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Abstract

We construct a class of non-reversible Metropolis kernels as a multivariate extension of
the guided-walk kernel proposed by Gustafson (Statist. Comput. 8, 1998). The main idea
of our method is to introduce a projection that maps a state space to a totally ordered
group. By using Haar measure, we construct a novel Markov kernel termed the Haar
mixture kernel, which is of interest in its own right. This is achieved by inducing a
topological structure to the totally ordered group. Our proposed method, the �-guided
Metropolis–Haar kernel, is constructed by using the Haar mixture kernel as a proposal
kernel. The proposed non-reversible kernel is at least 10 times better than the random-
walk Metropolis kernel and Hamiltonian Monte Carlo kernel for the logistic regression
and a discretely observed stochastic process in terms of effective sample size per second.
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1. Introduction

1.1. Non-reversible Metropolis kernel

Markov chain Monte Carlo methods have become essential tools in Bayesian computa-
tion. Bayesian statistics has been strongly influenced by the evolution of these methods. This
influence is well expressed in [22, 48]. However, the applicability of traditional Markov chain
Monte Carlo methods is limited for some statistical problems involving large data sets. This has
motivated researchers to work on new kinds of Monte Carlo methods, such as piecewise deter-
ministic Monte Carlo methods [10, 11], divide-and-conquer methods [42, 56, 64], approximate
subsampling methods [37, 65], and non-reversible Markov chain Monte Carlo methods.

In this paper, we focus on non-reversible Markov chain Monte Carlo methods. Reversibility
refers to the detailed balance condition which makes the Markov kernel invariant with respect
to the probability measure of interest. Although reversible Markov kernels form a nice class
[30, 31, 50, 53], the condition is not necessary for the invariance. Breaking reversibility
sometimes improves the convergence properties of Markov chains [2, 14, 15].

However, without the detailed balance condition, constructing a Markov chain Monte Carlo
method is not an easy task. There are many efforts working in this direction, but there are still
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large gaps between the theory and practice. The guided-walk method for probability measures
on one-dimensional Euclidean space, proposed by [23], sheds light on this direction. Its mul-
tivariate extension has also been studied, in [38], but this is still based on a one-dimensional
Markov kernel. In this paper we consider a general multivariate extension of [23], termed the
guided Metropolis kernel. To do this, we first briefly describe the method of [23].

In the algorithm proposed in [23], a direction variable is attached to each state x ∈R, which
is either the positive (+) direction or the negative (−) direction. If the positive direction is
attached, the new proposed state is

x+ |w|, (1)

where x is the current value and w is the random noise. If the negative direction is attached, the
new proposed state is

x− |w|.
The proposed state is accepted as the new state with the so-called acceptance probability.

If the proposed state is accepted, the new state is assigned the same direction as the previous
state. Otherwise, the opposite direction is assigned to the new state, and the new state is same
as the previous state.

If we want to generalise this procedure to a more general state space, say E, we may need
to interpret the summation operator + in (1) differently, since, for example, R+ is not closed
with the operation. So we have to find a state space that has a suitable summation operator, in
other words, a group structure. For this reason, throughout this paper we consider an abstract
setting, as this is the most natural way to describe our setting and algorithms.

More precisely, the main idea of our method is to introduce a projection which maps a state
space E to a totally ordered group. Through this ordering we will decompose any Markov
kernel into a sum of positive (+) and negative (−) directional sub-Markov kernels. By using
rejection sampling, two sub-Markov kernels are normalised to be positive and negative Markov
kernels. Then we can construct a non-reversible Markov kernel on E× {−,+} by systematic-
scan Metropolis-within-Gibbs sampler. Similar ideas can be found in [20] for the case of a
discrete state space.

Usually, total masses of sub-Markov kernels are quite different, which results in inefficiency
of rejection sampling. To avoid this issue, we focus on the case where the total masses are the
same. However, it is non-trivial to find such a Markov kernel. In [23], the Lebesgue measure
is the basis for constructing the Markov kernel so that sub-Markov kernels have equal total
masses. To generalise [23], we use the Haar measure on a locally compact topological group
as a generalisation of the Lebesgue measure on R. We interpret the negative (−) sign as the
inverse operation of a topological group, and we will use the Haar measure so that the inverse
operation does not change the measure.

By using Haar measure, we introduce a novel Markov kernel termed the Haar mixture ker-
nel, which has the above property. This is achieved by introducing a topological structure into
the totally ordered group that defines a direction in E. Our proposed method, the �-guided
Metropolis–Haar kernel, is constructed by using the Haar mixture kernel as a proposal kernel.
By using this, we introduce many non-reversible �-guided Metropolis–Haar kernels which are
of practical interest.

1.2. Literature review

Here we briefly review the existing literature studying non-reversible Markov kernels that
modify reversible Metropolis kernels. First of all, compositions of reversible Markov kernels
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are not reversible in general. For example, the systematic-scan Metropolis-within-Gibbs
sampler is usually non-reversible.

The so-called lifting method is considered in, for example, [14, 20, 62, 63]. In this method, a
Markov kernel is lifted to an augmented state space by being split into two sub-Markov kernels.
An auxiliary variable chooses which kernel should be followed. The guided-walk kernel [23]
and the method we are proposing belong to this category. Another approach is to prepare two
Markov kernels in advance and construct a systematic-scan Metropolis-within-Gibbs sampler
as in [38].

The Hamiltonian Monte Carlo kernel has an auxiliary variable by construction. Therefore,
a systematic-scan Metropolis-within-Gibbs sampler can naturally be defined, as in [26]. Also,
[61] constructed a different non-reversible kernel which twists the original Hamiltonian Monte
Carlo kernel. See also [36, 58].

An important exception that does not introduce an auxiliary variable is [9], which intro-
duces an anti-symmetric part into the acceptance probability so that the kernel becomes
non-reversible while preserving �-invariance, where a Markov kernel P is called �-invariant if∫

x∈E �(dx)P(x, A)=�(A). See also [41], which avoids requiring an additional auxiliary vari-
able by focusing on the uniform distribution that is implicitly used for the acceptance–rejection
procedure in the Metropolis algorithm.

In this paper, non-reversible Markov kernels are designed using the Haar measure. The
use of the Haar measure in the Monte Carlo context is not new; [35] used the Haar mea-
sure to improve the convergence speed of the Gibbs sampler, which was further developed by
[25, 34, 57]. Also, the Haar measure is a popular choice of prior distribution in the Bayesian
context [3, 21, 49]. Markov chain Monte Carlo methods with models using the Haar measure
as prior distribution are naturally associated with the Haar measure.

1.3. Structure of the paper

The main objective of this paper is to present a framework for the construction of a class
of non-reversible kernels, which are described in Section 4. Sections 2 and 3 are devoted to
introducing some useful ideas for the construction of the non-reversible kernels.

Section 2.1 contains an introduction to some reversible kernels, such as the convolution-
type construction of reversible kernels and Metropolis kernels. In Section 2.2, we introduce the
Haar mixture kernel and the Metropolis–Haar kernel. The Metropolis–Haar kernel is useful in
its own right, although it does not have the non-reversible property. Moreover, it is actually
a key Markov kernel for non-reversible kernels. However, the connection to non-reversible
kernels is explained in Section 3 rather than Section 2.

In Section 3 we introduce three properties: the unbiasedness, random-walk, and sufficiency
properties. These properties are introduced from Section 3.1 to Section 3.3 sequentially. As
described in Section 1.1, our construction of the non-reversible kernel is based on a Markov
kernel that generates a state in the positive and negative directions with equal probability. This
property, referred to as unbiasedness in Section 3.1, is the sufficient condition for constructing
non-reversible kernels. In Section 3.2, we introduce a more specific form of the unbiasedness
property, the random-walk property. In Section 3.3, we introduce the sufficiency property to
describe a specific form of the random-walk property using the Haar mixture kernel introduced
in Section 2.2. Section 3.4 describes how to generalise a one-dimensional unbiased kernel to a
multivariate kernel.

Section 4 is the section on non-reversible kernels. In Section 4.1 we introduce a class
of non-reversible kernels, the �-guided Metropolis kernel. We focus on the �-guided
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Metropolis–Haar kernel, which is a �-guided Metropolis kernel using a Haar mixture kernel.
In Section 4.2, we show step-by-step instructions for constructing �-guided Metropolis–Haar
kernels. Some examples can be found in Section 4.3.

In Section 5.1, some simulations for the �-guided Metropolis–Haar kernel based on the
autoregressive kernel are studied. Also, numerical analyses for �-guided Metropolis–Haar
kernels on R

d+ are studied in Section 5.2. Some conclusions and discussion can be found in
Section 6.

1.4. Some group-related concepts

Our newly proposed methods are based on the Haar measure associated with locally com-
pact topological groups. We give a brief introduction to topological spaces, group structures,
and the Haar measure as well as the order structure in this section.

A set G is a totally ordered set if it has a binary relation ≤ which satisfies three properties:

• a≤ b and b≤ a implies a= b;

• if a≤ b and b≤ c, then a≤ c;

• a≤ b or b≤ a for all a, b ∈G.

We call ≤ an order relation. The totally ordered set G can be equipped with the order topology
induced by {g ∈G : g≤ a} and {g ∈G : a≤ g} for a ∈G. A Borel σ -algebra is generated from
the order topology.

The group G with a binary relation × will be denoted by (G,×), and a× b will also be
denoted by ab for simplicity. A group (G,×) is an ordered group if there is an order relation
≤ such that

a≤ b=⇒ ca≤ cb and ac≤ bc (2)

for a, b, c ∈G.
A topology is a collection of subsets of G that contains ∅ and G and is closed under finite

intersections and arbitrary unions. An element of the collection is called an open set, and G is
called a topological space. A topological space is equipped with the σ -algebra generated by all
compact sets, which is called a Borel algebra. An element of the Borel algebra is called a Borel
set. A Borel measure is a measure μ such that μ(K) <∞ for any compact set K. A topological
space is a Hausdorff space if for every pair of distinct elements x, y there are disjoint open sets
U, V such that x ∈U and y ∈ V . Also, a topological space is locally compact if for any element
x there exist an open set U and a compact set K such that x ∈U ⊂K.

A group (G,×) with a topology on G is called a topological group if its group actions
(g, h) 	→ gh and g 	→ g−1 are continuous in the topology of G. If a group G is locally com-
pact and Hausdorff, it is called a locally compact topological group. A left (resp. right) Haar
measure is a Borel measure ν that is not identically 0, and such that ν(gH)= ν(H) (resp.
ν(Hg)= ν(H)) for any Borel set H and g ∈G. For example, the Lebesgue measure is the left
and right Haar measure on (R,+), and ν(dg)= dg/g is the left and right Haar measure on
(R+,×). For any locally compact topological group, there are left and right Haar measures.
The group is called unimodular if the left Haar measure and the right Haar measure coincide
up to a multiplicative constant. See [24] for the details.

The set E is a left G-set if there exists a left group action (g, x) 	→ gx from G× E to E such
that (e, x)= x and (g, (h, x))= (gh, x), where e is the identity and g, h ∈G, x ∈ E. We write gx
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for (g, x). In this paper, any map � : E→G is called a statistic when G is a totally ordered set.
A statistic is called a G-statistic if �gx= g�x for g ∈G and x ∈ E and if G is an ordered group.

2. Haar mixture kernel

2.1. Reversibility and Metropolis kernel

Before analysing the non-reversible Markov kernel, we first recall the definition of
reversibility. Reversibility is important throughout the paper since our construction of a non-
reversible Markov kernel is based on classes of reversible Markov kernels. A Markov kernel Q
on a measurable space (E, E) is μ-reversible for a σ -finite measure μ if∫

A
μ(dx)Q(x, B)=

∫
B

μ(dx)Q(x, A) (3)

for any A, B ∈ E . If Q is μ-reversible, then Q is μ-invariant. There is a strong connection
between ergodicity and μ-reversibility. See [30, 31, 50, 53].

As we mentioned above, our non-reversible Markov kernel is based on a class of reversible
kernels. Suppose that μ is a probability measure on (E, E) where E is closed by a summation
operator. A simple approach to constructing a reversible kernel is to first describe μ as an
image measure of a convolution of probability measures μY , μZ under a measurable map f,
i.e., μ= (μY ∗μZ) ◦ f−1. Here, an image measure of a measure μ under a map f : E→ E is
defined by

μ ◦ f−1(A)=μ({x ∈ E : f (x) ∈ A}),
and a convolution of μ1 and μ2 is defined by

(μ1 ∗μ2)(A)=
∫

E
μ1(A− x)μ2(dx)

where A− x= {y ∈ E : x+ y ∈ A}. Then define independent random variables Y1, Y2 ∼μY and
Z ∼μZ . Finally, construct Q as the conditional distribution of X2 = f (Y2 + Z) given X1 =
f (Y1 + Z). Then the probabilities in (3) are P(X1 ∈ A, X2 ∈ B) and P(X1 ∈ B, X2 ∈ A), which
are the same by construction. We refer to this as the convolution-type construction. A prob-
ability distribution can be written by convolution if it is infinitely divisible [55]. Therefore,
many popular probability distributions, such as the normal distribution, the Student distribu-
tion and the gamma distribution, can be written by convolution. Three specific examples are
given below to illustrate the convolutional design. The illustration of the Haar mixture kernel
and the �-guided Metropolis kernel, described later, will also be based on these three kernels.

Let R+ = (0,∞). Let Id be the d× d identity matrix.

Example 1. (Autoregressive kernel.) We first describe the well-known autoregressive kernel
resulting from the above convolution-type construction. Let ρ ∈ (0, 1], let M be a d× d positive
definite symmetric matrix, and let x0 ∈Rd.

Further, let Nd(x, M) be the normal distribution with mean x ∈Rd and covariance matrix
M. By the reproductive property of the normal distribution, μ=Nd(x0, M) is a convolution
of probability measures μY =Nd(0, ρM) and μZ =Nd(0, (1− ρ)M) with f (x)= x0 + x in the
notation above. Then the random variables X1 and X2 in the above notation follow μ with
covariance

Cov (X1, X2)=Var (Z)= (1− ρ)M.
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By the change-of-variables formula, the conditional distribution Q(x, ·)= P(X2 ∈ · |X1 = x)
is the autoregressive kernel, which is defined as

Q(x, ·)=Nd(x0 + (1− ρ)1/2 (x− x0), ρM).

By the nature of convolution, it is μ=Nd(x0, M)-reversible.

Example 2. (Beta–gamma kernel.) Let G(ν, α) be the gamma distribution with shape parame-
ter ν and rate parameter α. Let μ= G(k, 1), μY = G(k(1− ρ), 1), μZ = G(kρ, 1), and f (x)= x,
where k ∈R+ and ρ ∈ (0, 1). The conditional distribution of b := Z/X1 given X1, in the nota-
tion above, is Be(kρ, k(1− ρ)), where Be(α, β) is the beta distribution with shape parameters α

and β. Therefore, the conditional distribution Q(x, dy)= P(X2 ∈ dy|X1 = x) on E=R+, called
the beta–gamma (autoregressive) kernel in this paper, is given by

y= bx+ c, b∼Be(kρ, k(1− ρ)), c∼ G(k(1− ρ), 1),

where b, c are independent, and c corresponds to Y2 in the above notation. The kernel is
μ= G(k, 1)-reversible by construction. See [33].

Example 3. (Chi-squared kernel.) We construct a μ= G(L/2, 1/2)-reversible kernel for L ∈N.
Let μY =NL(0, ρIL), μZ =NL(0, (1− ρ)IL), and f (x1, . . . , xL)=∑L

l=1 x2
l . By the reproduc-

tive property, if Y1, Y2 ∼μY and Z ∼μZ , then Xi
′ := Yi + Z ∼NL(0, IL). Therefore, Xi =

f (Xi
′)∼μ since μ is the chi-squared distribution with L degrees of freedom. The conditional

distribution Q(x, dy)= P(X2 ∈ dy|X1 = x) is μ-reversible by construction. We show that the
conditional distribution is given by

y=
[
{(1− ρ) x}1/2 + ρ1/2 w1

]2 +
L∑

l=2

ρ w2
l , (4)

where w1, . . . , wL are independent and follow the standard normal distribution. To see this,
first note that the law of ρ−1/2X2

′ given X1
′ = x′ is NL(ρ−1/2(1− ρ)1/2x′, IL). Then the law of

ρ−1X2 = f (ρ−1/2X2
′) given X1

′ = x′ is the non-central chi-squared distribution with L degrees
of freedom and the non-central parameter f (ρ−1/2(1− ρ)1/2x′)= ρ−1(1− ρ)x. The expression
(4) follows from the properties of the non-central chi-squared distribution.

The Metropolis algorithm is a clever way to construct a reversible Markov kernel with
respect to a given probability measure �. The following definition is somewhat broader than
the usual one. It even includes the independent Metropolis–Hastings kernel, which is usually
classified as a Metropolis–Hastings kernel and not a Metropolis kernel. An important feature
of this kernel compared to the more general Metropolis–Hastings kernel is that we do not need
to know the explicit density function of the proposed Markov kernel Q(x, ·). The idea behind
this naming is that if the acceptance probability can be written explicitly in μ and �, it is called
a Metropolis kernel, and if it also depends on Q, it is called a Metropolis–Hastings kernel.

Definition 1. (Metropolis kernel.) Let μ be a measure, and let � be a probability measure with
probability density function π (x) with respect to μ. Let Q be a μ-reversible Markov kernel. A
Markov kernel P is called a Metropolis kernel of (Q, �) if

P(x, dy)=Q(x, dy)α(x, y)+ δx(dy)

{
1−

∫
E

Q(x, dy)α(x, y)

}
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for

α(x, y)=min

{
1,

π (y)

π (x)

}
. (5)

The function α is called the acceptance probability, and the Markov kernel Q is called the
proposal kernel.

A Metropolis kernel P is �-reversible. It is easy to create a Metropolis version of the
proposal kernels presented in Examples 1–3.

2.2. Haar mixture kernel

We introduce Markov kernels using the Haar measure. The Haar measure enables us to
construct a random walk on a locally compact topological group, which is a crucial step
towards obtaining non-reversible Markov kernels in this paper. The connection between the
Markov kernels and the random walk will be made clear in Section 3, and the connection with
non-reversible Markov kernels will be clear in Section 4.

The idea of constructing Haar mixture kernels is to introduce an auxiliary variable g cor-
responding to the scaling parameter or the shift parameter of the state space. We set a prior
distribution on g. In each Markov chain Monte Carlo iteration, before the transition kernel
generates a new proposal for the state space, we generate the parameter g based on its prior
distribution and the conditional distribution given the state space. The Haar mixture kernel uses
the Haar measure as the prior distribution of g. As remarked above, the reason for using the
Haar measure will be made clear in later sections.

Let (G,×) be a locally compact topological group equipped with the Borel σ -algebra. Let
E be a left G-set. We assume that E is equipped with a σ -algebra E and the left group action
is jointly measurable. Let Q be a μ-reversible Markov kernel on (E, E), where μ is a σ -finite
measure. Let

Qg(x, A)=Q(gx, gA) (x ∈ E, A ∈ E, g ∈G),

where gA= {gx : x ∈ A} ∈ E . Then Qg is μg-reversible, where

μg(A)=μ(gA).

Let ν be the right Haar measure on G. It satisfies ν(Hg)= ν(H), where Hg= {hg : h ∈H}
⊂G. Set

μ∗(A)=
∫

g∈G
μg(A)ν(dg) (A ∈ E). (6)

Assume that μ∗ is a σ -finite measure. Then μ∗ is a left-invariant measure. Indeed, by the
definitions of μ∗ and μb, we have

μ∗(aA)=
∫

b∈G
μb(aA)ν(db)=

∫
b∈G

μ(baA)ν(db),

and by right-invariance of ν, we have

μ∗(aA)=
∫

b∈G
μ(bA)ν(db)

=
∫

b∈G
μb(A)ν(db)

=μ∗(A).
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Suppose that μ is absolutely continuous with respect to μ∗. Then (g, x) 	→ dμg/dμ∗(x) is
jointly measurable. This is because dμg/dμ∗(x)= dμ/dμ∗(gx) by the left-invariance of μ∗,
and (g, x) 	→ gx is assumed to be jointly measurable. Let

K(x, dg)= dμg

dμ∗
(x)ν(dg). (7)

Remark 1. If we consider μg(dx)ν(dg) as a joint distribution of (x, g), then μ∗ is the
marginal distribution of x. The conditional distribution of x given g is K(x, dg) from this joint
distribution. By the Radon–Nikodým theorem, K(x, G)= 1 μ∗-almost surely.

Define

Q∗(x, A)=
∫

g∈G
K(x, dg)Qg(x, A). (8)

Definition 2. (Haar mixture kernel.) The Markov kernel Q∗ defined by (8) is called the Haar
mixture kernel of Q.

Example 4. (Autoregressive mixture kernel.) Consider the autoregressive kernel in Example
1. Let E=R

d, G= (R+,×), and μ=N (x0, M), and set (g, x) 	→ x0 + g1/2(x− x0). Then
the Haar measure is ν(dg)∝ g−1dg. A simple calculation yields μg =Nd(x0, g−1M) and
Qg(x, ·)=Nd(x0 + (1− ρ)1/2 (x− x0), g−1ρM). Also, μ∗(dx)∝ (�x)−d/2dx and K(x, dg)=
G(d/2, �x/2), where �x= (x− x0)�M−1(x− x0). We have a closed-form (up to a constant)
expression for Q∗(x, ·) as follows:

Q∗(x, dy)∝
[

1+ �(y− (1− ρ)1/2(x− x0))

ρ�x

]−d

dx.

Example 5. (Beta–gamma mixture kernel.) The beta–gamma kernel in Example 2 is reversible
with respect to μ= G(k, 1). After we introduce the operation (g, x) 	→ gx with G= (R+,×),
E=R+ becomes a left G-set. We have μg = G(k, g), and the Markov kernel Qg is the same as
Q with c∼ G(k(1− ρ), 1) replaced by c∼ G(k(1− ρ), g). The Haar measure on G is ν(dg)∝
g−1dg, and hence μ∗(dx)∝ x−1dx and K(x, dg)= G(k, x).

Example 6. (Chi-squared mixture kernel.) For the chi-squared kernel in Example 3, let
E=R+, G= (R+,×), and μ= G(L/2, 1/2). Set (g, x) 	→ gx. We have μg = G(L/2, g/2), and
the Markov kernel Qg is the same as Q with the standard normal distribution replaced by
N (0, g−1). The Haar measure is ν(dg)∝ g−1dg. In this case, K(x, dg)= G(L/2, x/2), and
μ∗(dx)= x−1dx.

Proposition 1. The Haar mixture kernel Q∗ is μ∗-reversible.

Proof. Let A, B ∈ E . By the definitions of Q∗ and K, we have∫
A

μ∗(dx)Q∗(x, B)=
∫

g∈G

∫
x∈A

μ∗(dx)K(x, dg)Qg(x, B)

=
∫

g∈G

∫
x∈A

μg(dx)Qg(x, B)ν(dg),
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and by μg-reversibility of Qg, we have∫
A

μ∗(dx)Q∗(x, B)=
∫

g∈G

∫
x∈B

μg(dx)Qg(x, A)ν(dg)

=
∫

B
μ∗(dx)Q∗(x, A).

From this, we can define the following Metropolis kernel. �

Definition 3. (Metropolis–Haar kernel.) A Metropolis kernel P∗ of (Q∗, �) is called a
Metropolis–Haar kernel if Q∗ is a Haar mixture kernel.

The Metropolis–Haar kernel is implemented through the following algorithm, where
π (x)= (d�/dμ∗)(x). In the algorithm, U [0, 1] is the uniform distribution on [0, 1].

Algorithm 1: Metropolis–Haar kernel

Input: x ∈ E
1: Simulate g∼K(x, dg)
2: Simulate y∼Qg(x, dy)
3: Simulate u∼ U [0, 1]
4: If u≤min{1, π (y)/π (x)}, set x← y
5: return x

Output: x

The Metropolis–Haar kernel is reversible, but important in its own right. The underlying
reference measure μ∗ is heavier than μg, which is expected to lead to a robust algorithm.
Examples of Metropolis–Haar kernels will be described in Section 4.3.

3. Unbiasedness, the random-walk property, and sufficiency

3.1. Unbiasedness

In this section, we introduce the unbiasedness property for efficient construction of the non-
reversible kernel. Any measurable map � : E→G, where G= (G,≤) is a totally ordered set,
is called a statistic in this paper. In Section 4, a statistic � will guide a Markov kernel Q(x, dy)
according to the auxiliary directional variable i ∈ {−,+} as in [23]. When the positive direction
i=+ is selected, y is sampled according to Q(x, dy) unless �x≤�y by rejection sampling. If
the negative direction i=− is selected, y is sampled unless �y≤�x. It is typical that one of
the rejection sampling directions has high rejection probability (see Example 7). To avoid this
inefficiency, we consider a class of Markov kernels Q such that the probabilities of the events
�x≤�y and �y≤�x measured by Q(x, ·) are the same. We say Q is unbiased if this property
is satisfied. If unbiasedness is violated, the rejection sampling may be inefficient, because it
takes a long time to exit the while loop of the rejection sampling. Therefore, the unbiasedness
property is necessary for efficient construction of the non-reversible kernel in our approach.

Definition 4. (�-unbiasedness.) Let � : E→G be a statistic. We say a Markov kernel Q on E
is �-unbiased if

Q(x, {y ∈ E : �x≤�y})=Q(x, {y ∈ E : �y≤�x})
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for any x ∈ E. Also, we say that two statistics � and �′ from E to possibly different totally
ordered sets are equivalent if

Q(x, {y ∈ E : �x≤�y} � {y ∈ E : �′x≤�′y})= 0,

Q(x, {y ∈ E : �y≤�x} � {y ∈ E : �′y≤�′x})= 0

for x ∈ E, where A� B= (A∩ Bc)∪ (Ac ∩ B).

If � and �′ are equivalent, then �-unbiasedness implies �′-unbiasedness.

Example 7. (Random-walk kernel.) Let v� be the transpose of v ∈Rd, and let � be a prob-
ability measure on R

d which is symmetric about the origin; that is, �(A)= �(− A) for
−A= {x ∈ E : −x ∈ A}. Let Q(x, A)= �(A− x). Then Q is �-unbiased for �x= v�x for some
v ∈Rd, since

Q(x, {y : �x≤�y})= �({z : 0≤ v�z})
= �({z : v�z≤ 0}).

On the other hand, Q is not �′-unbiased for �′x= x2
1 + · · · + x2

d, where x= (x1, . . . , xd),
if � is not the Dirac measure centred on (0, . . . , 0). In particular, if �({(0, . . . , 0)})= 0, then
Q(x, {�′y≤�′x})= 0 for x= (0, . . . , 0).

3.2. Random-walk property

Constructing a �-unbiased Markov kernel is a crucial step for our approach. However,
determining how to construct a �-unbiased Markov kernel is non-trivial. The random-walk
property is the key for this construction.

Let G be a topological group.

Definition 5. ((�, �)-random-walk.) A Markov kernel Q(x, dy) has the (�, �)-random-walk
property if there is a function � : E→G with a probability measure � on a topological group
G such that �(H)= �(H−1) for any Borel set H of G and

Q(x, {y ∈ E : �y ∈H})= �((�x)−1H). (9)

Here, H−1 = {g ∈G : g−1 ∈H}.
A typical example of a Markov kernel with the (�, �)-random-walk property is given in

Example 7. We assume that (G,≤) is an ordered group.

Proposition 2. If Q has the (�, �)-random-walk property, then Q is �-unbiased.

Proof. Let H = [�x,+∞)= {g ∈H : �x≤ g}. Then for the unit element e,

Q(x, {y ∈ E : �x≤�y})=Q(x, {y ∈ E : �y ∈H})
= �((�x)−1H)= �([e,+∞)).

Similarly, Q(x, {y ∈ E : �y≤�x})= �((−∞, e]). Since [e,+∞)−1 = (−∞, e], and since
�(H)= �(H−1), Q is �-unbiased. �

Remark 2. The �-unbiasedness is the key to the construction of a non-reversible kernel in this
work, since it allows one to have sub-Markov kernels with equal masses. However, as described
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in Example 7, �-unbiasedness is not obvious, except for the obvious case in Example 7. The
(�, �)-random-walk property is a simple sufficient condition for �-unbiasedness. The idea
behind the (�, �)-random walk is that it involves a fair move, in the sense that it increases and
decreases the order in (G,≤) with equal probability, leading to �-unbiasedness.

3.3. Sufficiency

So far in this section, we have introduced �-unbiasedness, which is the important property
for the �-guided Metropolis kernel in Section 3.1. In Section 3.2, we showed that the (�, �)-
random-walk property is sufficient for �-unbiasedness. In this section we will show that for
the Haar mixture kernel, the sufficiency property introduced below is sufficient for the (�, �)-
random-walk property, and thus for the �-unbiasedness property.

We would like to mention the intuition behind the sufficiency property. In general, the con-
ditional law of �y given x is not completely determined by �x. If it is completely determined
by �x, we call � sufficient. If � is sufficient, the equation (9) is satisfied, although � is
not symmetric in general. When Q is the Haar mixture kernel with some additional technical
conditions, we will show that � is symmetric thanks to the Haar measure property.

Let (G,×) be a unimodular locally compact topological group. Also, let (G,≤) be an
ordered group, and let E be a left G-set. In this paper, a statistic � : E→G is called a G-
statistic if �gx= g�x for g ∈G and x ∈ E. For a σ -finite measure � on E and a G-statistic
� : E→G, let �̂=� ◦�−1, that is, the image measure of � under �. Let μ̂∗ be the image
measure of μ∗ under �. Then it is a left Haar measure, since

μ̂∗(gH)=μ∗({y ∈ E : �y ∈ gH})
=μ∗({y ∈ E : �(g−1y) ∈H})

by the property �(g−1y)= g−1�y, and

μ̂∗(gH)=μ∗({y ∈ E : �y ∈H})= μ̂∗(H)

by the left-invariance of μ∗. Since G is unimodular, the left Haar measure μ̂∗ and the right
Haar measure ν coincide up to a multiplicative constant. From this fact, we can assume

μ̂∗ = ν

without loss of generality. By construction, μ and μ∗ are measures on E, and μ̂, μ̂∗, and ν are
measures on G. Let Q be a μ-reversible kernel.

Definition 6. (Sufficiency.) Let μ be a σ -finite measure. We call a G-statistic � sufficient for
(ν, μ, Q) if there is a Markov kernel Q̂ and a measurable function h1 on G such that

Q(x, {y ∈ E : �y ∈H})= Q̂(�x, H)

and

dμ

dμ∗
(x)= h1(�x)

μ∗-almost surely.

Suppose that � is sufficient for (ν, μ, Q), and let Xn be a Markov chain with transition
kernel Q. Then the law of �Xn given Xn−1 = x depends on x only through �x. Moreover,
K(x, dg) depends on x only through �x. More precisely, by the left-invariance of μ∗, we have
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dμg

dμ∗
(x)= h1(g�x) (10)

since

μg(A)=μ(gA)=
∫

gA
h1(�x)μ∗(dx)=

∫
A

h1(g�x)μ∗(dx).

Let μ̂ be the image measure of μ under �. Then Q̂ is μ̂-reversible and

dμ̂

dν
(a)= dμ̂

dμ̂∗
(a)= h1(a). (11)

Example 8. (Sufficiency of the autoregressive mixture kernel.) Consider the autoregressive ker-
nel Q and the measure μ in Example 1 and the statistic � defined in Example 4. We show that
� is sufficient for (ν, μ, Q). The Markov kernel Q(x, dy) corresponds to the update

y← x0 + (1− ρ)1/2(x− x0)+ ρ1/2 M1/2 w

where w∼Nd(0, Id). For ξ = (1− ρ)1/2ρ−1/2M−1/2(x− x0),

�y= ρ ‖ξ +w‖2 ,

where ‖ · ‖ is the Euclidean norm. Therefore, ρ−1�y conditioned on x follows the non-
central chi-squared distribution with d degrees of freedom and non-central parameter ‖ξ‖2 =
(1− ρ)ρ−1�x. Hence, the law of �y depends on x only through �x, and thus there exists a
Markov kernel Q̂ as in Definition 6. Also, a simple calculation yields h1(g)∝ gd/2 exp (−g/2).
Therefore, � is sufficient.

Example 9. (Sufficiency of the beta–gamma and chi-squared kernels.) If G= E and �x= x is
a G-statistic, then it is sufficient if μ is absolutely continuous with respect to μ∗. In particular,
for the beta–gamma kernel in Example 2 and chi-squared kernel 3, �x= x is sufficient for
(ν, μ, Q).

For a measure ν, we write ν⊗k for the kth product of ν, defined by

ν⊗k(dx1 · · · dxk)= ν(dx1) · · · ν(dxk),

for k ∈N.

Proposition 3. Suppose a G-statistic � is sufficient for a μ-reversible kernel Q. Also, suppose
a probability measure μ̂(da)Q̂(a, db) on G×G is absolutely continuous with respect to ν⊗2.
Then Q∗ has the (�, �)-random-walk property for a probability measure �. In particular, it is
�-unbiased.

Proof. Let h(a, b) be the Radon–Nikodým derivative:

h(a, b)ν(da)ν(db)= μ̂(da)Q̂(a, db).

By the μ̂-reversibility of Q̂, h(a, b)= h(b, a) almost surely. From the sufficiency property,
we can rewrite h1 and Q̂ in terms of h(a, b) and ν:⎧⎨⎩ h1(a)= ∫b∈G h(a, b)ν(db),

h1(a)Q̂(a, db)= h(a, b)ν(db),
(12)
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ν-almost surely. By the definition of Q∗, K, and Q̂, we have

Q∗(x, {y : �y ∈H})=
∫

a∈G
K(x, da)Q(ax, {y : �y ∈ aH})

=
∫

a∈G

dμa

dμ∗
(x)ν(da)Q̂(a�x, aH),

and also, by (10) and (12), we have

Q∗(x, {y : �y ∈H})=
∫

a∈G
h1(a�x)Q̂(a�x, aH)ν(da)

=
∫

a∈G

∫
b∈H

h(a�x, ab)ν(da)ν(db)

=
∫

a∈G

∫
b∈H

h(a, a(�x)−1b)ν(da)ν(db),

where the last equality follows from the right-invariance of ν. Let

ĥ(b)=
∫

a∈G
h(a, ab)ν(da).

From h(a, b)= h(b, a),

ĥ(b−1)=
∫

a∈G
h(a, ab−1)ν(da)

=
∫

a∈G
h(ab, a)ν(da)= ĥ(b).

By using ĥ, we can write

Q∗(x, {y : �y ∈H})=
∫

b∈H
ĥ((�x)−1b)ν(db)

=
∫

b∈(�x)−1H
ĥ(b)ν(db).

The above is guaranteed to have the (�, �)-random-walk property, where we introduce
�(H)= ∫a∈H ĥ(a)ν(da), because

Q(x, {y : �y ∈H})= �((�x)−1H)

and

�(H−1)=
∫

a−1∈H
ĥ(a)ν(da)=

∫
a∈H

ĥ(a)ν(da)= �(H).

Hence, it is �-unbiased by Proposition 2. �
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3.4. Multivariate versions of one-dimensional kernels

Essentially, we have introduced three Markov kernels: the autoregressive kernel, the chi-
squared kernel, and the beta–gamma kernel. The state space of the first kernel is a general
Euclidean space, and that of the last two kernels is a subspace of the one-dimensional Euclidean
space. In this subsection, we consider the multivariate versions of the latter two kernels.

We present different strategies for the two kernels. For the chi-squared kernel, there is a
sophisticated structure that allows for a multivariate version of the state space. For the beta–
gamma kernel, there does not seem to be a special structure, and so we apply a general approach
which does not require any structure. First we show how to construct a multivariate extension
for the chi-squared kernel.

Example 10. (Multivariate chi-squared mixture kernel.) For the chi-squared kernel
(Examples 3 and 6), we use the operation (g, x) 	→ (gx1, . . . , gxd) with G=R+ and E=R

d+.
Let Q be the Markov kernel defined in Example 3. Let

Q(x, dy)=Q(x1, dy1) · · ·Q(xd, dyd)

and μ(dx)= G(L/2, 1/2)⊗d. Let �x= x1 + · · · + xd. In this case, ν(dg)∝ g−1dg and μg(dx)=
G(L/2, g/2)⊗d, and Qg on R

d+ is the product of Qg on R+ defined in Example 6; that is,

Qg(x, dy)=Qg(x1, dy1) · · ·Qg(xd, dyd).

Then

μ∗(dx)∝ (x1 · · · xd)L/2−1(�x)−dL/2dx1 · · · dxd

and K(x, dg)= G(Ld/2, �x/2). From this expression, h1(g)∝ gdL/2 exp (−g/2). Moreover,
by the property of the non-central chi-squared distribution, the law of ρ−1�y where
y∼Q(x, dy) is the non-central chi-squared distribution with dL degrees of freedom and with
the non-central parameter (1− ρ)ρ−1�x. Therefore there exists a Markov kernel Q̂(g, ·) which
is the scaled non-central chi-squared distribution for each g. It is not difficult to check that Q̂
has a density function with respect to ν. The statistic � is sufficient, and the multivariate
version of chi-squared mixture kernel Q∗ is �-unbiased from this fact.

Example 11. (Multivariate beta–gamma mixture kernel.) For the beta–gamma kernel
(Examples 2 and 5), we use the operation (g, x) 	→ (g1x1, . . . , gdxd), with G= (Rd+,×) and
E=R

d+, where g= (g1, . . . , gd) and x= (x1, . . . , xd). We define the binary operation of G by
(x, y) 	→ (x1y1, · · · , xdyd) and the identity element by e= (1, . . . , 1). In this case, the Markov
kernel Qg on R

d is the product of Qg on R defined in Example 5; that is,

Qg(x, dy)=Qg1 (x1, dy1) · · ·Qgd (xd, dyd).

Also, we have K(x, dg)= G(k, x1) · · · G(k, xd) and μ∗(dx)= (x1 · · · xd)−1dx1 · · · dxd. The G-
statistic �x= x is sufficient, and hence the multivariate version of the beta–gamma mixture
kernel Q∗ is �-unbiased by Proposition 3.

For G=R
d+ in Example 11, several types of order relations are possible. Any ordering will

do as long as (2) is satisfied. The popular lexicographic order depends on how we index the

https://doi.org/10.1017/jpr.2022.109 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.109


Guided Metropolis kernel 969

coordinates. To avoid this unfavourable property, we consider the modified lexicographic order
defined below.

Example 12. (Modified lexicographic order.) Let G= (Rd+,×). For x= (x1, . . . , xd) ∈G, let

s(x)i = xi × · · · × xd

be a partial product of the vector x from the ith element to the dth element. A version of
lexicographic order ≤ can be defined as follows. Counting from i= 1, . . . , d,

• if s(x)i = s(y)i for all i or

• if the first index i such that s(x)i �= s(y)i satisfies s(x)i < s(y)i,

then we write x≤ y. It is not difficult to check that this ordering satisfies (2).

Since (2) is satisfied, the multivariate beta–gamma mixture kernel is �-unbiased with this
order for G, where � is the modified lexicographic order. Note that the modified lexicographic
order � still has the same problem as the (unmodified) lexicographic order; that is, it depends
how we index the coordinates. However, the problem occurs with probability 0. This is because
the first step of the sort (i.e. s(x)1 < s(y)1 or s(y)1 < s(x)1) does not depend on the order of the
indices, and the first step determines the order with probability 1. Indeed, by construction,

Q({y ∈ E : �x≤�y})=Q({y ∈ E : s(x)1 ≤ s(y)1})
since s(x)1 = s(y)1 occurs with probability 0. More precisely,

�(x1, . . . , xd)= (x1, . . . , xd)

with the modified lexicographic ordering and

�′(x1, . . . , xd)= x1 × · · · × xd

in R+ with the usual ordering are equivalent in the sense of Definition 4, because �′(x)= s(x)1.
In particular, the multivariate beta–gamma mixture kernel is �′-unbiased since the kernel is
�-unbiased. Note that �′ is not a G-statistic, since it does not satisfy �′gx= g�′x.

4. Guided Metropolis kernel

4.1. �-guided Metropolis kernel

Definition 7. (�-guided Metropolis kernel.) For �-unbiased Markov kernel Q, a probability
measure �, and a measurable function α : E× E→ [0, 1] defined in (5), we say a Markov
kernel PG on E× {−,+} is the �-guided Metropolis kernel of (Q, �) if

PG(x,+, dy,+)=Q+(x, dy)α(x, y)

PG(x,+, dy,−)= δx(dy)

{
1−

∫
E

Q+(x, dy)α(x, y)

}
PG(x,−, dy,−)=Q−(x, dy)α(x, y)

PG(x,−, dy,+)= δx(dy)

{
1−

∫
E

Q−(x, dy)α(x, y)

}
,
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where

Q+(x, dy)= 2Q(x, dy)1{�x<�y} +Q(x, dy)1{�x=�y},

Q−(x, dy)= 2Q(x, dy)1{�y<�x} +Q(x, dy)1{�x=�y}.

The Markov kernel PG satisfies the so-called �G-skew-reversible property

�G(dx,+)PG(x,+, dy,+)=�G(dy,−)PG(y,−, dx,−),

�G(dx,+)PG(x,+, dy,−)=�G(dy,−)PG(y,−, dx,+),

where

�G =�⊗ (δ− + δ+)/2.

Here, for probability measures ν and μ, (ν ⊗μ)(dxdy)= ν(dx)μ(dy). With this property, it
is straightforward to check that PG is �G-invariant.

Example 13. (Guided-walk kernel.) The �-guided Metropolis kernel corresponding to the
random-walk kernel Q on R is called the guided walk in [23]. For a multivariate target
distribution, �x= v�x for some v ∈Rd is considered in [23, 38].

As described in Proposition 3, a Haar mixture kernel Q∗ is �-unbiased if � is sufficient
and some other technical conditions are satisfied. Therefore, we can construct a �-guided
Metropolis kernel (Q∗, �) using the Haar mixture kernel Q∗.

Definition 8. (�-guided Metropolis–Haar kernel.) If a Haar mixture kernel Q∗ is �-unbiased,
the �-guided Metropolis kernel of (Q∗, �) is called the �-guided Metropolis–Haar kernel.

The �-guided Metropolis–Haar kernel is given as Algorithm 2, where we let π (x)=
d�/dμ∗(x). This Metropolis–Haar kernel is further discussed in detail in Sections 4.2
and 4.3.

Algorithm 2: �-guided Metropolis–Haar kernel

Input: Input (x, z) ∈ E× {−,+}
1: Set y= x
2: While (�y−�x)× z≤ 0

Simulate g∼K(x, dg)
Simulate y∼Qg(x, dy)

3: Simulate u∼ U [0, 1]
4: If u≤min{1, π (y)/π (x)}, set x← y

Else set z←−z
Output: (x, z)

Let P be the Metropolis kernel of (Q, �). We now see that PG is always expected to be
better than P in the sense of the asymptotic variance corresponding to the central limit theorem.
The inner product 〈f , g〉 = ∫ f (x)g(x)�(dx) and the norm ‖f‖ = (〈f , f 〉)1/2 can be defined on
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the space of �-square integrable functions. Let (X0, X1, . . .) be a Markov chain with Markov
kernel P and X0 ∼�. Then we define the asymptotic variance

Var (f , P)= lim
N→∞Var

(
N−1/2

N∑
n=1

f (Xn)

)

if the right-hand side exists. The existence of the right-hand side limit is a kernel-specific
problem and is not addressed here. Let λ ∈ [0, 1). As in [1], to avoid a kernel-specific argument,
we consider a pseudo-asymptotic variance

Varλ (f , P)= ‖f0‖2 + 2
∞∑

n=1

λn〈f0, Pnf0〉,

where f0 = f −�(f ), which always exists. Under some conditions, limλ↑1− Varλ (f , P)=
Var (f , P). We can also define Varλ (f , PG) for a �-square integrable function f on E by
considering f ((x, i))= f (x).

Proposition 4. ([2, Theorem 3.17].) Suppose that f is �-square integrable. Then for λ ∈ [0, 1),
Varλ (f , PG)≤Varλ (f , P).

By taking λ ↑ 1, we can expect that the non-reversible kernel PG is better than P in the sense
of having smaller asymptotic variance.

4.2. Step-by-step instructions for creating a �-guided Metropolis–Haar kernel

Below is a set of necessary conditions to build a Haar mixture kernel Q∗ and a Metropolis–
Haar kernel (Q∗, �):

1. G= (G,×) is a locally compact topological group equipped with the Borel σ -algebra
and the right Haar measure ν.

2. The state space E is a left G-set.

3. The measure μ is a σ -finite measure and Q is a μ-reversible Markov kernel on (E, E).

4. There exists a Markov kernel K(x, dg) as in (7).

Then we can construct a Haar–mixture kernel Q∗ as in (8). Below is an additional set of
necessary conditions to build a �-guided Metropolis–Haar kernel:

1. G= (G,≤) is an ordered group, and G= (G,×) is a unimodular locally compact
topological group.

2. � is a G-statistic.

3. � is sufficient for Q.

Based on the above necessary conditions, we think it is not difficult to construct the Haar
mixture kernel Q∗ as in Algorithm 2. In practice, we also need to think about the efficiency
of sampling from K(x, dg) and the cost of evaluating �x, and we will present the details with
some concrete examples in the next section.
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4.3. Examples of �-guided Metropolis–Haar kernels

Here we present some of the �-guided Metropolis–Haar kernels.

Example 14. (Guided Metropolis autoregressive mixture kernel.) The Metropolis kernel of
(Q, �) with the proposal kernel Q defined in Example 1 is called the preconditioned Crank–
Nicolson kernel. This kernel was studied in [8, 13, 39]. The Metropolis–Haar kernel with the
Haar mixture kernel Q∗ in Example 4 is called the mixed preconditioned Crank–Nicolson
kernel. This kernel was developed in [28, 29]. The �-guided Metropolis–Haar kernel of
(Q∗, �) with E=R

d and G=R+, called the �-guided mixed preconditioned Crank–Nicolson
kernel, can be constructed as in Definition 7. In this case, for a constant x0 ∈Rd and a
symmetric positive definite matrix M, �x= (x− x0)�M−1(x− x0), K(x, dg)= G(d/2, �x/2),
Qg(x, dy)=Nd(x0 + (1− ρ)1/2(x− x0), g−1ρM), and μ∗(dx)∝ (�x)−d/2dx. We can construct
the �-guided Metropolis–Haar kernel as in Algorithm 2.

Example 15. (Guided Metropolis multivariate beta–gamma mixture kernel.) The Metropolis
kernel of (Q, �) and the Metropolis–Haar kernel of (Q∗, �) in Example 11 can be defined
naturally, and the former kernel was studied in [27]. The �′-guided Metropolis–Haar kernel
with �′(x)= x1 × · · · × xd is constructed using K, Qg, and μ∗ as in Example 11. In this case,
E=G=R

d+.

Example 16. (Guided Metropolis multivariate chi-squared mixture kernel.) The Metropolis
kernel of (Q, �) and that of (Q∗, �) in Example 10 can be defined naturally. The �-guided
kernel with �x= x1 + · · · + xd is constructed using K, Qg, and μ∗ as in Example 10. In this
case, E=R

d+ and G=R+.

5. Simulation

5.1. �-guided Metropolis–Haar kernel on R
d

In this simulation, we consider the autoregressive-based kernel considered in Example 14.
More precisely, we study the preconditioned Crank–Nicolson kernel, the mixed-
preconditioned Crank–Nicolson kernel, and the �-guided mixed preconditioned Crank–
Nicolson kernel. The random-walk Metropolis kernel is also compared for reference. All these
methods are gradient-free methods, in the sense that the proposal kernel does not use the deriva-
tive of log π (x). Although this may sound daunting, sometimes a simple structure leads to
robustness and efficiency, as shown through simulation experiments. Moreover, parameter tun-
ing for these Markov kernels based on a reversible proposal kernel is relatively straightforward.
We can learn the parameters of the reference measure μ or μ∗ using the standard technique, by
treating the Markov chain Monte Carlo outputs as if they came from identical and independent
observations of μ or μ∗, even though μ∗ is generally an improper distribution. Other parame-
ters, such as step size, can be tuned by monitoring the acceptance probability. Since parameter
tuning is not our main focus, we do not elaborate on this point in this paper.

We also compare these methods with gradient-based, informed algorithms. The Metropolis-
adjusted Langevin algorithm [52, 54] and the Hamiltonian Monte Carlo algorithm [17, 40] are
popular gradient-based algorithms. Furthermore, we consider methods that use both gradient-
based and autoregressive-kernel-based ideas. This class includes, for example, the infinite-
dimensional Metropolis-adjusted Langevin algorithm [8, 13], a marginal sampler proposed in
[60] which we will refer to as marginal gradient-based sampling, and the infinite-dimensional
Hamiltonian Monte Carlo [4, 40, 43].
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We performed all experiments using a desktop computer with 6 Intel i7-5930K (3.50GHz)
CPU cores. All algorithms other than the Hamiltonian Monte Carlo algorithm were coded
in R, Version 3.6.3 [47], using the RcppArmadillo package, Version 0.9.850.1.0 [18]. The
results for the Hamiltonian Monte Carlo algorithm were obtained using RStan, Version
2.19.3 [59]. For a fair comparison, we used a single core and chain for RStan. The code
for all experiments is available in the online repository at https://github.com/Xiaolin-Song/
Non-reversible-guided-Metropolis-kernel.

5.1.1. Discrete observation of stochastic diffusion process. First we consider a problem in
which it is difficult to apply gradient-based Markov chain Monte Carlo methodologies because
of the high cost of derivative calculation. Let α ∈Rk. Suppose that (Xt)t∈[0,T] is a solution
process of a stochastic differential equation

dXt = a(Xt, α)dt+ b(Xt)dWt; X0 = x0,

where (Wt)t∈[0,T] is the d-dimensional standard Wiener process, and a : Rd ×R
k→R

d

and b : Rd→R
d×d are the drift and diffusion coefficient, respectively. We only observe

X0, Xh, X2h, . . . , XNh, where N ∈N and h= T/N.
We consider a Bayesian inference based on the local Gaussian approximated likelihood,

since an explicit form of the probability density function is not available in general. The local
Gaussian approximation approach, including the simple least-squares estimate approach, has
been studied in, for example, [19, 45, 46, 66]. See also [5, 6] for a non-local Gaussian approach
based on unbiased estimation of the likelihood.

We consider a Bayesian inference for α ∈R50 using the local Gaussian approximated
likelihood. We set the diffusion coefficient to be b≡ 1 and the drift coefficient to be

a(x, α)= 1

2
∇ log π (x− α),

with π (x)∝ 1/(1+ x��−1x/20)35, where π (x) is the probability density function with respect
to the Lebesgue measure. See [32]. Here � is generated from a Wishart distribution with 50
degrees of freedom and the identity matrix as the scale matrix. The terminal time is T = 10
and the number of observations is N = 103. The prior distribution is a normal distribution
N50(0, 10 I50).

The Markov kernels used in this simulation are listed in Table 1. The first four kernels in
the table are gradient-free kernels. The last five kernels are gradient-based, informed kernels.
All kernels other than the first, fifth, and eighth algorithms in Table 1 use the prior distribution
as the reference distribution. ‘Reference measure’ here means that either the proposal kernel
itself is reversible with respect to the measure, or the proposal kernel approximates another
Markov kernel that is reversible with respect to the measure.

We apply the Markov chain Monte Carlo algorithms via a two-step procedure. In the first
step, we run the random-walk Metropolis algorithm as a burn-in stage. For Gaussian reference
kernels, x0 is estimated by the empirical mean in the burn-in stage. After the burn-in, we
run each algorithm. The results are presented in Table 1 and Figure 2. In this example, the
covariance matrix is not preconditioned; we use the prior’s covariance matrix instead.

The acceptance rates for the first two algorithms in Table 1 were set at 25%. For the third
and fourth algorithms, acceptance rates were set to 30% to 50%. As suggested by [51, 60],
for the fifth, sixth, and seventh algorithms, the acceptance probabilities were set to approxi-
mately 60%. The eighth algorithm was tuned in two steps. First, we set the number of leapfrog
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TABLE 1. Markov kernels in Section 5.1. The first four algorithms are gradient-free algorithms. The last
five algorithms are gradient-based, informed algorithms.

RWM Random-walk Metropolis
PCN Preconditioned Crank–Nicolson
MPCN Mixed preconditioned Crank–Nicolson
GMPCN �-guided mixed preconditioned Crank–Nicolson

MALA Metropolis-adjusted Langevin
∞-MALA Infinite-dimensional Metropolis-adjusted Langevin
MGRAD Marginal gradient-based sampling
HMC Hamiltonian Monte Carlo via RStan
∞-HMC Infinite-dimensional Hamiltonian Monte Carlo

FIGURE 1. Effective sample sizes of log-likelihood per second of the stochastic diffusion process in
Section 5.1.1 for the nine Markov kernels listed in Table 1. The y-axis is on a logarithmic scale.

steps to 1 and tuned the leapfrog step size so that the acceptance rate would be between 60%
and 80% according to [7]. Then we increased the number of leapfrog steps until the time-
normalised effective sample size decreased. The tuning parameters of the Hamiltonian Monte
Carlo algorithm were controlled using the RStan package. As a quantitative measure of effi-
ciency, we used the effective sample size of log-likelihood per second. It was estimated using
the R package coda [44].

The effective log-likelihood sample sizes per second are shown in Figure 1. The box plot
is constructed from 50 independent simulations for each algorithm. The fifth, sixth, and sev-
enth algorithms, which are Langevin-diffusion-based algorithms, show the worst performance.
Since we have to evaluate the derivatives several times per step of the Markov chain, the
Hamiltonian Monte Carlo and the infinite-dimensional Hamiltonian Monte Carlo are still
worse than the random-walk Metropolis kernel. The random-walk Metropolis kernel and the
preconditioned Crank–Nicolson kernel are better than gradient-based kernels, but the mixed
preconditioned Crank–Nicolson kernel is much better. The �-guided version is even better
than the non-�-guided version thanks to the non-reversible property. A trace plot is also shown
in Figure 4; it illustrates that the Hamiltonian Monte Carlo method has good performance per
iteration, but the cost is high compared to other algorithms.
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FIGURE 2. Trace plots of log-likelihood of the stochastic diffusion process in Section 5.1.1 for the nine
Markov kernels listed in Table 1.

5.1.2. Logistic regression. Next we apply the algorithms to a logistic regression model with the
Sonar data set from the University of California, Irvine, repository [16]. The data set contains
208 observations and 60 explanatory variables. The prior distribution is N (0, 102) for each set
of parameters. We used a relatively large variance of the normal distribution, because we did
not have enough prior information at this stage.

Estimation of the preconditioning matrix is necessary for this problem because of the
existence of a strong correlation between the variables. We performed 2.0× 105 iterations
to estimate μ0 and estimated the preconditioning matrix �0 using empirical means. Then
we ran 105 iterations for each algorithm, discarding the first 2× 104 iterations as burn-in.
Furthermore, we ran each experiment 50 times using different seeds. We evaluated the
effective sample size of log-likelihood per second; the results of all the algorithms are
presented in box plots (Figure 3). The algorithms based on the Lebesgue measure (the first,
fifth, and eighth algorithms in Table 1) are worse than other algorithms based on the Gaussian
reference measure. The performances of the gradient-based algorithms are divergent, which
might reflect the sensitivity of the gradient-based algorithms, which is well described in
[12]. In particular, the infinite-dimensional Hamiltonian Monte Carlo algorithm shows better
performance in this case, although it shows poor performance in the previous simulation.
The �-guided mixed preconditioned Crank–Nicolson kernel was slightly worse than infinite-
dimensional Hamiltonian Monte Carlo algorithm and better than all the other algorithms. The
Metropolis–Haar and �-guided Metropolis–Haar kernels show good and robust results for the
two simulation experiments.

We also investigate the sensitivity of the gradient-based algorithms for the same model
as displayed in Figure 4. In this example, 10 initial values are randomly generated from a
multivariate normal distribution for each algorithm. The number of iterations of each algorithm
is 5× 103. The paths of the gradient-based algorithms depend strongly on the initial values,
except in the case of the infinite-dimensional Hamiltonian Monte Carlo algorithm.
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FIGURE 3. Effective sample sizes of log-likelihood per second in logistic regression example in
Section 5.1.2 for the nine Markov kernels listed in Table 1.

FIGURE 4. Sampling paths of the logistic regression example illustrated in Section 5.1.2. The
Hamiltonian Monte Carlo algorithm is excluded from this simulation because the initial values of the

algorithm are automatically selected in the RStan package.

5.1.3. Sensitivity of the choice of x0. To illustrate the importance of x0, we additionally run a
numerical experiment on a 50-dimensional multivariate central t-distribution with degrees of
freedom ν = 3 and identity covariance matrix [32]. The first element of x0 is ξ ≥ 0, and all the
other elements are set to be zero. When ξ is large, the direction is less important for increasing
or decreasing the likelihood. We run the algorithms on the target distribution for 105 iterations.
The experiment shows that the benefit of non-reversibility diminishes as the importance of the
direction shrinks (Table 2).

5.2. �-guided Metropolis–Haar kernels on R
d+

Next, we consider the beta–gamma-based kernels considered in Example 15 and the chi-
squared-based kernels considered in Example 16 with L= 1. Thus, we consider a total of
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TABLE 2. Effective sample sizes of log-likelihood per second target on a 50-dimensional Student
distribution as in Section 5.1.3.

ξ = 0 ξ = 10−3 ξ = 10−2 ξ = 10−1 ξ = 1 ξ = 10

MPCN 378.19 96.23 94.74 93.52 95.33 46.31
GMPCN 4245.43 116.29 114.78 115.2 117.20 40.20

TABLE 3. Description of Markov kernels in Figure 5 in Section 5.2.

MH Metropolis
MHH Metropolis with Haar mixture kernel
GMH Guided Metropolis

FIGURE 5. Trace plots of the Metropolis kernels in Section 5.2. The guided kernels (in the rightmost
panels) are more variable than their non-guided counterparts. The solid lines correspond to the negative

direction and the dashed lines to the positive direction.

six Markov kernels. These are the Metropolis kernel, the Metropolis–Haar kernel, and the
�-guided Metropolis–Haar kernel for each of the beta–gamma-based and chi-squared-based
kernels.

Our goal is not to compare the beta–gamma-based kernels with the chi-squared-based ker-
nels, but to compare the guided kernels with the non-guided kernels. In this simulation, we
illustrate the difference in behaviour between the guided Metropolis kernel and other kernels
by plotting trajectories in two dimensions.
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We consider a Poisson hierarchical model of the form

xm,n|θm ∼ Poisson(θm), n= 1, . . . , N,

θm ∼ G(α, β), m= 1, . . . , M,

α ∼ G(1/20, 1/20), β ∼ G(1/20, 1/20),

where x= {xm,n : m= 1, . . . , M, n= 1, . . . N} is the observation. In our simulations we set
M = 25 and N = 5. The number of unknown parameters is M + 2= 27 in this case. The
parameter θ = (θ1, . . . , θM) has a closed-form conditional distribution

θm|α, β, x∼ G
(

N∑
n=1

xm,n + α, N + β

)
m= 1, . . . , M.

Therefore we can use the Gibbs sampler for generating the parameter θ . On the other hand,
since the conditional distribution of α, β is complicated, we apply the Monte Carlo algorithms
mentioned above.

We created two-dimensional trajectory plots to illustrate the difference in behaviour
between the Metropolis–Haar kernel and the �-guided version of it. The tuning parameters are
chosen so that the average acceptance probabilities are 30–40% in 5× 104 iterations. Figure 5
shows the trace plots of the last 300 iterations for the kernels. One can clearly see the larger
variation for the guided kernels. Thanks to the incident variables, the guided kernel maintains
its direction when the proposed value is accepted. The property of maintaining direction greatly
contributes to the increase in variability.

6. Discussion

The theory and application of non-reversible Markov kernels have been under active devel-
opment recently, but there still exists a gap between the two. In order to close this gap, we
have described how to construct a non-reversible Metropolis kernel on a general state space.
We believe that the method we propose can make non-reversible kernels more attractive.

As a by-product, we have constructed the Metropolis–Haar kernel. The Haar mixture kernel
imposes a new state globally by using a random walk on a group, whereas other recent Markov
chain Monte Carlo methods use local topological information derived from target densities. We
believe that this sheds new light on the proposed gradient-free, global topological approach. A
combination of the global and local (gradient-based) approaches is an area for further research.

In this paper, we have not discussed geometric ergodicity, although ergodicity is clear
under appropriate regularity conditions. A popular approach for proving geometric ergodic-
ity is based on the establishment of a Foster–Lyapunov-type drift condition, which requires
kernel-specific arguments. On the other hand, our motivation is to build a general framework
for the non-reversible Metropolis kernels. Therefore, we have not focused on geometric ergod-
icity. A more in-depth study should be carried out in that direction. See [28] for geometric
ergodicity of the mixed preconditioned Crank–Nicolson kernel.

Finally, we would like to remark that the �-guided Metropolis–Haar kernel is not limited to
R

d or Rd+. It is possible to construct the kernel on the space of p× q matrices and the space of
symmetric q× q positive definite matrices, where p, q are any positive integers. The extension
of �-guided Metropolis–Haar kernels to other state spaces is left to future work.

https://doi.org/10.1017/jpr.2022.109 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.109


Guided Metropolis kernel 979

Acknowledgements

The authors would like to thank the executive editor, editor, and reviewers for their helpful
and constructive comments.

Funding information

K. Kamatani is supported by JSPS KAKENHI Grant No. 20H04149 and JST CREST
Grant No. JPMJCR14D7. X. Song is supported by the Ichikawa International Scholarship
Foundation.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] ANDRIEU, C. (2016). On random- and systematic-scan samplers. Biometrika 103, 719–726.
[2] ANDRIEU, C. AND LIVINGSTONE, S. (2021). Peskun–Tierney ordering for Markovian Monte Carlo: beyond

the reversible scenario. Ann. Statist. 49, 1958–1981.
[3] BERGER, J. O. (1993). Statistical Decision Theory and Bayesian Analysis. Springer, New York.
[4] BESKOS, A. et al.et al. (2017). Geometric MCMC for infinite-dimensional inverse problems. J. Comput. Phys.

335, 327–351.
[5] BESKOS, A., PAPASPILIOPOULOS, O. AND ROBERTS, G. (2009). Monte Carlo maximum likelihood estimation

for discretely observed diffusion processes. Ann. Statist. 37, 223–245.
[6] BESKOS, A., PAPASPILIOPOULOS, O., ROBERTS, G. O. AND FEARNHEAD, P. (2006). Exact and computa-

tionally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R.
Statist. Soc. B [Statist. Methodology] 68, 333–382.

[7] BESKOS, A., PILLAI, N., ROBERTS, G., SANZ-SERNA, J.-M. AND STUART, A. (2013). Optimal tuning of the
hybrid Monte Carlo algorithm. Bernoulli 19, 1501–1534.

[8] BESKOS, A., ROBERTS, G., STUART, A. AND VOSS, J. (2008). MCMC methods for diffusion bridges. Stoch.
Dynamics 8, 319–350.

[9] BIERKENS, J. (2016). Non-reversible Metropolis–Hastings. Statist. Comput. 26, 1213–1228.
[10] BIERKENS, J., FEARNHEAD, P. AND ROBERTS, G. (2019). The zig-zag process and super-efficient sampling

for Bayesian analysis of big data. Ann. Statist. 47, 1288–1320.
[11] BOUCHARD-CÔTÉ, A., VOLLMER, S. J. AND DOUCET, A. (2018). The bouncy particle sampler: a nonre-

versible rejection-free Markov chain Monte Carlo method. J. Amer. Statist. Assoc. 113, 855–867.
[12] CHOPIN, N. AND RIDGWAY, J. (2017). Leave Pima Indians alone: binary regression as a benchmark for

Bayesian computation. Statist. Sci. 32, 64–87.
[13] COTTER, S. L., ROBERTS, G. O., STUART, A. M. AND WHITE, D. (2013). MCMC methods for functions:

modifying old algorithms to make them faster. Statist. Sci. 28, 424–446.
[14] DIACONIS, P., HOLMES, S. AND NEAL, R. M. (2000). Analysis of a nonreversible Markov chain sampler.

Ann. Appl. Prob. 10, 726–752.
[15] DIACONIS, P. AND SALOFF-COSTE, L. (1993). Comparison theorems for reversible Markov chains. Ann. Appl.

Prob. 3, 696.
[16] DUA, D. AND GRAFF, C. (2017). UCI Machine Learning Repository. Available at https://archive.ics.uci.

edu/ml/index.php. University of California, Irvine, School of Information and Computer Science.
[17] DUANE, S., KENNEDY, A., PENDLETON, B. J. AND ROWETH, D. (1987). Hybrid Monte Carlo. Phys. Lett. B

195, 216–222.
[18] EDDELBUETTEL, D. AND SANDERSON, C. (2014). RcppArmadillo: accelerating R with high-performance

C++ linear algebra. Comput. Statist. Data Anal. 71, 1054–1063.
[19] FLORENS-ZMIROU, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes.

Statistics 20, 547–557.
[20] GAGNON, P. AND MAIRE, F. (2020). An asymptotic Peskun ordering and its application to lifted samplers.

Preprint. Available at https://arxiv.org/abs/2003.05492v4.
[21] GHOSH, J. K., DELAMPADY, M. AND SAMANTA, T. (2006). An Introduction to Bayesian Analysis. Springer,

New York.

https://doi.org/10.1017/jpr.2022.109 Published online by Cambridge University Press

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://arxiv.org/abs/2003.05492v1
https://doi.org/10.1017/jpr.2022.109


980 K. KAMATANI AND X. SONG
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