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Abstract. A class of percolation models on Zd is developed in which the stochastic
structure is provided by means of a d-parameter dynamical system. Of particular
interest are those models generated by circle rotations. Unlike for independent
models, the critical value and the percolation function can be explicitly calculated.
These calculations lead to a conjecture concerning the behaviour of a related
dynamical system.

1. Introduction
Percolation theory—in particular critical values and percolation functions—has
been an object for mathematical study for the last three decades. Until now, mainly
independent models have been studied. The calculation of critical values in such
models turns out to be very difficult. Only in some very special, symmetric models,
for example independent bond percolation on the square—or triangular lattice, the
critical value is known today. (See [Ka].) In other models, such as independent site
percolation on the square lattice, very little can be said rigorously about the critical
value. (See e.g. [B], [T].)

As far as the percolation function is concerned, it seems yet to be impossible to
calculate the percolation function with any precision. In fact, one of the main
problems in percolation theory concerns the behaviour of this function near the
critical value. (See e.g. [Kb], [Kc].)

In this paper we investigate some parametric dependent percolation models and
in particular we show that for circle and interval percolation (to be defined in § 3),
the critical value and the percolation function can be explicitly calculated. These
calculations lead to a conjecture concerning the behaviour of a dynamical system.
The models we discuss appear as special cases of a general model of which
independent site percolation on Zd is another special case.
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In § 2 we formulate the model and prove some general results. In § 3 we give
some examples of the model, including circle and interval percolation. In § 4 we
show how to calculate the critical value in these models. The final section is devoted
to an investigation of the percolation function.

2. The model and some general properties
Let (ft, i / , / i ) b e a non-atomic measure space. Let d > 2 and let / be an action of
Zd on ft, i.e. / is a measurable map from Zd x ft to ft with the properties that (i)
/ (0 , (o) = (o where 0 denotes the null vector, and (ii) / (z , f(z', w)) = / ( z + z', w), for
every z, z'eZd and every wef t . If z e Z d and wef t then we write for simplicity
z(w):=/(z, w). It is clear that the map z is invertible and that z"' = - z , for every
z e Zd. In this paper we assume that for all z e Zd the map z is measure-preserving.
Of course, / is completely determined by the commuting maps ex,..., ed : ft -* ft,
where elt... ,ed denote the unit vectors of Zd. We say that / is aperiodic if
/t{w | z(w) = w} = 0, for every z e Zd\{0}.

A path in Zd is an infinite sequence ir = (T70, TTX,...) such that wt e Zd for every
ieN,iro = O and d{7T,, TTI+,) = 1, for every i e N, where d denotes Euclidean distance.
A circuit is a finite subsequence (w,-, 7r j + 1 , . . . , TT,) of v such that 77f = TT,-. A path is
called self-avoiding if it contains no circuits. Let rid be the s e t °f a ^ self-avoiding
paths in Zd. For any path 77, define n = (TTI , TT2, . . . ) := (ir, - ir0, TT2 - iri, ir3 - ir2,...).
Then w e { ± e , , . . . , ±ed}N. It is clear that TT e Y\d iff £]!„ T?, 5̂  0, for every n< m e IM.
In such a case TT will also be said to be self-avoiding. We will need the following
concept associated with self-avoiding paths. Let v and n' be self-avoiding paths.
For a fixed n e N , consider the path w*, defined by

17* = (V?i, . . . , 7Tn, w j , 7?2, . . . ) .

77* is not necessarily self-avoiding. However, IT' is self-avoiding and therefore IT*
only contains finitely many circuits. Let (IT*,..., IT*) be such a circuit. Consider
the path (ir*,...,irf, ir*+i,...) which is the original path with this circuit removed.
The path obtained from IT* by removing all circuits in this way is self-avoiding and
is called the n-concatenation of 77 and 77'.

For 17 &Yid, define 17':= ( i 7 0 , . . . , 77,), for every leN. Let [ j j be the set {77'! 776 n d } -

Now we come to our main definition.

Definition 2.1. For A e M the set

0>(A) := {w e A|there is a 17e]~[d such that i7,(w) e A, for all i€N}

is called the percolation set of A. If w and 77 are as in this definition, we say that
w percolates in A, along 77.

We think of 0*(A) as the subset of A containing exactly those elements w for
which it is possible to select a sequence of maps •fre{±e1,..., ±ed}N which is
self-avoiding, and such that 77, • • • 7rn(w)e A for every neN.

PROPOSITION 2.2. For Aesi, the percolation set &( A) is measurable.

Proof. For 77'e\['d, let A(77'):={w|i7j(w)e A , . . . , 77,(w)e A}. Clearly, A(ir')esi
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for all IT'. We claim that

which suffices to prove the proposition. The inclusion §P(A) c A* is trivial. To prove
the reverse inclusion, suppose <o e A*. Then there exists a sequence (TT(1), 7T<2), ...)
such that TrU)eTl'd and ir(^{u>)eA, for all n < i But iri0 can, viewed as elements
of Zd, only take 2d values. Therefore we can find a irx e Zd and a subsequence
(*i, fc2,...) of (1,2,...) such that vifi) = irl, for every ieN. Now there again is at
least one tr2 such that -!r2

ki) - ir2 for infinitely many ieM. Proceeding in this way,
we define n := (IT0, IT\ , . . . ) , where TT0 = 0. It is clear that TT € \[d and that o> percolates
in A along TT SO <M e ^(/4). D

Definition 2.3. Ae si percolates if

The following theorem and its proof were suggested by M. Keane. The theorem
shows that the collection of percolating sets of si is in a certain sense irregular.

THEOREM 2.4. Consider the model described above. Suppose in addition that f is
aperiodic and that /*((!) = 1. TTien, for every e>0 there exists a set Aeesi with
fi(Ac)> 1 — e which does not percolate. Furthermore there exists a set Beesi with
fi(Be)<e which does percolate.

Proof. The proof is based on the following generalization to Zd of the well known
Rokhlin-Lemma. A proof can be found in [C].

A box A = A(r, , . . . , rd) in Zd is defined as

A = {zeZd|0<z,<r, , \<i<d}.

The interior A0 of A(rt,..., rd) is defined as

Under the conditions mentioned above, for each S > 0 and for each box A in Zd,
there exists a set C = CS>A e si such that z, z'e A, ZT* z'implies z(C)nz'(C) = 0 and

LJ

Using this result, fix e > 0 and choose A and S such that

AM U
\z€A°

It is easy to see that this choice is always possible. Now define the following sets
(C denotes CSA for our particular choice of S and A):

Be:=Al.

We claim that 9 (Ae) = 0 and that /x, (9 (Be)) > 0, which suffices to prove the theorem.
To see this, suppose o> e &(Ar) percolates along IT. Let z, be defined by 7r,(a>) e Zj(C).
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Then

On the other hand, irJ+l((o)ezj+l(C) by the definition of zJ+1. If z,eA°,
then (Zj + vj+i-TTj)e A and it follows from the disjointness of the z(C)'s that
Zj + TTj+l — TTJ = zj+1, for all j > 0. By finiteness of A0, there exist i, i' such that z, = z,-
and hence vt = TT, SO n contains a circuit which is a contradiction.

To prove the second statement, fix &>eBe. If e1(w)^BE, then e,(w)ez'(C)
for some z'eA0 and hence toez(C) where z = z ' - e , e A\A°. But z + e^A0 and
hence z + e2e A\A°. It follows that e2(w)e(z + e2)(C)c: Be. This means that for all
a ie5€ , either e,(w) e BE or e2(w) e BE. This implies that ^*(BE) = Be and hence B,,
percolates. •

Now let us consider the model from the following point of view. Given wefl
and A e M, we say that an element z e Zd is open if z(<w) 6 A If z(w) £ A, z is closed.
To any element (o>, A) e fl x ^ corresponds a configuration of Zd in which all sites
are either open or closed. An open path is a path whose elements are all open. It
is easily seen that A percolates iff

n{o) \(o), A) corresponds to a configuration
that contains an open, self-avoiding path} > 0.

Our model can therefore be seen as a generalization of site percolation in Zd.
The preceding theorem shows that under general conditions there exist arbitrary

small sets which percolate, and arbitrary large ones which do not. In standard
percolation theory however, percolation occurs if the probability for a site to be
open, independent of all other sites, exceeds a certain value, called the critical value.
Analogously, in our model we would like percolation to occur if sets become
sufficiently large. This can be achieved when additional structure is imposed on our
model. To restrict ourselves to a one-dimensional subset of si, we make the following
definition.

Definition 2.5. Let I c |R be an interval of the form [0, r], 0 < r s oo. A parametrization
in M is a map h:I^>si, given by h(p) = Ap such that fi(Ao) = 0, ApcAq for all
0 < p < q < r.

It is clear that <3>{Ap)<^l3>{Aq) for all 0 < p < ? < r . Consequently, the following
definition makes sense.

Definition 2.6. (i) Given a parametrization in si, the percolation function, denoted
by 0, is defined as

®{p) = ti{9{Ap)), pel

(ii) The critical value, denoted by pc, is defined as

In the examples in the following sections, we need more structure on the space
as well. Therefore we state the following.
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PROPOSITION 2.7. Suppose il is a metric space, si is the Borel o--field and f is a
continuous action of Zd on il. Then 0>(A) is closed if A is closed.

Proof. Using (*) in the proof of Proposition 2.2, 0>(A) is a countable intersection
of closed sets and hence closed. •

3. Some examples
In this section we discuss three examples of our model.

3.1. Independent site percolation. Let il be the set [0, l ] z \ M = ̂ z ' where 98 denotes
the Borel o--field on the unit interval, and let fj. = Xz\ where A denotes Lebesgue-
measure on [0,1]. L e t / be given by {ex{a>))u = wi+Uj, (e2(o>))u = a>u+1, for all

l. Define a parametrization h' by

Then we have a model for ordinary independent site percolation on the square-lattice.
The critical value is unknown in this case. (See e.g. [B], [T].)

3.2. Interval percolation. Let il = R, si the Borel cr-field and /x denote Lebesgue
measure. (Note that Theorem 2.4 may not be valid in this case, as the measure is
infinite.) Define e, ed : il -* il as

et((o) = w + a,, l < i < d ,

for some 0 < a , < • • •< ad. Define a parametrization h by h(p) = [0,p], />>0. The
critical value in this case will be denoted by p[(ax,..., ad) or just by p'c if no
confusion is possible. Similarly, we write 0 ' ( a i , . . . , ad) or &' for the percolation
function in this case. The set P(AP) = 3*([0, p]) will be denoted by ̂ {a^ ,...,ad)
or0>l

p.

3.3. Circle percolation. Let il be the space R/Z. Let /x and si be as in example 3.2.
Define / by ef(w) = <o + a, (mod 1), 1 < i < d, where we assume without loss of

generality that 0 < a , s - • -<ad<\. Let a parametrization g be given by g(p) =
[0, p], O s / ? < 1 . The critical value will be denoted by pf =pf(a1,... ,ad), the
percolation function by 0 C = © c ( a , , . . . , ad). The set ^(A p ) = 0>([O, />]) will be
denoted by ^ ( a , , . . . , ad) or SP^.

We shall analyze the last two examples in detail in the following sections.
In the first place we are interested in circle percolation because this is a stationary

model for site percolation in Zd. Interval percolation turns out to be useful in the
analysis of circle percolation.

4. The critical values p[ and pf
We start with some easy preliminaries, which will turn out to be useful. If we write
^ p , pc or © without superscript, this will always mean 0>p, p'c resp. @'.

LEMMA 4.1. Consider interval percolation. Then we have
(i) if&p*0 for some p>0, then 0€ &>P and p e &p.

(ii) />c = inf{/>|^*0}.
(iii) Let pCi<1> := inf {p \ w e &p}, then pc = pcfi.

Analogous statements are valid for circle percolation.
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Proof. To prove (i), let a>0-=inf {a>|a>e 9P\. It follows from Proposition 2.7 that
a)0e &p. Suppose <o0 percolates in Ap along ir. It is clear from the choice of w0 that
vn((Oo)^(o0, for all «. This implies by translation that 0 < irn(0)^p-ai0, for all
neN, and it follows that w0 = 0. By a symmetric argument we see that p&^p. To
prove (ii), let p'c-=\ni{p\0>

p?
i0}. We have pc=zp'c trivially. For the reverse

inequality, suppose ^p 5* 0 for some p > 0. Fix e > 0. According to (i), 0 € 9P.
Suppose 0 percolates in Ap along IT. Then 7rn(a>)e[w, /> + &>], for all w, and this
implies that [0, e]<= 9"p+e, so /x(0*p+e)>O. Since e is arbitrary, this proves pc^p'c-
Of course (iii) immediately follows from (i) and (ii).

It is clear that we can use an analogous proof in the case of circle
percolation. •

To study the relation between interval and circle percolation, we make the
following convention, which is valid until the statement of Theorem 4.5.

Elements of Zd correspond with maps from R/Z to R/Z as in circle percolation
with parameters ax,..., ad. Elements of Z d , with 2d a d' > d correspond with maps
from R to R as in interval percolation with parameters ax,...,ad, \-ad,...,
l -a2d-d+i-

Let e,, i = l,...,d denote the unit vectors in Zd, and let e), e2,i = l,... ,d denote
the unit vectors in Z2d. Now fix we R/Z and let v &\[d, the set of self-avoiding
paths in Zd. Observe that e,(w) is equal to either o» + a, or a> - (1 - a,). Write e)(w)
for w + a, and e?(w) for w - ( l - a , ) . e{ maps R into R and a sequence of maps
(Hj» H^. •• •) can be identified with a path in Z2d. So with « fixed, we have a
1-1-correspondence between all paths tr in Zd and the set of all paths TT" in Z2d

with the property that 0=£ 7r^(w)<l. To study this correspondence in detail, we
state the following lemmas.

LEMMA 4.2. Let IT be a path in Zd and let TT" in Z2d be its corresponding path, with
some fixed taefl. Suppose in addition that nf e {±e\, ±e\,..., ±ed, ±e2

d}, for all i.
Then IT is self-avoiding iff IT" is self-avoiding.

Proof. It is immediate that £ i= , •n" = 0 implies Yfn = i itn = 0, for all i, j with i <j. For
the reverse, fix i and j and let n ± f c :=ca rd{ / sn< j | i f " = ±ei}, k = \,...,d and
let «±(d+1):= card { r < n < j | Tr° = ±e2

d}. Suppose I J
n = 1 i r n =0 . This implies that

irf(ot)) - vf-i(a)) = n_ ( d + 1 ) -n d + 1 . If this last expression is not zero it must be at
least one in absolute value, but this is impossible because 0 < ir^,((o)< 1, for all n.
So we have nd+1 = n_(d+l) and it follows that nk = n_k for all 1 < fc < d +1 and the
lemma follows. •

The following lemma compares two interval percolation problems with different
parameter sets.

LEMMA 4.3. Consider interval percolation and let 0 s a , £ ' • • s ad •& \. Then
(i) pc{oti, <*2, • • •, ad, 1 - ad)< 1 - a d _ , .

(ii) t3>p(ax,...,ad, l - a d , . . . , l - a 1 ) = 0 >
p ( a 1 , a 2 , . . . , a d , l - a d ) .

( i i i ) pc(oti ,...,ad,l-ad 1 - a,) =pc(a,, a 2 , . . . , ad, 1 - ad).
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Proof, (i) We will construct a. ireUd+i w i t n 0 < 7rn(0)< 1 - a d _ , , for all neN. The
inequality in (i) then follows from an application of Lemma 4.1(iii).

If ad = «,/_!, then we take the path n defined by -fr = (ed, -ed_x, ed, -ed_l , . . . ) .
If ad 9* ad_!, we construct IT as follows. Start in 0 and consider the sequence of

alternating ad and - a d _ i until we reach the interval [ l - a d , l - a d _ , ] . Then the
next element of the sequence is - ( 1 -ad). After a step - (1 -ad) we end up at a
value 8, say, in the interval [0, ad-ad_1]. Now the construction works, starting
from S, just as well as starting from 0. This means that we can repeat this construction
infinitely many times. The path constructed this way has the desired property and
is self-avoiding.

(ii) We need only to prove that the l.h.s. is contained in the r.h.s. as the other
inclusion is trivial. Suppose o> e l.h.s. and suppose that co percolates in Ap along IT.
Consider the first index i0, say, such that TTio€{±e\, ±e\,..., ±ed, ±e2

d), and sup-
pose -jf̂  has a plus sign. Let TT°&Wd+l be such that 0 < TT"(0)< l - a d _ , , for all
neN. According to (i), n° exists. Now consider the (j'0-l)-concatenation n', say,
of v and ir°. It is clear that IT' has the following property:

0<inf 7rJ,(

If TT^ has a minus sign, we replace 0 by pc. Because IT'€\[d+x, this proves (ii).
(iii) This immediately follows from (ii). D

Now we are ready to prove that circle percolation is in fact a special case of
interval percolation.

THEOREM 4.4. Circle percolation with parameters 0 < <*] < • • • < ad < | is equivalent
to interval percolation with parameters a , , . . . , ad, \-ad in the sense that

P £ ( a , ,...,ad) = Sf>'p{al, a 2 , . . . , ad, 1 - ad), 0 < p < 1.

In the Lh.s. we take, with a slight abuse of notation, the representatives of the equivalence
classes of R/Z which are contained in the interval [0,1).

Proof. Suppose to e l.h.s. and let a> percolate in Ap along IT. According to Lemma
4.3 we may assume that Trf€{±e\,±e1

2,...,±ed,±e2
d}, for all i. But IT is self-

avoiding and Lemma 4.2 implies that IT" is self-avoiding as well. This implies that
to £ r.h.s. The reverse inclusion is proved analogously. •

The preceding theorem shows that as far as pf is concerned, we can restrict
ourselves to interval percolation. We will analyze interval percolation in detail and
we begin with the two-dimensional case. (The convention made after Lemma 4.1
ends here.)

THEOREM 4.5. Suppose 0<al-^a2 are given. If aja2f£Q then

Ifmlal = m2a2 for some m1,m2&N relatively prime, then

m2-l
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Proof. To prove the first statement, suppose p<ax + a2. Suppose further that there
exists a ir such that 0 percolates in Ap along ir. We will show that this leads to a
contradiction.

For this, assume that TT-,(O) = a2, the proof in case TT^O) = a, is analogous. It is
clear that the corresponding TT only can be of the following form:

^ = (e2,-el3..., - e , , e2,-e1,..., -ex, e2,...),

r, elements r2 elements

where rt + - • • + /•„ = [Ma2/a,J, for all n > 1. But {na2(mod a,)|n eN} is dense in
[0, a,], so

sup[na2-(' 'i + - • • + rn)a ,]- inf[«a2-(r , + - • • + rn)al] = al.
n n

This implies that supn [7rn(0)] —infn [7rn(0)] = a1 + a2 which contradicts our
hypothesis. From this argument it also immediately follows that inf {p|0e 9P} =
a i + a2> proving the first statement by an application of Lemma 4.1.

To prove the second statement, take T? as above. It is easy to check that
TTn(0)e{(i/m2)a1, i = 0 , . . . , m, + m 2 - l} , for all neM. This proves

For the reverse inequality, suppose that there exists a ir e []2 such that 7r;(0) = iry(O)
for some i,j such that \i-j\< ml + m2-l. This implies that there are r, seZ such
that \r\ + |s| < mi + m2 and ral + sa2 = 0. This contradicts our choice of m1 and m2

and it follows that pcs:[(ml + m2 — 1)/m^a^. •

Observe that if we replace 0 by any other point in [0, a, + a2], respectively
{(i"/m2)a1, i = 0 , . . . , m1 + m 2 - l} , the same construction also works and that these
are the only points for which this is true. This implies that 3"Pc is either the whole
interval APc or a finite set, depending on the ratio of a, and a2 being irrational or
not. Now we will turn our attention to the higher-dimensional case. Here it will
become clear why we first treated the two-dimensional case. For a treatment of the
higher-dimensional case we define the following map, whose significance will become
clear later on.

Definition 4.6. Let Cd be the set

Define a map Md from €d into itself by Md((x, , . . . , xd)) = (y1,... ,yd), where
Ji»^2, • • •. yd are the numbers xl,x2-x1>... ,xd-xt arranged in increasing order.

We first establish the following elementary property concerning the iterates of Md.

LEMMA 4.7. Let x = ( x , , . . . , xd) € Cd. Write tn for (Af 3(x)), and sn for (Mn
d(x))2.

Then limn_oo '„ = 0. Furthermore, if tn # 0 for all n then lim,,.^ sn = 0.
Proof. It is easy to see that tn and sn are both non-increasing, so the limits exist.
Suppose limn ĉo tn = e for some e > 0. Then we subtract at least e from all the other
coefficients at each iteration. This implies that tn < e for n sufficiently large. To
prove the second statement, suppose s n a e for all n. Take n large such that 0 < tn < e.
Now at each iteration we subtract at least tn from sn until sn < e. This proves the
lemma. •
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If d a 3, we remark that the third smallest coefficient does not tend to zero under
general conditions, as one might think at first sight.

Furthermore, we need the following concept of induced paths. Consider interval
percolation with parameters 0 < a , < - • <a d . It follows from Theorem 4.5 that
pc(al,..., ad)<al + a2. Checking the proof of Theorem 4.5, we observe that if 0
percolates in Ap, then it also percolates along some n such that 0 s nn (0) < a, + a2

for all n. We may therefore assume that if 0 percolates along n, it has this last
property. In the following we only consider paths n without immediate reversals,
i.e. TTn+i^ ~Ttn for all n. Any path IT in Zd such that 7rn(0)2:0 for all n, has the
property that 7rn(0)2a! infinitely often. Therefore it makes sense to define

«, = M^TT) = min {n | 7rn(0) s a,},

nk+x = nk+1(ir) = min {n>nk\7rn(0)>aj,

for all k > 1. Note that nk+l - n t < 2 for all fe.
Now consider the sequence

It follows by construction that nnk(0) e \_ax, a, + a2), for all /'. Furthermore, we have
^nk+,(0) - irnk(0) e {±a,, ±(a2- a , ) , . . . , ±(ad - a,), ±(a; - at), 2< i <j}. (There
might be indices i,j,n,m such that «,-<*, = a n - a m , but we only write
Trnk+,(0) - 77-nk(0) = a, - a ; if -rrnk+l - trnk = e, - ej.)

Starting from the sequence above, we construct a new sequence as follows:
If TTnk+1(0) - irnk(0) = (aj - at), for i andj larger than 1, then we insert an element

in this sequence between -rrnk(0) and Trnk+l(0) with value irnk(0)-(ai-al) =
•"•nt+1(0) ~ (aj ~ ai), which is greater than or equal to a,. The sequence obtained this
way is denoted by n'{ax) = (TTO(«I), •n"i(«i), wj(a,),...). It has the property that

for all n. It is not difficult to see that supn (nn(0)) = supn (v'niai)). We can identify
v'(ai) with a path ir' in Zd in a natural way as follows: ir'0:= 0; ifn'n = z for some
n > 0, and
(i) 7rUi(«i)-^^(ai) = ±a1, then «•;,+,:= z±e,.

(ii) i r i + , ( a , ) -< (« , ) = *(«,--a,), then TT-̂ +1 := z± e,, for7 = 2 , . . . , d.
We say that IT' is induced by TT. If we consider interval percolation with parameters

a,, a2 - « i , . . . , ad - a,, which are not necessarily in increasing order, then Tr'n(ax)
is the image of a, under the map n'n: U -> R, and this is in agreement with our usual
notation.

For example, let ( a u a2, a3) = (4,7,10) and

(7TO(0), 7r,(0),...) = (0, 7,3,10,0,7,3,10,0,...).

Then

(u-Ma,), *•',(«,),...) = (4, 7, 10,4, 7, 10, 4,.. .),

and the path TT' is given by

T'O, it\, TT'2, ...) = (0, e2,2e2, 2e2- e3, 3e2- e 3 , . . . ) .
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This construction can be continued. We can define the induced path of rr' etc. We
say that v' is a first level induced path, the induced path of ir' is a second level
induced path and so on.

Now we can state the next theorem, which deals with the critical value in the
higher-dimensional case.

THEOREM 4.8. Consider interval percolation with parameters 0 < a, < • • • < ad. Denote
( a , , . . . , ad) by x° = ( x ? , . . . , xd) and define x' = Md(x'~'), for i>0, where Md is
defined as in Definition 4.6. Then we have

(i) pAati, ...,ad )=Z7=ox'i •
(ii) Let d > 2. If, for some i0 e N and some 2 < n < d

n — 1
(*!»+• • • + xi°)<xi°+l, then (*)

i=0

(iii) Let d > 2. If (*) does not hold for any i0 and 2 < n < d then

pc(otl,...,ad) = -—-(«! + • • - + ad).
a — 1

Proof, (i) First note that lim.-.o, pc(x') = 0. To see this, observe that if x\ = 0 for some
i we trivially have pc{xJ) = 0, for all ; > i . If x ' ,^0 for all i eN we have that
limj^.oo/>c(x')<limj^.oo(xi + X2) = 0, by Theorem 4.5 and Lemma 4.7. To prove (i),
it therefore suffices to prove the following

pc(xi) = xj+pc(x1+1), f o r a l l i > 0 . (**)

We prove (**) for i = 0, using the concept of induced paths. We transform the
problem of interval percolation with parameters x ? , . . . , x°d, and which takes place
in the interval [0, a, + a2), in an interval percolation problem with parameters
x\,... ,xd, which takes place in the interval [a1,al + a2).

Suppose 0 percolates in [0, p] along IT. The induced path of v is denoted by IT'.
We may assume that 0 < 7rn(0) < a, + a2 for all n. This means that for the induced
path IT' we have a , < 7r^(a1)<a, + xJ + x 2 ^ a 1 + a2.

We first prove ' > ' in (**). It is enough to show that the induced path n' of it
has the property that d(ir'n, 0) is not bounded, where d denotes Euclidean distance
in Zd. Once we have shown this, we remove possible circuits in n' to obtain a
self-avoiding path along which a, percolates in [«],/>]. Then ' a ' follows by an
application of Lemma 4.1(iii) where 0 is replaced by a, .

It follows from the construction of induced paths that for 2 < i^ d, each step ±et

in IT gives rise to exactly one step ±c, in IT' and vice versa. The order in which steps
of +e, and —et appear is the same in both paths. Now let, for all n > 0 ,

w,(n) = card {j^n\ TT, = e j ,

vM = card {;"< n | wy = -<?,},
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and let w|(/i) be defined analogously for the path IT'. Note that w,(n) and wj(n)
are just the ith coordinate of irn and ir'n respectively. If w,(n) is bounded for all i,
then irn does not tend to infinity, so that is at least one index i0 say, such that w^n)
is unbounded. Suppose that this is the only index for which this is true. Then it is
not difficult to see that nn(0) is unbounded. But 0< nn(0)<p and hence this is a
contradiction. We conclude that there are at least two indices i0 and j0 say, such
that w^in) and wk(n) are unbounded. At least one of these indices must be larger
than I, j0 say. It follows from the observation above that in that case, w'jo(n) is also
unbounded. Hence d(ir'n,0) is unbounded and we have proved ' s ' .

The reverse inequality is proved in the same spirit: Suppose at percolates along
IT' in [a,, p] (with parameters x\,..., xd), where ax<p<al + a2. We may assume
that a, < i7-J,(a,) <ax + a2 for all n. Consider a path ir which induces TT'. Such a w
exists trivially and because IT' is self-avoiding we can take IT such that it has no
immediate reversals. We now follow the argument as above, with v and IT' inter-
changed. This proves the reverse inequality.
(iii) If (*) does not hold it is easy to see that lim1_0Oxj = 0, for all j = I,..., d.
(Consider the smallest index n +1 for which the limit is not zero to derive a
contradiction.) Assuming that (*) does not hold, let y(i) = Y.dn=x x'n. It is clear from
the construction that y(i)—y(i +1) = (d - l)x\. This implies that

Y ^ (a1 + + «„),
i=o « — l j = o a —1 a — I

proving (iii). Note that it follows that

— («, + • •• + <*„)

is an upper bound for the critical value in interval percolation with parameters

(ii) If (*) does hold, we have by (iii) that

(x'°+- • -+X'0)
D (X » x'o) < ^ ^

(n-1)
l n + l •

Now suppose Pc(x'i,..., x'%) <pc{x'f,..., x'°). Suppose IT e fld is such that 0 perco-
lates along IT in [0, pc(x\°,..., x'$)]. Because there is strict inequality, at least one
of the extra parameters on the l.h.s. must be used in -IT. But this is not possible because

pc(x\°, ...,xS)< x'°+i. So pc(x\° x's) =pc(x[\ ..., xj°)

and (ii) follows. •

The preceding theorem states that, starting with d parameters, we can either
reduce the dimension or calculate the critical value directly. If we reach dimension
2 we can calculate the critical value according to Theorem 4.5. The question of
course is if it is possible to decide whether or not (*) holds. For this, first consider
the case in which o , , . . . , ad are all rational, say a, = at/c,..., ad = ad/c. It is clear
from the construction that x\+l + x2

+l^x\ + x2-l/c if x\*0. But this implies that
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x\ = 0 for i sufficiently large and p c ( a , , . . . ,ad) can be written as a finite sum. Of
course (*) holds if x\° = 0 as is seen by taking n = 2.

For example, let « ,=£, a2 = g, a3 = M- Then x° = (£,g,g), *' = (£,£,£),
*2 = (A,A,A), *3 = (A,55,A), x4 = (0,A,A)- This implies that pM,Ts,Ts) =
9+4+2+2 .17

25 ~ 25 •

To study (*) in some detail, we show that if (*) holds for some i0 and n, it also
holds for i and n for every i> i0. To see this, suppose first that x\°<x'°+l-x\0. Then

n — 1 n — 1

which is smaller than or equal to x'«+i-x\° = x'°Xl-
If xj°> xj»+1 -x i ° , then

n — i n —

which is smaller than or equal to x'°+1-x\o<x'°tl-

This means that the set where

n - 1

for some i and n is invariant under Md. (*) holds if we eventually enter such an

invariant set.

Now let d > 2 and define

T := {x°e 6d | (*) does not hold for any 2 < n < d and i0 € M}.

If x € T, the whole line through the origin and x is in F, because the condition (*)

is homogeneous. Points on the same line through the origin are in fact equivalent

in interval percolation. Therefore, we consider the set r'<=|Rd~1 which is obtained

from T as follows:

<xd xd

We now believe that the following is true.

C O N J E C T U R E 4.9. F' has Lebesgue-measure zero.

The conjecture roughly says that if we choose parameters randomly, according

to normalized Lebesgue-measure on F', with probability one we can calculate the

critical value in a finite number of calculations. In ( [MN]) , we shall prove that the

conjecture is true if d = 3.

5. The percolation functions &' and © c

In this section we will show how to determine the percolation functions in circle
and interval percolation. The most important step in the analysis of 0 ' and 0 C is
the following lemma.

LEMMA 5.1. Consider interval percolation. Define, for all o»>0, pw'-=
sup{77 < w | r) G ^ p } . Then pcol = pc + a>- p^. In the case of circle percolation we have
an analogous result.
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Proof. First observe that for w e ^ there is nothing to prove. Suppose <a$.&Pc.
According to Proposition 2.7, pw € 0>Pc. Suppose pm percolates in APc along TT. This
implies that Trn((o)e[a>-pw,pc + w-pa] and we have pc,«,^Pc + <>>-pw-

To prove the reverse inequality, suppose pc,a <pc + (o-pa>. Suppose further that
o) percolates in APcoj along TT. Now consider the first index n0 such that
•*no((»)£[Pc,*,-Pc,Pc'] and suppose Trn<sw>pc. Let ro= ir^(ta). Of course, ro<pcu>.
Let IT" be such that pc percolates in APc along TT". Consider the n0-concatenation
IT*, say, of TT and TT". It then follows that ro- />c< TT*(O>)< r0, for all n. This implies
that
0< TT*{W -{ro-pc))^Pc which means that (o -(r0-pc)e 9Pc. But to — (r0 — pc)> pw

so this contradicts our choice of pw. If 7T^(«J) <pC(U - p c , the arguments are analogous,
using that 0 percolates in Apc. This implies that pcm > p c + o> — pm. •

It follows from Lemma 5.1 that 0 is completely determined by the set 9Pc.
Therefore we will analyze this set in detail. We first establish the following lemma
whose easy verification is left to the reader.

LEMMA 5.2. Consider interval percolation. Suppose 17 e Ap and u> e 8Pp for some p.
Suppose further that there exists an element n' e]\d for some I, such that starting in
•n and making steps in accordance with TT', we stay in Ap and end up at en. Then rj e 9P.

From now on we suppose that there exists an index i0 such that

pc(al,...,ad)= £ x't+pcix'i^x'f).
i = 0

Define y0 = 0, yt := lJ~J0 x\, 0 < j < i0 and let Bt := §>Pc n [y,, pc] for i = 0 , . . . , i0.

The proof of Theorem 4.8 shows that <o e [yt, pc] percolates in [0, pc] along some
TT iff to percolates in [yf, pc] along some ith level induced path. The parameters
associated with this induced path are x\,...,x'd. The remark following Theorem
4.5 now implies that B^ is known, because on [yk, pc] we have a two-parameter
system by assumption. Bh is either the whole interval [yh, pc ] or a finite set, depending
on the ratio of x\° and x'f being irrational or not. The following lemma tells us how
to determine 0>Pc once Bh is known.

LEMMA 5.3. Suppose B^ is known as above. Then

Bi = Bl+lu{Bi+l-x[}, i = 0 , . . . , < 0 - l ,

where, for a subset B of U, {B-x} = {yeU\y = b-x for some b 6 B}.

Proof. Suppose weBj \B i + 1 . Then w percolates along an ith level induced path in
[y., Pc], with parameters x\,...,x'd. But w-x\i[y,, pc]. So for a> to percolate,
<o + x\ must be smaller than or equal to pc. According to Lemma 5.2, w + x je 0*Pc

and thus to + x\e Bi+l. This implies that o>eBi+i—x\. For the other inclusion,
suppose toeBi+l. Then of course, weB, . If w€{B1 + 1-xi}\B1 + 1 , we have that
ft) + x' ,eB,+, and w€[y,, pc]. So io + x[ percolates and, according to Lemma 5.2, so
does to which implies that u> e B,. D

It follows from this lemma that the set ^P r is either a finite set or a finite union
of closed intervals. In general, we do not know how to determine 0*p< in case the
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condition we imposed does not hold. In ([MN]) we shall prove that in the case of
interval percolation with parameters 0 < a, < a2 s= a3, the set 9Pc is the whole interval
[0, pc] if the condition does not hold.

Resuming the results of this section, we now state the following theorem which
gives the precise form of the percolation functions 0 7 and 0 C .

THEOREM 5.4. Consider interval percolation with parameters 0 < a, s • • • < ad. Then
(i) ®(,p) = ix(T"-p'(@Pc)), Mp>pc, where Te(B) = {x +e'\xe B, 0 < e ' < e } , for

every set B <= R and e > 0.
(ii) Suppose the condition stated after Lemma 5.2 holds. Then 0 7 is piecewise linear

and concave on [pc, oo) and 0 7 is continuous iff n(@Pc) = 0.
(Hi) If 'ad < j then the percolation function 0 C can be written as

0c(a , , . . . , ad){p) = 0/(a1, . . . , ad, l-ad)(p),
forp<\.

Proof. The theorem is an immediate consequence of the preceding and
Theorem 4.4. •

Examples. (A) Consider interval percolation in I1, with two parameters 0< a, < a2.
We already noticed that 0>Pc is either the whole interval [0, pc] or the set
{{i/m2)a1, i' = 0 , . . . , m, + m 2 - l} , where m, and m2 are as in Theorem 4.5. Con-
sequently, 07(a, , a2) is of the form as in figure 1.

F I G U R E 1. 0 ' ( a , , a2) for a , £ resp.

(B) Circle percolation with parameters a, = ^ , a2 = ̂ . It follows from Theorem
4.9 and Lemma 5.3 that pf =55 and ̂  = {0 ,^ ,^ ,^ > 2 %,^} . This implies that 0 C

is as in figure 2(i).
(C) Circle percolation with parameters al = 3v/2l, a2 = fi- Now (*) holds for

«o= 1 and the critical value is (21 -3TT) /21 . According to Lemma 5.3, the set 9% is

21
37r 21-3^1
2r 21 J-

The percolation function is as in figure 2(ii).
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0 pc 1 0 pc

FIGURE 2. The percolation function for examples B and C resp.

Acknowledgements. I would like to thank the referee for finding a mistake in an
earlier version of the manuscript. Furthermore, I would like to thank Alberto
Gandolfi for his remarks and suggestions to improve the paper.

REFERENCES

[B] J. v.d. Berg. Percolation theory on pairs of matching lattices. J. Math. Phys. 22(1) (1981), 152-157.
[C] J. P. Conze. Entropie d'un groupe abelien de transformations. Z. Wahrscheinlichkeitstheorie und

verw. Geb. 25 (1972), 1-30.
[Ka] H. Kesten. Percolation Theory for Mathematicians. Birkhauser: Boston, 1982.
[Kb] H. Kesten. Scaling relations for 2D-percolation. Commun. Math. Phys. 109 (1987), 109-156.
[Kc] H. Kesten. A scaling relation at criticality for 2D-percolation. Percolation Theory and Ergodic

Theory of Infinite Particle Systems, pp. 203-212, ed. H. Kesten, Springer: New York, 1987.
[MN] R. W. J. Meester & T. Nowicki. Infinite clusters and critical values in two-dimensional circle

percolation. Israel J. Math. (1989) submitted for publication.
[T] B. Toth. A lower bound for the critical probability of the square lattice site percolation.

Z. Wahrscheinlichkeitstheorie und verw. Geb. 69 (1985), 19-22.

https://doi.org/10.1017/S0143385700005137 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005137

