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Abstract

A generalised topology is a collection of subsets of a given nonempty set containing the empty set and
arbitrary unions of the elements in the collection. By using the concept of hereditary classes, a generalised
topology can be extended to a new one, called a generalised topology via a hereditary class. We study
continuity on generalised topological spaces via hereditary classes in various situations.
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1. Introduction

Topology has played an important role in many other branches of mathematics. Point-
set topology deals with the class of open sets or of nearly open sets and their properties.
In 1997, Császár [1] defined generalised open sets called γ-open sets covering every
class of nearly open sets. He showed that arbitrary unions of γ-open sets are γ-open.
In 2002, he used properties of γ-open sets to define a generalised topology [2]. The
definition of a generalised topology ignores two of the requirements for a topology:
that the whole set belongs to the topology and that a finite intersection of open sets
is open. In 2007, Császár [4] gave an extension of generalised topological spaces by
using hereditary classes (a collectionH of subsets of the space such that every subset
of elements in H belongs to H). Hereditary classes were first introduced in 1990 by
Hamlett and Janković [5] to generalise the set of ω-accumulation points on a set A (a
point such that each of its neighbourhoods contains infinitely many elements of A) and
the set of condensation points on a set A (a point such that each of its neighbourhoods
contains uncountably many elements of A). In this paper, we study continuity on
generalised topological spaces via hereditary classes.

The organisation of the paper is as follows. In Section 2 we explain generalised
topological spaces and hereditary classes, based on [1–4, 6]. The main results of
the paper are obtained in Section 3. The first theorem is a generalisation of the
pasting lemma where we try to reduce some conditions by using hereditary classes.
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Further theorems show that continuity between two generalised topological spaces
can be preserved on generalised topological spaces via hereditary classes in various
situations. By applying these theorems, we obtain results concerning open maps
and hereditary classes on subspaces of generalised topologies via hereditary classes.
Finally, we prove that in some conditions one can construct a hereditary class that
makes a given function continuous on the generalised topological space via this
hereditary class.

2. Preliminaries

Császár [1] introduced γ-open sets generalising open and nearly open sets.

Definition 2.1. Let X be a nonempty set, and denote its power set by P(X). The
function γ : P(X) → P(X) is called monotonic if A ⊂ B implies γA ⊂ γB for all
A, B ∈ P(X). The set of all monotonic functions is denoted by Γ(X).

Definition 2.2. Let X be a set and γ a monotonic function. A set A ⊂ X is called γ-open
if A ⊂ γA.

Császár [2] observed that the collection of γ-open sets has some properties similar
to those of the classical open sets. That is, for each monotonic function γ, the empty set
is γ-open and an arbitrary union of γ-open sets is γ-open. This motivates his definition
of a generalised topological space.

Definition 2.3. Let X be a nonempty set. A collection µ of subsets of X is a generalised
topology on X if it satisfies the following conditions.

(1) The empty set is in µ.
(2) An arbitrary union of elements in µ is in µ.

The pair (X, µ) is called a generalised topological space and an element in µ is called
a µ-open set. A set A ⊂ X is called µ-closed if X − A is µ-open. We observe that any
topology is also a generalised topology.

Definition 2.4. Let (X, µ) be a generalised topological space. For A ⊂ X, the µ-interior
of A, denoted by iµA, is the union of all µ-open subsets of A, and the µ-closure of
A, denoted by cµA, is the intersection of all µ-closed supersets of A. If there is no
ambiguity, then iµA and cµA will be denoted by iA and cA, respectively.

Definition 2.5. Let (X, µ) be a generalised topological space. Then µ is said to be a
quasi-topology on X if it satisfies the property

A, B ∈ µ implies A ∩ B ∈ µ

and the pair (X, µ) is called a quasi-topological space. The relative generalised
topology µA on A is defined by

µA = {M ∩ A | M ∈ µ}

and the pair (A, µA) is called a subspace of (X, µ).
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Let (X, τ) be a topological space and A ⊂ X. The closure A of A in X is the set of all
points in X such that every neighbourhood of x meets A, that is,

x ∈ A⇐⇒ A ∩ O , ∅ for all O ∈ τ containing x.

The condition A ∩ O , ∅ can be rewritten as A ∩ O < {∅}. Following Hamlett and
Janković [5], we can generalise the concept of the closure by replacing {∅} by a
collection of subsets of X to obtain a new topology. Note that not every collection
of subsets of X can be used. This leads to a concept of a hereditary class and an ideal.

Definition 2.6. Let X be a nonempty set. A collectionHX of subsets of X is said to be
a hereditary class on X if for each A, B ∈ P(X),

A ⊂ B and B ∈ HX imply A ∈ HX .

If we add the property that

A, B ∈ HX implies A ∪ B ∈ HX for each A, B ∈ P(X),

then a hereditary class on X is said to be an ideal, usually denoted by IX .

Császár [4] used this concept to construct generalised topologies via hereditary
classes. Throughout this paper, (X, µ,H) denotes a generalised topological space (X, µ)
together with a hereditary classH .

Definition 2.7. Let (X, µ,H) be a generalised topological space. For each A ⊂ X,

A∗
H

= {x ∈ X | M ∩ A <H when M ∈ µ containing x}.

In particular, A∗
{∅}

= cA. If there is no ambiguity, then A∗
H

will be denoted by A∗.

Example 2.8. Observe that A∗
H

depends on the hereditary class on X. For example,
let X = {a, b, c, d} and µ = {∅, {a}, {b, c}, {a, b, c}}. Then µ is a generalised topology on
X. Let A = {a, c} and consider the hereditary classesH1 = {∅, {a}} andH2 = {∅, {b}} on
X. Then A∗

H1
= {b, c} and A∗

H2
= {a, b, c}. Note that A ∩ {a} ∈ H1 implies a < A∗

H1
, and

a ∈ A∗
H2

because A ∩ {a} <H2 and A ∩ {a, b, c} <H2.

Next, we describe some properties of A∗. In a topological space, A also satisfies
these properties.

Proposition 2.9 [4]. Let (X, µ,H) be a generalised topological space and A, B ⊂ X.

(1) A ⊂ B implies A∗ ⊂ B∗.
(2) A∗ ⊂ cµA.
(3) If M ∈ µ and M ∩ A ∈ H , then M ∩ A∗ = ∅.
(4) A∗ is µ-closed.
(5) A is µ-closed implies A∗ ⊂ A.
(6) (A∗)∗ ⊂ A∗ when A ⊂ X.
(7) X = X∗ if and only if µ ∩H = {∅}.
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Proposition 2.9(7) leads to the following definition.

Definition 2.10. Let (X, µ,H) be a generalised topological space. The hereditary class
H is said to be µ-codense ifH ∩ µ = {∅}.

In [6], Renukadevi and Vimladevi proved the following theorem and also gave a
counterexample showing that the theorem is not true ifH is a hereditary class but not
an ideal.

Theorem 2.11 [6]. Let (X, µ,I) be a quasi-topological space together with an ideal I.
For each A, B ⊂ X, A∗ ∪ B∗ = (A ∪ B)∗.

In some situations, as in Example 2.8, A∗ does not contain A, so A∗ cannot be
regarded as the closure of A. To generalise the concept of the closure of A, we need
the following definition.

Definition 2.12. Let (X, µ,H) be a generalised topological space. For each A ⊂ X,

c∗µ,HA = A ∪ A∗.

If there is no ambiguity, then c∗
µ,H

A can be denoted by c∗A. Császár [4] proved
that there is a generalised topological space µ∗ such that c∗A is the intersection of all
µ∗-closed supersets of A , that is, M ∈ µ∗ if and only c∗(X − M) = X − M. This leads
to a new generalisation of a topological space.

Definition 2.13. Let (X, µ,H) be a generalised topological space. Define a generalised
topology on X via a hereditary classH by

µ∗
H

= {M ⊂ X | c∗(X − M) = (X − M)}.

An element in µ∗
H

is said to be µ∗
H

-open. Again, if there is no ambiguity, then µ∗
H

will
be denoted by µ∗.

Example 2.14. In the setting of Example 2.8, we have µ∗
H1

= {∅, {a}, {b, c}, {a, b, c}} and
µ∗
H2

= {∅, {a}, {c}, {a, c}, {b, c}, {a, b, c}}.

Remark 2.15. IfH = {∅}, then µ∗ = µ.

The following are some properties of the generalised topology µ∗.

Proposition 2.16 [4]. Let (X, µ,H) be a generalised topological space. Then:

(1) F is µ∗-closed if and only if F∗ ⊂ F;
(2) µ ⊂ µ∗.

From Example 2.8, if a generalised topology contains a large number of elements,
then it is complicated to calculate the generalised topology via the hereditary class.
However, there is an easier way to determine a generalised topology via a hereditary
class using the concept of a base for a generalised topology.

Definition 2.17. Let (X, µ) be a generalised topological space. The collection B is a
base for µ if and only if every M ∈ µ is a union of elements of B.
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Theorem 2.18 [4]. Let (X, µ,H) be a generalised topological space. The set

{M − H | M ∈ µ and H ∈ H}

constitutes a base for µ∗.

3. Main results

In this section we will prove the main results of this paper. The definition of
a continuous function between generalised topological spaces was introduced by
Császár [2].

Definition 3.1. Let (X, µ) and (Y, ν) be generalised topological spaces. A function f
from X to Y is (µ, ν)-continuous if f −1(N) ∈ µ, for each N ∈ ν.

Theorem 3.2 (Pasting lemma on quasi-topological spaces). Let (X, µ) be a quasi-
topological space and (Y, ν) a generalised topological space. Let X = A ∪ B where
A and B are both µ-closed or µ-open. Let f : X → Y be a function such that f |A is
(µA, ν)-continuous and f |B is (µB, ν)-continuous. Then f is (µ, ν)-continuous.

Proof. First, consider the case where A and B are both µ-open. Let N ∈ ν. Then
f |−1

A (N) ∈ µA and f |−1
B (N) ∈ µB. That is, f −1(N) ∩ A ∈ µA and f −1(N) ∩ B ∈ µB. Since

A and B are µ-open and µ is a quasi-topology on X, f −1(N) ∩ A and f −1(N) ∩ B are
in µ. So f −1(N) = f −1(N) ∩ X = f −1(N) ∩ (A ∪ B) = ( f −1(N) ∩ A) ∪ ( f −1(N) ∩ B) ∈ µ.
Hence f : X → Y is (µ, ν)-continuous. If A and B are both µ-closed, we use a similar
argument and the fact that f is continuous if the preimage of a closed set is closed. �

The following example shows that the above theorem is not true if (X, µ) is just a
generalised topological space and not a quasi-topological space.

Example 3.3. Let X = {a, b, c} and Y = {1, 2} and define generalised topological spaces
(X, µ) and (Y, ν) by µ = {∅, {a, b}, {a, c}, {b, c}, {a, b, c}} and ν = {∅, {1}, {2}, {1, 2}}. Note
that µ is not a quasi-topology on X. Let A = {a, c} and B = {b, c}. Then A and B are
both µ-open. Define f : X → Y by

f (a) = 1, f (b) = 2, f (c) = 1.

Obviously, f |A is (µA, ν)-continuous. Since {b} and {c} are µB-open, f |B is (µB, ν)-
continuous. However, f is not (µ, ν)-continuous since {b} is not µ-open.

Theorem 3.4 (Pasting lemma on quasi-topological spaces via codense ideals). Let
(X, µ,I) be a quasi-topological space with a µ-codense ideal I and (Y, ν) a generalised
topological space. Let X = A ∪ B and let f : X → Y be a function such that f |A∗ is
(µA∗ , ν)-continuous and f |B∗ is (µB∗ , ν)-continuous. Then f is (µ, ν)-continuous.

Proof. Let N ∈ ν, so Y − N is ν-closed. That is, f −1(Y − N) ∩ A∗ = f |−1
A∗ (Y − N) is µA∗-

closed and f −1(Y − N) ∩ B∗ = f |−1
B∗ (Y − N) is µB∗-closed. Since A∗ and B∗ are µ-closed,

f −1(Y − N) ∩ A∗ and f −1(Y − N) ∩ B∗ are µ-closed. Consider

f −1(Y − N) ∩ (A∗ ∪ B∗) = ( f −1(Y − N) ∩ A∗) ∪ ( f −1(Y − N) ∩ B∗)
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which is µ-closed. Thus, f −1(Y − N) ∩ (A∗ ∪ B∗) = f −1(Y − N) ∩ (A ∪ B)∗ by
Theorem 2.11. Further, f −1(Y − N) ∩ (A ∪ B)∗ = f −1(Y − N) ∩ (X)∗ = f −1(Y − N) ∩ X
by Proposition 2.9(7). So f −1(Y − N) is µ-closed and f −1(N) ∈ µ. Hence f is (µ, ν)-
continuous. �

From Proposition 2.16, µ ⊂ µ∗. So we easily obtain the following theorem.

Theorem 3.5. Let (X, µ) and (Y, ν) be generalised topological spaces and HX a
hereditary class on X. Assume that f is a (µ, ν)-continuous function from X to Y.
Then f is (µ∗, ν)-continuous.

In the theorem above, if we replace the generalised topological space (Y, ν) by the
generalised topological space (Y, ν∗

HY
) via some hereditary classHY , it is natural to ask

whether f is (µ∗, ν∗)-continuous or not. Consider the following example.

Example 3.6. Take X = [0, 1], Y = [1, 2], µ the usual subspace topology on X and ν the
discrete topology on Y , so that (X, µ) and (Y, ν) are topological spaces. Consider the
(µ, ν)-continuous function f : X → Y defined by f (x) = x + 1. Let

HX = {∅} ∪ {{x} ∈ P(X) | x ∈ X} and HY = {A ∈ P(Y) | A ⊂ Y − {1}}

be hereditary classes on X and Y , respectively. Then f is not (µ∗
HX

,ν∗
HY

)-continuous
because {1} ∈ (ν)∗

HY
but {0} < µ∗

HX
.

This implies that not every hereditary class on Y makes f a (µ∗, ν∗)-continuous
function. So we can ask what conditions give rise to the (µ∗, ν∗)-continuity of a (µ, ν)-
continuous function. Such conditions are described in the following theorems.

Theorem 3.7. Let (X, µ) and (Y, ν,HY ) be generalised topological spaces. If f is a
(µ, ν)-continuous injection from X into Y, then for the hereditary class on X defined by

HX = { f −1(A) | A ∈ HY },

the function f is (µ∗
HX
, ν∗
HY

)-continuous.

Proof. It is clear that HX = { f −1(H) | H ∈ HY } is a hereditary class on X. To see that
f is (µ∗, ν∗)-continuous, take G ∈ ν∗. From Theorem 2.18, ν∗ has a base of the form
{N − H | for all N ∈ ν and H ∈ HY }. So

f −1(G) = f −1
⋃
α∈Λ

(Nα − Hα) =
⋃
α∈Λ

f −1(Nα − Hα) =
⋃
α∈Λ

( f −1(Nα) − f −1(Hα)).

Here, f −1(Nα) ∈ µ and f −1(Hα) ∈ HX for each α ∈ Λ. This implies that f −1(G) ∈ µ∗.
Hence f is (µ∗, ν∗)-continuous. �

Example 3.8. Consider the previous example. Define hereditary classes on X and Y by
HX = {∅, {1}} and HY = {∅, {2}}, respectively. Then ν∗

HY
= {∅, [1, 2), [1, 2]}. For each

N ∈ ν∗
HY

, we can easily check that f −1(N) ∈ µ∗
HX

. Hence f is (µ∗, ν∗)-continuous.
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The following example shows that the injective property is a necessary condition in
the construction of the hereditary classes in Theorem 3.7.

Example 3.9. Let X = {a, b, c}, Y = {1, 2}, µ = {∅, {a, c}, {a, b, c}} and ν = {∅, {1, 2}}.
Define g : X → Y by

g(a) = 1, g(b) = 2, g(c) = 2.

It is easy to check that g is (µ, ν)-continuous. Let HY = {∅, {2}} be a hereditary class
on Y . By the construction in Theorem 3.7, HX = {∅, {b, c}}. However, HX is not a
hereditary class on X.

Similarly, given a hereditary class on X, we can construct a hereditary class on Y
such that f is (µ∗, ν∗)-continuous.

Theorem 3.10. Let (X, µ,HX) and (Y, ν) be generalised topological spaces. If f is a
(µ, ν)-continuous bijection from X onto Y, then for the hereditary class on Y defined
by

HY = { f (A) | A ∈ HX},

the function f is (µ∗
HX
, ν∗
HY

)-continuous.

Proof. ClearlyHY = { f (H) | H ∈ HX} is a hereditary class on Y . We will prove that f
is (µ∗, ν∗)-continuous. Let G ∈ ν∗. We can write G =

⋃
α∈Λ(Nα − Hα) when Nα ∈ ν and

Hα ∈ HY . Since Hα ∈ HY , there is a Kα ∈ HX such that f (Kα) = Hα. Therefore,

f −1(G) = f −1
(⋃
α∈Λ

(Nα − Hα)
)

=
⋃
α∈Λ

f −1(Nα − Hα)

=
⋃
α∈Λ

f −1(Nα − f (Kα)) =
⋃
α∈Λ

( f −1(Nα) − Kα).

This expresses f −1(G) in terms of basis elements for µ∗, so f −1(G) ∈ µ∗. �

From Theorems 3.7 and 3.10, given any hereditary class on either X or Y under some
assumption on the function f , we can always find a hereditary class which preserves
the continuity of f . It is easy to prove the following corollary for the composition
function.

Corollary 3.11. Let (X, µ), (Y, ν) and (Z, ω) be generalised topological spaces. Let f
be a (µ, ν)-continuous bijective function from X to Y and g a (ν,ω)-continuous bijective
function from Y to Z.

(1) IfHX is a hereditary class on X, we can construct the hereditary classesHY and
HZ such that g ◦ f is (µ∗, ω∗)-continuous.

(2) IfHZ is a hereditary class on Z, we can construct the hereditary classesHX and
HY such that g ◦ f is (µ∗, ω∗)-continuous.

(3) IfHY is a hereditary class on Y, we can construct the hereditary classesHX and
HZ such that g ◦ f is (µ∗, ω∗)-continuous.
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In a generalised topological space (X, µ), we can define an open map and a
homeomorphism in the same way as in a topological space.

Definition 3.12. Let (X, µ) and (Y, ν) be generalised topological spaces. A function
f : X → Y is (µ, ν)-open if f (M) ∈ ν for each M ∈ µ.

A function f : X→ Y is a (µ, ν)-homeomorphism if f is a (µ, ν)-continuous bijection
and f −1 is (ν, µ)-continuous.

Theorem 3.13. Let (X, µ) and (Y, ν) be generalised topological spaces and f a bijection
from X onto Y. Then f is (µ, ν)-open if and only if f −1 is (ν, µ)-continuous.

Proof. Let M ∈ µ. Since f is (µ, ν)-open, f (M) ∈ ν and ( f −1)−1(M) ∈ ν. Hence f −1 is
(ν, µ)-continuous. Conversely, assume that f −1 is (ν, µ)-continuous. Let M ∈ µ. Since
f −1 is (ν, µ)-continuous, ( f −1)−1(M) ∈ ν and so f (M) = ( f −1)−1(M) ∈ ν. Hence f is
(µ, ν)-open. �

Corollary 3.14. Let (X, µ) and (Y, ν) be generalised topological spaces and f a
bijection from X onto Y. Then f is a (µ, ν)-homeomorphism if and only if f is (µ, ν)-
continuous and (µ, ν)-open.

Corollary 3.15. Let (X, µ,HX) and (Y, ν) be generalised topological spaces. If f is a
(µ, ν)-open bijection from X to Y, then there is a hereditary classHY on Y such that f
is (µ∗

HX
, ν∗
HY

)-open.

Proof. Apply Theorems 3.7 and 3.13. �

Corollary 3.16. Let (X, µ, ) and (Y, ν,HY ) be generalised topological spaces. If f is a
(µ, ν)-open bijection from X to Y, then there is a hereditary classHX on X such that f
is (µ∗

HX
, ν∗
HY

)-open.

Proof. Apply Theorems 3.10 and 3.13. �

Example 3.17. Let X = {a, b, c}, Y = {1, 2, 3}, µ = {∅, {a, c}, {a, b}, {b, c}, {a, b, c}} and
ν = {∅, {1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Define f : X → Y by

f (a) = 1, f (b) = 3, f (c) = 2.

Then f is a (µ, ν)-open bijection. For the hereditary classHX = {∅, {b}} on X, we have
µ∗
HX

= {∅, {a}, {c}, {a, c}, {a,b}, {b, c}, {a,b, c}}. By Theorems 3.7 and 3.13, we can define
HY = {∅, {3}} and then ν∗

HY
= {∅, {1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Therefore, f −1 is

(ν∗
HY
, µ∗
HX

)-continuous. By using Theorem 3.13 again, f is (µ∗
HX
, ν∗
HY

)-open.

Theorem 3.18. Let (X, µ,HX) and (Y, ν) be generalised topological spaces. If f is
a (µ, ν)-homeomorphism from X to Y, then there is a hereditary class HY on Y that
makes f a (µ∗, ν∗)-homeomorphism.

Proof. Let f : X → Y be a (µ, ν)-homeomorphism so that f is a (µ, ν)-open and
(µ, ν)-continuous bijection. By applying Theorem 3.10, we obtain a hereditary class
HY = { f (H) | H ∈ HX} on Y such that f is (µ∗, ν∗)-continuous. It is easy to show that
f is (µ∗, ν∗)-open. Thus f is a (µ∗, ν∗)-homeomorphism. �
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Corollary 3.19. Let (X, µ) and (Y, ν,HY ) be generalised topological spaces. If f is
a (µ, ν)-homeomorphism from X to Y, then there is a hereditary class HX on X that
makes f a (µ∗, ν∗)-homeomorphism.

Proof. Consider f −1 and apply Theorem 3.18. �

We next consider the behaviour of continuous functions on subspaces of generalised
topological spaces.

Definition 3.20. Let X be a nonempty set, H a hereditary class on X and A ⊂ X. The
relative hereditary classHA on A is

HA = {H ∩ A | for all H ∈ H}.

Remark 3.21. We will show thatHA is a hereditary class on A. Let C ∈ HA and D ⊂ C.
Since C ∈ HA, there exists H ∈ H such that C = H ∩ A. Then D ⊂ H ∩ A ⊂ H and so
D ∈ H . Hence D = D ∩ A ∈ HA.

Theorem 3.22. Let (X, µ,H) be a generalised topological space and A a subset of X.
For the relative hereditary classHA on A, we have (µA)∗ = (µ∗)A.

Proof. Let V ∈ (µ∗)A. There exists G ∈ µ∗ such that V = G ∩ A. Since G ∈ µ∗,
G =

⋃
α∈Λ(Mα − Hα) with Mα ∈ µ and Hα ∈ H . Then

V =

(⋃
α∈Λ

(Mα − Hα)
)
∩ A =

(⋃
α∈Λ

(Mα ∩ (Hα)c)
)
∩ A =

⋃
α∈Λ

(Mα ∩ (Hα)c ∩ A)

=

(⋃
α∈Λ

(Mα ∩ (Hα)c ∩ A)
)
∪ ∅ =

(⋃
α∈Λ

(Mα ∩ (Hα)c ∩ A)
)
∪

(⋃
α∈Λ

(Mα ∩ Ac ∩ A)
)

=
⋃
α∈Λ

((Mα ∩ (Hα)c ∩ A) ∪ (Mα ∩ Ac ∩ A)) =
⋃
α∈Λ

((Mα ∩ A) ∩ ((Hα)c ∪ Ac))

=
⋃
α∈Λ

((Mα ∩ A) ∩ (Hα ∩ A)c) =
⋃
α∈Λ

((Mα ∩ A) − (Hα ∩ A)).

Since Mα ∩ A ∈ µA and Hα ∩ A ∈ HA, we find V ∈ (µA)∗, so (µ∗)A ⊂ (µA)∗. Conversely,
let W ∈ (µA)∗. Then W =

⋃
β∈Γ(Uβ − Kβ) with Uβ ∈ µA and Kβ ∈ HA. Since Uβ ∈ µA

and Kβ ∈ HA, there exist Mβ ∈ µ and Hβ ∈ H such that Uβ = Mβ ∩ A and Kβ = Hβ ∩ A.
Consequently, W =

⋃
β∈Γ((Mβ ∩ A) − (Hβ ∩ A)). Similarly,

W =
⋃
β∈Γ

(Mβ ∩ A − Hβ ∩ A) =

(⋃
β∈Γ

(Mβ − Hβ)
)
∩ A.

Since
⋃
β∈Γ(Mβ − Hβ) is an element in µ∗, we have W ∈ (µ∗)A and so (µA)∗ ⊂ (µ∗)A.

Therefore (µA)∗ = (µ∗)A. �

Corollary 3.23. Let (X, µ,H) and (Y, ν) be generalised topological spaces and A a
subset of X. For the relative hereditary class HA on A and f : A→ Y, the function f
is ((µA)∗, ν)-continuous if and only if it is ((µ∗)|A, ν)-continuous.
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So far, we have various situations where (µ, ν)-continuity implies (µ∗, ν∗)-
continuity. The following examples investigate whether a function can be (µ∗, ν)-
continuous without being (µ, ν)-continuous.

Example 3.24. Let X = {a, b, c, d} and Y = {1, 2, 3}. Define the generalised topologies
µ = {∅, {a}, {b}, {a, b}, {b, c, d}, X} on X and ν = {∅, {1}} on Y . Let f : (X, µ)→ (Y, ν) be
defined by

f (a) = 1, f (b) = 3, f (c) = 2, f (d) = 1,

so that f is not (µ, ν)-continuous. Choose the hereditary class HX = {∅, {b}, {c}, {b, c}}
on X. Then

µ∗ = {∅, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X}

and we can observe that f is (µ∗, ν)-continuous.

Example 3.25. Let X = {a, b, c, d} and Y = {1, 2, 3}. Define the generalised topologies
µ = {∅, {a}, {d}, {a, d}, {a, b, d}} on X and ν = {∅, {1}, {1, 2}} on Y . Let f : (X, µ)→ (Y, ν)
be defined by

f (a) = 1, f (b) = 3, f (c) = 2, f (d) = 1,

so that f is not (µ, ν)-continuous. Moreover, f is not (µ∗, ν)-continuous for any
hereditary class on X because µ∗ has a base of the form {M − H | M ∈ µ,H ∈ H} and
so any open set in µ∗

H
cannot contain the element c.

Theorem 3.26. Let (X, µ) and (Y, ν) be generalised topological spaces and f : X → Y.
If X ∈ µ, then there is always a hereditary class on X such that f is (µ∗, ν)-continuous.

Proof. DefineH f = {A ⊂ X − f −1(V) | for all V ∈ ν}. We claim thatH f is a hereditary
class on X. Let C ∈ H f and D ⊂ C. Since C ∈ H f , there exists V ′ ∈ ν such that
C ⊂ X − f −1(V ′). This implies D ⊂ X − f −1(V ′) and so D ∈ H f .

Now suppose that X ∈ µ and let N ∈ ν. Then X − (X − f −1(N)) is an element in a
base for µ∗. Therefore f −1(N) ∈ µ∗. �
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