THEOREM 2.19 [3, Theorem 3]. Let A be a quadratic algebra. Then A is a
three-dimensional AS-regular algebra if and only if A is isomorphic to a geometric
algebraA(E,σ) that satisfies one of the following conditions:

(1) E = P2 and σ ∈ Autk P2.
(2) E is a cubic curve in P2 and σ ∈ Autk E such that σ∗L � L and

(σ2)∗L ⊗OE L � σ∗L ⊗OE σ
∗L.

The types of (E,σ) of three-dimensional quadratic AS-regular algebras are defined
in [15]; these are slightly modified from the original types defined in [1]. We extend
the types defined in [15] as follows (see [10, Subsection 2.3]).

(1) Type P: E is P2, and σ ∈ AutkP2 = PGL3(k) (Type P is divided into Types Pi (i =
1, 2, 3) in terms of the Jordan canonical form of σ).

(2-1) Type S1: E is a triangle, and σ stabilizes each component.

(2-2) Type S2: E is a triangle, and σ interchanges two of its components.

(2-3) Type S3: E is a triangle, and σ circulates three components.

(3-1) Type S′1: E is a union of a line and a conic meeting at two points, and σ stabilizes
each component and two intersection points.

(3-2) Type S′2: E is a union of a line and a conic meeting at two points, and σ stabilizes
each component and interchanges two intersection points.

(4-1) Type T1: E is a union of three lines meeting at one point, and σ stabilizes each
component.

(4-2) Type T2: E is a union of three lines meeting at one point, and σ interchanges two
of its components.

(4-3) Type T3: E is a union of three lines meeting at one point, and σ circulates three
components.

(5) Type T′: E is a union of a line and a conic meeting at one point, and σ stabilizes
each component.

(6) Type CC: E is a cuspidal cubic curve.

(7) Type NC: E is a nodal cubic curve (Type NC is divided into Types NCi (i = 1, 2)).

(8) Type WL: E is a union of a double line and a line (Type WL is divided into Types
WLi (i = 1, 2, 3)).
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(9) Type TL: E is a triple line (Type TL is divided into Types TLi (i = 1, 2, 3, 4)).

(10) Type EC: E is an elliptic curve.

REMARK 2.20. All possible defining relations of three-dimensional quadratic
AS-regular algebras are listed in each type up to isomorphism from (1) to (9) in
[10, Theorem 3.1], and (10) in [10, Theorem 4.9].

3. Classifications of twisted superpotentials

In this section we give complete lists of superpotentials and twisted superpoten-
tials whose derivation-quotient algebras are three-dimensional quadratic AS-regular
algebras except for Type EC, by using the following three steps.

Step I. (Proposition 3.1) Find the candidates of regular twisted superpotentials cor-
responding to defining relations listed in [10, Theorem 3.1].

Step II. (Theorem 3.3) Find all superpotentials among the above candidates and show
that they are Calabi–Yau superpotentials.

Step III. (Theorems 3.4 and 3.5) Show that all above candidates can be written as
MS twists of Calabi–Yau superpotentials and that they are in fact regular twisted
superpotentials.

As a byproduct, we prove that, for any three-dimensional quadratic AS-regular algebra
A except for Type EC, there exist a Calabi–Yau AS-regular algebra S and θ ∈ Aut S
such that A is isomorphic to Sθ as graded k-algebras. This result is needed to prove our
main result, Theorem 1.1.

PROPOSITION 3.1. Every three-dimensional quadratic AS-regular algebra except for
Type EC is isomorphic toD(w) of a potential w in Table 1.

PROOF. In [10, Theorem 3.1], all possible defining relations f1, f2, f3 of three-
dimensional quadratic AS-regular algebras except for Type EC are given. In each type,
it is enough to find w such that (∂xw, ∂yw, ∂zw) = ( f1, f2, f3).

TABLE 1. List of potential w and the Nakayama automorphism of the quadratic dual.

Potential w Cond. ∂xw, ∂yw, ∂zw νA!

P1

α2βxyz + β2γyzx
+ γ2αzxy − α2γxzy
− γ2βzyx − β2αyxz

αβγ � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2βyz − α2γzy,
β2γzx − β2αxz,
γ2αxy − γ2βyx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2

βγ
0 0

0
β2

αγ
0

0 0
γ2

αβ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Continued
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TABLE 1. Continued.

P2

xyz + αyzx + α2zxy
−αxzy − α2zyx
−yxz + y2z − 2αyzy
+α2zy2

α � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yz − αzy,
yz − 2αzy + αzx

− xz,
α2y2 + α2xy

−α2yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α

3
α

0

0
1
α

0

0 0 α2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P3

− xyz − yzx − zxy
+ xzy + zyx + yxz
− z2x + 2zxz − xz2

− zy2 + zyz + z2y
− y2z + 2yzy − 2yz2 − z3

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zy − yz − z2,
xz − yz − 2z2

− zx + 2zy,
− xy + yx − y2

− zx + 2xz + yz
+ zy − z2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 3 3
0 1 3
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1

βxyz + γyzx + αzxy
−αβxzy − αγzyx
− βγyxz

αβγ � 0, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βyz − αβzy,
γzx − βγxz,
αxy − αγyx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β

γ
0 0

0
γ

α
0

0 0
α

β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2

− yzx − xzy +
1
β

x2z

+
1
α

zx2 + αy2z

+ βzy2

αβ � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
β

xz − zy,

αyz − zx,
1
α

x2 + βy2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −α 0

−1
β

0 0

0 0
β

α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S3

− xzy − zyx
− yxz + βx3

+ γy3 + αz3
αβγ � 0, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βx2 − zy,
γy2 − xz,
αz2 − yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

S′1

βxyz + βyzx
+αzxy − αβxzy
−αβzyx − β2yxz
+ βx3

αβ2 � 0, 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
βx2 + βyz
−αβzy,

βzx − β2xz,
αxy − αβyx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

0
β

α
0

0 0
α

β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S′2

− zxy − yxz
+ xy2 + y2x
+ xz2 + z2x + x3

——

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 + y2 + z2,
yx − xz,
zx − xy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 0 −1
0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T1

βx2y
+ (α − β + γ)xyx
+ (α − β − γ)yxy
−αy2x − yxz
+ yzx + βyx2

+ xyz − xzy
−αxy2 + zxy − zyx

α + β +
γ � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βxy + (α − β + γ)yx
+ yz − zy − αy2,

(α − β − γ)xy − αyx
− xz + zx + βx2,

xy − yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
δ ε 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ := −α + 2β − γ,
ε := 2α − β − γ

Continued
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TABLE 1. Continued.

T2

(1 − β − γ)x3

− (α + 2γ)yx2

+ zx2 − xy2

+ γy3 − zy2

− x2z + xzy
+ βx2y − y2z
+ yzx + αy2x

α + β +
γ � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − β − γ)x2 − y2

− xz + zy + βxy,
− (α + 2γ)x2 + γy2

− yz + zx + αyx,
x2 − y2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0
−1 0 0
δ ε −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ := − β + γ
ε := −α + γ

T3

− x3 + y3 + x2y
+ xyx + yx2

− xy2 − yxy
− y2x + x2z
+ xzx + zx2

+ zy2 + yzy
+ y2z − xyz
− yzx − zxy

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− x2 + xy + yx − y2

+ xz + zx − yz,
y2 + x2 − xy − yx
+ zy + yz − zx,

x2 + y2 − xy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T′

αx2y−
(α − 2β)xyx
+ (β2 − αβ)xy2

+ xyz − xzy
+ αyx2 − yxz
+ yzx − αyzy
+αβ2y3

− (β2 − αβ)y2x
− βy2z + zxy
− zyx − βzy2

α + 2β � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αxy − (α − 2β)yx
+ (β2 − αβ)y2

+ yz − zy,
αx2 − xz + zx
−αzy + αβ2y2

− (β2 − αβ)yx
− βyz,

xy − yx − βy2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 δ 0
0 1 0
2δ δ2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ := α − β

CC

− 3x3 − y2x
− yxy − xy2

+ y2z + yzy
+ zy2 − xyz
− yzx − zxy
+ xzy + zyx
+ yxz

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 3x2 − y2

− yz + zy,
− yx − xy + yz
+ zy − zx + xz,
y2 − xy + yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

NC1

1 − α3

α
x3

+
1 − α3

α
y3

+ xyz + yzx
+ zxy
−α(xzy + zyx + yxz)

α3 � 0, 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − α3

α
x2 + yz − αzy,

1 − α3

α
y2 + zx − αxz,

xy − αyx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Continued

https://doi.org/10.1017/S1446788721000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000070


204 A. Itaba and M. Matsuno [12]

TABLE 1. Continued.

NC2

− 2xyx + x2z
+ zx2 − 2yxy
+ y2z + zy2

+ yzx + xzy

——

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 2yx + xz + zy,
− 2xy + yz + zx,
x2 + y2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

WL1

− (1 + γ)y2x
+α(1 + 2γ)yxy
−α2(1 + γ)xy2

+α2xyz + yzx
+αzxy
−α2xzy
− zyx − αyxz

α � 0, 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−α2(1 + γ)y2

+α2yz − α2zy,
− (1 + γ)yx
+α(1 + 2γ)xy
+ zx − αxz,

αxy − yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
α2 0 0

0
1
α

0

0 δ
1
α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
δ :=

1
α

(2 + 3γ)

WL2

− (1 + γ)y2x
+ (1 + 2γ)yxy
− (1 + γ)xy2

+ xyz + yzx
+ zxy − xzy
− zyx − yxz

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (1 + γ)y2

+ yz − zy,
− (1 + γ)yx
+ (1 + 2γ)xy
+ zx − xz,

xy − yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 2 + 3γ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

WL3

x2y − 2xyx
+ yx2

− (1 + γ)y2x
+ (1 + 2γ)yxy
− (1 + γ)xy2

+ xyz + yzx
+ zxy − xzy
− zyx − yxz

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xy − 2yx
− (1 + γ)y2

+ yz − zy,
x2 − (1 + γ)yx
+ (1 + 2γ)xy
+ zx − xz,

xy − yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
3 2 + 3γ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

TL1

− 1
α2 zxy

+
1
α

zyx

+α2yxz
−αyzx

+
1
α

xzy

−αxyz − x3

α � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
α

zy − αyz − x2,

α2xz − αzx,

− 1
α2 xy +

1
α

yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 α3 0

0 0
1
α3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Continued
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TABLE 1. Continued.

TL2

βx2y + βxyx
+ (−β2 − 1)x3

+ 2yxy − y2x
− 2βyx2 + zxy
− zyx − βzx2

− βx2z + 2βxzx
− yxz + yzx
− xzy + xyz − xy2

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βxy + βyx
+ (−β2 − 1)x2

− βxz + 2βzx
− zy + yz − y2,

2xy − yx − 2βx2

− xz + zx,
xy − yx − βx2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

3β 1 0
3β 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

TL3

− 2yxy − y2x
+ zxy + zyx
− yxz − yzx
+ xzy − xyz
− x3 − xy2

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

zy − yz
− x2 − y2,
− 2xy − yx
− xz − zx,

xy + yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 −1 0
0 3 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

TL4

− x3 + yx2

+ x2y − 2xyx
+ zxy + xyz
+ yzx − zyx
− yxz − xzy

——

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
− x2 + xy − 2yx

+ yz − zy,
x2 + zx − xz,
xy − yx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
3 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

We give a proof for Type T2 algebras. For the other types, the proofs are similar.
From [10, Theorem 3.1], Type T2 algebras are given as A = k〈x, y, z〉/( f1, f2, f3):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1 = x2 − y2,
f2 = xz − zy − βxy + (β + γ)y2,
f3 = yz − zx − αyx + (α + γ)x2,

where α + β + γ � 0. Taking a potential

w = (1 − β − γ)x3 − (α + 2γ)yx2 + zx2 − xy2 + γy3 − zy2

−x2z + xzy + βx2y − y2z + yzx + αy2x

as in Table 1, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂xw = (1 − β − γ)x2 − y2 − xz + zy + βxy,
∂yw = −(α + 2γ)x2 + γy2 − yz + zx + αyx,
∂zw = x2 − y2.

Since ∂zw = x2 − y2 = f1, ∂xw = (1 − β − γ) f1 − f2 and ∂yw = −γ f1 − f3, it follows
thatD(w) = k〈x, y, z〉/(∂xw, ∂yw, ∂zw) = k〈x, y, z〉/( f1, f2, f3) = A. �

REMARK 3.2. (1) For an algebra A = k〈x, y, z〉/( f1, f2, f3) of any type, we can take a
potential w = x f1 + y f2 + z f3 such that A = D(w). But it is difficult to check that this
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potential w is a regular twisted superpotential and, in many cases, it is not so. The
potentials w listed in Proposition 3.1 are chosen so that they are candidates of regular
twisted superpotentials. By [13, Theorem 4.4], every regular twisted superpotential w
satisfies (ν−1 ⊗ id ⊗ id)(ϕ(w)) = w where ν is the Nakayama automorphism of A!, so in
the above proposition, we take a potential w such that

((νA! )−1 ⊗ id ⊗ id)(ϕ(w)) = w

where νA! is the Nakayama automorphism of A! listed in Table 1.
(2) For Type TL4 in [10, Theorem 3.1], we gave the defining relations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xy + yx,
xz − zx − x2,
zy − yz + xy + x2.

The relation xy + yx is a typo, and the relation xy − yx is correct, as given in Table 1.

Next, we give a complete list of Calabi–Yau superpotentials as follows.

THEOREM 3.3. For every type except for Type EC, Table 2 is a complete list of
Calabi–Yau superpotentials w0.

PROOF. Let A be a three-dimensional quadratic AS-regular algebra except for Type
EC. By Lemma 2.4, A is Calabi–Yau if and only if the Nakayama automorphism νA! is
the identity, where A! is the quadratic dual of A. Considering the condition that νA! in
Table 1 is the identity, we have a superpotential, so it is sufficient to show that w0 is
regular; that is, D(w0) = k〈x, y, z〉/(∂xw0, ∂yw0, ∂zw0) is a three-dimensional quadratic
AS-regular algebra. In fact, if w is regular, then by Lemma 2.15, it is Calabi–Yau. In
order to prove AS-regularity ofD(w0), we check thatD(w0) satisfies the conditions of
Theorem 2.2. Note that if w is a superpotential, then the derivation-quotient algebra
D(w) is standard if and only if the partial derivatives ∂xw, ∂yw, ∂zw are linearly
independent (see, for example, [14, Proposition 2.6]).

We give a proof for Type T1 algebras. For the other types, the proofs are similar. Let

w0 = xyz + yzx + zxy − (xzy + zyx + yxz) + (x2y + xyx + yx2) − (y2x + yxy + xy2).

It is easy to check that ∂xw0, ∂yw0, ∂zw0 are linearly independent. For the potential w0,
we have the unique 3 × 3 matrix

M :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
y x − y − z y

x − y + z −x −x
−y x 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ such that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂xw0
∂yw0
∂zw0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.
By calculation, we have

(
x y z

)
M =

(
∂xw0 ∂yw0 ∂zw0

)
. Hence, D(w0) is stand-

ard. We denote byΔij the (i, j)th 2 × 2 minors of the matrix M (1 ≤ i, j ≤ 3). SinceΔ11 =

−x2, Δ22 = y2 and Δ33 = −x2 + xy − y2 + z2, we have thatV({Δij | 1 ≤ i, j ≤ 3}) = ∅.
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Therefore, by Theorem 2.2, D(w0) is a three-dimensional quadratic AS-regular
algebra, that is, w0 is a Calabi–Yau superpotential. �

THEOREM 3.4. For a potential w in Table 1, there exist a Calabi–Yau superpotential
w0 in Table 2 and θ ∈ Aut (w0) such thatD(w) � D((w0)θ) as in Table 3.

PROOF. By direct computation, for a potential w in Table 1, we find a Calabi–Yau
superpotential w0 in Table 2 and θ ∈ Aut (w0) such that D(w) � D((w0)θ) as in
Table 3.

We give a proof for Type T1 algebra. For the other types, the proofs are similar. Let
w be a potential of Type T1 in Table 1. We take a superpotential

w0 = xyz + yzx + zxy − (xzy + yxz + zyx)

+ (x2y + xyx + yx2) − (xy2 + yxy + y2x)

TABLE 2. List of Calabi–Yau superpotentials and defining relations of the derivation-quotient
algebra of w0.

CY superpotential w0 Cond. ∂xw0, ∂yw0, ∂zw0

P1
xyz + yzx + zxy
−α(xzy + zyx + yxz)

α3 = 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − αzy,
zx − αxz,
xy − αyx

S1
xyz + yzx + zxy
−α(xzy + zyx + yxz)

α3 � 0, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − αzy,
zx − αxz,
xy − αyx

S3 xzy + zyx + yxz − α(x3 + y3 + z3) α3 � 0, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zy − αx2,
xz − αy2,
yx − αz2

S′1
xyz + yzx + zxy
−α(xzy + zyx + yxz) + x3 α3 � 0, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − αzy + x2,
zx − αxz,
xy − αyx

T1

xyz + yzx + zxy
− (xzy + zyx + yxz)
+ (x2y + xyx + yx2)
− (y2x + yxy + xy2)

——

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − zy + xy + yx − y2,
zx − xz + x2 − yx − xy,
xy − yx

T3

xyz + yzx + zxy
− (x2y + xyx + yx2)
+ (xy2 + yxy + y2x)
− (x2z + xzx + zx2)
− (zy2 + yzy + y2z)
+ x3 − y3

——

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yz − xy − yx + y2 − xz
− zx + x2,

zx − x2 + xy + yx − zy
− yz − y2,

xy − x2 − y2

Continued
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TABLE 2. Continued.

T′
xyz + yzx + zxy
− (xzy + zyx + yxz)
+ (x2y + xyx + yx2)
− (y2z + yzy + zy2) + y3

——

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
yz − zy + xy + yx,
zx − xz + x2 − yz

− zy + y2,
xy − yx − y2

CC

xyz + yzx + zxy
− (xzy + zyx + yxz)
+ (y2x + yxy + xy2)
− (y2z + yzy + zy2) + 3x3

——

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
yz − zy + y2 + 3x2,
zx − xz + yx + xy

− yz − zy,
xy − yx − y2

NC1

xyz + yzx + zxy
−α(xzy + zyx + yxz)
+ x3 + y3

α3 � 0, 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − αzy + x2,
zx − αxz + y2,
xy − αyx

WL2

xyz + yzx + zxy
− (xzy + zyx + yxz)
− 1

3 (y2x + yxy + xy2)
——

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − zy − 1

3 y2,
zx − xz − 1

3 (yx + xy),
xy − yx

TL1
xyz + yzx + zxy
−α(xzy + zyx + yxz) − x3 α3 = 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yz − αzy − x2,
zx − αxz,
xy − αyx

and

θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
λν−1 μν−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where λ := 1

3 (−α + 2β − γ), μ := 1
3 (2α − β − γ) and ν := 1

3 (α + β + γ). Since
(θ⊗3)(w0) = w0, θ is in Aut (w0). By calculation, we have that

(w0)θ = (xyz + yzx + zxy) − (xzy + yxz + zyx)

+ ν−1(βx2y + (α − β + γ)xyx + βyx2)

− ν−1(αy2x + (−α + β + γ)yxy + αxy2).

By taking

θ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 ν−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ GL3(k),

it follows that
(θ′⊗3)((w0)θ) = ν−1w,

soD((w0)θ) � D(w). �
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TABLE 3. List of Calabi–Yau superpotentials and automorphisms.

CY superpotential w0 θ ∈ Aut (w0)

P1 xyz + yzx + zxy − (xzy + zyx
+ yxz)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
α 0 0
0 β 0
0 0 γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

P2 xyz + yzx + zxy − (xzy + zyx
+ yxz)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 0
0 1 0
0 0 α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

P3 xyz + yzx + zxy − (xzy + zyx
+ yxz)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 0
0 1 1
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1 (xyz + yzx + zxy) − 3
√
αβγ(xzy

+ yxz + zyx)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3
√
βγ−1 0 0
0 3
√
γα−1 0

0 0 3
√
αβ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2 (xyz + yzx + zxy) + (xzy + yxz
+ zyx)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 − 3

√
α2β 0

− 1
3
√
αβ2

0 0

0 0 3
√
βα−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S3 (xzy + yxz + zyx) − α(x3 + y3 + z3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

S′1 (xyz + yzx + zxy) − 3
√
αβ2(xzy

+ yxz + zyx) + x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 3
√
βα−1 0

0 0 3
√
αβ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S′2 (xyz + yzx + zxy) + (xzy + yxz

+ zyx) + x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T1 (xyz + yzx + zxy) − (xzy + yxz
+ zyx) + (x2y + xyx + yx2) − (xy2

+ yxy + y2x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
λν−1 μν−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
λ := 1

3 (−α + 2β − γ),
μ := 1

3 (2α − β − γ),
ν := 1

3 (α + β + γ)

Continued
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TABLE 3. Continued.

T2 (xyz + yzx + zxy) − (xzy + yxz
+ zyx) + (x2y + xyx + yx2) − (xy2

+ yxy + y2x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0
−1 0 0
−λν−1 −μν−1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
λ := 1

3 (−α + 2β − γ),
μ := 1

3 (2α − β − γ),
ν := 1

3 (α + β + γ)

T3

(xyz + yzx + zxy) − (x2y + xyx
+ yx2) + (xy2 + yxy + y2x)
− (x2z + xzx + zx2) − (zy2

+ yzy + y2z) + x3 − y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
T′ (xyz + yzx + zxy) − (xzy + yxz

+ zyx) + (x2y + xyx + yx2) − (y2z
+ yzy + zy2) + y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 λ−1μ 0
0 1 0

2λ−1μ λ−2μ2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
λ := 1

3 (α + 2β), μ := 1
3 (α − β)

CC
(xyz + yzx + zxy) − (xzy + yxz
+ zyx) + (y2x + yxy + xy2)
− (y2z + yzy + zy2) + 3x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

NC1 (xyz + yzx + zxy) − α(xzy + yxz
+ zyx) + x3 + y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

NC2 (xyz + yzx + zxy) + (xzy + yxz
+ zyx) + x3 + y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

WL1
xyz + yzx + zxy − (xzy + zyx
+ yxz) − 1

3 (y2x + yxy + xy2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
α 0 0
0 1 0
0 2

3 + γ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

WL2
xyz + yzx + zxy − (xzy + zyx
+ yxz) − 1

3 (y2x + yxy + xy2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 2

3 + γ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

WL3
xyz + yzx + zxy − (xzy + zyx
+ yxz) − 1

3 (y2x + yxy + xy2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
1 2

3 + γ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Continued
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TABLE 3. Continued.

TL1 xyz + yzx + zxy − (xzy + zyx
+ yxz) − x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 γ 0
0 0 γ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

TL2 xyz + yzx + zxy − (xzy + zyx
+ yxz) − x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
β 1 0
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

TL3 xyz + yzx + zxy − (xzy + zyx
+ yxz) − x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 −1 0
0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

TL4 xyz + yzx + zxy − (xzy + zyx
+ yxz) − x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

We remark how we find θ in Table 3. For most cases, we deduce θ by using a third
root of the Nakayama automorphism νA! of A!, where νA! is as in Table 1. Otherwise,
we find θ by using calculation directly (see Lemma 2.11 and Remark 3.2 (1)).

By Lemmas 2.11 and 2.16, Proposition 3.1, and Theorems 3.3 and 3.4, the following
theorem immediately holds.

THEOREM 3.5. Any potential w in Table 1 is a regular twisted superpotential.

REMARK 3.6. It turns out from Theorem 3.5 that the defining relations listed in [10,
Theorem 3.1] are in fact those of three-dimensional quadratic AS-regular algebras (see
also Remark 2.20).

By Theorem 3.4, for a three-dimensional AS-regular algebra A except for Type EC,
there exist a Calabi–Yau superpotential w0 and θ ∈ Aut(w0) in Table 3 such that A �
D((w0)θ). Since θ ∈ Aut(w0), we have that D((w0)θ) � D(w0)θ by Lemma 2.10. Since
D(w0) is Calabi–Yau AS-regular, we have the following corollary.

COROLLARY 3.7. For any three-dimensional quadratic AS-regular algebra A except
for Type EC, there exist a Calabi–Yau AS-regular algebra S and θ ∈ Aut S such that A
is isomorphic to Sθ as graded k-algebras.

4. Geometric algebras of Type EC

We say that a geometric algebra A = A(E,σ) is of Type EC if E is an elliptic curve
in P2. In this section we give a criterion when a geometric algebra of Type EC is a
three-dimensional quadratic AS-regular algebra.
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4.1. Divisors on curves and Hesse forms. Let E be a projective smooth curve over
k. The Picard group of E, denoted by (Pic E, [OE],⊗), is the group of isomorphism
classes of invertible sheaves on E under the operation ⊗ (see [9, page 143]).

A divisor on E is an element of the free abelian group

Div E :=
{∑

p∈E
np · p | np ∈ Z

}

where only finitely many np are different from zero. We write the group of divisors
(Div E, 0,+) where 0 is the zero divisor, that is, np = 0 for all p ∈ E. For any divisor
D ∈ Div E, there exists an invertible sheaf on E, denoted by OE(D), and the map D �→
OE(D) gives a surjective homomorphism from (Div E, 0,+) to (Pic E, [OE],⊗) (see
[9, Proposition II 6.13] and [9, Corollary II 6.16]), that is, for any [M] ∈ Pic E there
exists a divisor D ∈ Div E such that [M] = [OE(D)]. The zero divisor 0 maps to the
isomorphism class [OE] ∈ Pic E.

For σ ∈ Autk E, we define a map σ̃ : Div E → Div E by

σ̃
(∑

p∈E
np · p

)
=
∑
p∈E

np · σ−1(p).

This map σ̃ is a group automorphism of (Div E, 0,+). On the other hand, for σ ∈
Autk E, the rule M �→ σ∗M, where M is an invertible sheaf on E, induces a group
automorphism of the Picard group σ∗ : Pic E → Pic E. It follows from [9, II Ex. 6.8]
that, if D ∈ Div E, then

σ∗(OE(D)) � OE(σ̃D).

Let E be an elliptic curve in P2. It is well known that the j-invariant j(E) classifies
elliptic curves up to isomorphism; that is, two elliptic curves E and E′ in P2 are
isomorphic if and only if j(E) = j(E′) (see [9, Theorem IV 4.1(b)]). For p ∈ E, we
define Autk (E, p) := {σ ∈ Autk E | σ(p) = p}. It follows from [9, Corollary IV 4.7]
that, for every point p ∈ E, Autk (E, p) becomes a cyclic group of order

|Autk (E, p)| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 if j(E) � 0, 123,
6 if j(E) = 0,
4 if j(E) = 123.

For each point o ∈ E, we can define an addition ⊕ on E so that (E, o,⊕) is an abelian
group with the zero element o and, for p ∈ E, the map σp defined by σp(q) := p ⊕ q is
a scheme automorphism of E, called the translation by a point p.

4.2. Type EC. Throughout this subsection for an elliptic curve E in P2, we use a
Hesse form E = V(x3 + y3 + z3 − 3λxyz) where λ ∈ k with λ3 � 1. The j-invariant of a
Hesse form is given by the following formula (see [7, Proposition 2.16]):

j(E) =
27λ3(λ3 + 8)3

(λ3 − 1)3 .
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We fix the group structure on E with the zero element

oE := (1 : −1 : 0) ∈ E.

Every automorphism σ ∈ Autk E can be written as σ = σpτ
i where p ∈ E, τ is a

generator of Autk (E, oE) and i ∈ Z|τ| [10, Proposition 4.5 and Theorem 4.6].
A point p ∈ E is called 3-torsion if p ⊕ p ⊕ p = oE. We set

E[3] := {p ∈ E | p ⊕ p ⊕ p = oE}.

For p ∈ E and i ∈ Z, A = A(E,σpτ
i) is of Type EC if and only if p ∈ E \ E[3] [10,

Lemma 4.14].
The map p �→ [OE(p − oE)] is an injective homomorphism from (E, oE,⊕) to

(Pic E, [OE],⊗) (see [9, Example IV 1.3.7]). For p ∈ E and n ∈ Z, we use the notation
[n]p := p ⊕ · · · ⊕ p︸�������︷︷�������︸

n

. It is easy to check the following lemma.

LEMMA 4.1. Let (E, oE,⊕) be an elliptic curve in P2, p ∈ E and n ∈ Z. Then

[OE([n]p − oE)] = [OE(n(p − oE))].

Since the zero element oE = (1 : −1 : 0) is an inflection point of E, it follows that
L � OE(3oE) where L = π∗(OP2 (1)).

LEMMA 4.2 cf. [12, Lemma 4.5]. Let π : E → P2 be the embedding andL = π∗OP2 (1).
Then an automorphism σ ∈ AutkE can be extended to an automorphism of P2 if and
only if σ∗L � L.

A three-dimensional Sklyanin algebra is defined byA(E,σp) where a point

p = (a : b : c) ∈ E \ E[3]

and the defining relations are given as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ayz + bzy + cx2,
azx + bxz + cy2,
axy + byx + cz2.

A three-dimensional Sklyanin algebra A(E,σp) is a three-dimensional quadratic
AS-regular algebra by [3, Section 1]. It follows from [10, Theorem 4.12 (1)] that σpτ

i

is not extended to an automorphism of P2, so, by Lemma 4.2,

(σpτ
i)∗L � L.

For a geometric algebra A = A(E,σ) of Type EC, we give a criterion when A is
AS-regular.

THEOREM 4.3. Let A = A(E,σ) be a geometric algebra of Type EC where σ = σpτ
i,

p ∈ E\E[3] and i ∈ Z|τ|. Then the following are equivalent.
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(1) A is a three-dimensional quadratic AS-regular algebra.
(2) p � τi(p) ∈ E[3].
(3) A is graded Morita equivalent to a three-dimensional Sklyanin algebra

A(E,σp).

PROOF. (1) ⇒ (2). Assume that A = A(E,σ) is a three-dimensional quadratic
AS-regular algebra. By Theorem 2.19, we have that

(σ2)∗L ⊗OE L � σ∗L ⊗OE σ
∗L.

Since L � OE(3oE),

σ∗L � σ∗(OE(3oE)) � OE(σ̃(3oE)) = OE(3q),

(σ2)∗L � (σ2)∗(OE(3oE)) � OE(σ̃2(3oE)) = OE(3r),

where q := σ−1(oE) = �τ−i(p) and r := σ−2(oE) = σ−1(q) = q ⊕ τ−i(q), so

(σ2)∗L ⊗OE L � OE(3r) ⊗OE OE(3oE) � OE(3(r + oE)),
σ∗L ⊗OE σ

∗L � OE(3q) ⊗OE OE(3q) � OE(6q).

Therefore,

(σ2)∗L ⊗OE L � σ∗L ⊗OE σ
∗L =⇒ OE(3(r + oE)) � OE(6q)

=⇒ OE(3(r − oE)) � OE(6(q − oE))

=⇒ OE([3]r − oE) � OE([6]q − oE)

=⇒ [3]r = [6]q

=⇒ [3](q � τ−i(q)) = oE

=⇒ q � τ−i(q) ∈ E[3].

Since q = �τ−i(p), q � τ−i(q) = �τ−i(p) ⊕ τ−2i(p) = τ−2i(p � τi(p)). Hence we have
p � τi(p) ∈ E[3].

(2) ⇒ (3). Assume that p � τi(p) ∈ E[3]. By [10, Theorem 4.20], A = A(E,σpτ
i)

andA(E,σp) are graded Morita equivalent.
(3) ⇒ (1). Assume that A = A(E,σpτ

i) is graded Morita equivalent to a
three-dimensional Sklyanin algebra A(E,σp). By Lemma 2.5, A is isomorphic to
a twisted algebra of A(E,σp). Since being AS-regular is invariant under twisting
systems by Lemma 2.6, a twisted algebra ofA(E,σp) is a three-dimensional quadratic
AS-regular algebra. Therefore, A = A(E,σpτ

i) is a three-dimensional quadratic
AS-regular algebra. �

we are now ready to prove Theorem 1.1.

THEOREM 4.4. For every three-dimensional quadratic AS-regular algebra A, there
exists a Calabi–Yau AS-regular algebra S such that A and S are graded Morita
equivalent.
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PROOF. By Lemma 2.5 and Corollary 3.7, the statement holds, except for Type EC.
For Type EC, let A = A(E,σp) = D(w) be a three-dimensional Sklyanin algebra

where p = (a : b : c) ∈ E \ E[3] and

w = a(xyz + yzx + zxy) + b(xzy + zyx + yxz) + c(x3 + y3 + z3).

Since w is a superpotential, by Lemma 2.15, D(w) is Calabi–Yau AS-regular. By
Theorem 4.3, the statement holds. �

Corollary 3.7 tells us that, for a three-dimensional AS-regular algebra except for
Type EC, there exist a Calabi–Yau AS-regular algebra S and θ ∈ Aut S such that A is
isomorphic to Sθ as graded k-algebras. We prove this by using Theorem 3.4, that is, for
a potential w in Theorem 3.1, there exist a superpotential w0 in Theorem 3.3 and θ ∈
Aut (w0) such thatD(w) � D((w0)θ). On the other hand, it follows from [10, Theorem
4.9] that, for a potential w of a geometric algebra of Type EC, there exist a Calabi–Yau
superpotential w0 and θ ∈ GL (V) induced by τi ∈ Autk E such that w = (w0)θ. But this
θ is not necessarily in Aut (w0), so w = (w0)θ need not be a twisted superpotential or
regular (see Example 4.6). This means that we do not know whether or not Theorem
3.4 holds for Type EC. So, we need to divide the proof of Theorem 1.1 into two cases
of non-Type EC and Type EC.

EXAMPLE 4.5. Let E = V(x3 + y3 + z3 − 3λxyz) be an elliptic curve in P2 with j(E) �
0, 123 and A = A(E,σpτ) where p ∈ E \ E[3]. In this case, we have that τ(p) = �p.
By Theorem 4.3, A is a three-dimensional quadratic AS-regular algebra if and only if
[2]p ∈ E[3], that is, p ∈ E[6] where E[6] := {q ∈ E | [6]q = oE}.

EXAMPLE 4.6. In general, it is not true that if w is a regular superpotential and θ ∈
GL(V), then the MS twist wθ is regular. Let

E = V(x3 + y3 + z3 − 3λxyz)

be an elliptic curve with j(E) � 0, 123 and A = A(E,σpτ) where a point

p = (a : b : c) ∈ E \ E[6].

By Theorem 4.3, A is not AS-regular. By [10, Theorem 4.6] and [10, Theorem 4.9],
we have that A = A(E,σpτ) = D(wθ) where w = a(xyz + yzx + zxy) + b(xzy + yxz +
zyx) + c(x3 + y3 + z3) and

θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ GL3(k).

Note that if a � b, then θ � Aut (w). Since A is not a three-dimensional quadratic
AS-regular algebra, wθ is not regular.
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