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Abstract
The key aim of this special issue is to make developmental theory proposals concrete
enough to evaluate with empirical data. With this in mind, I discuss proposals from
the “Universal Grammar + statistics” (UG+stats) perspective for learning several
morphology and syntax phenomena. I briefly review why UG has traditionally been
part of many developmental theories of language, as well as common statistical
learning approaches that are part of UG+stats proposals. I then discuss each
morphology or syntax phenomenon in turn, giving an overview of relevant UG+stats
proposals for that phenomenon, specific predictions made by each proposal, and what
we currently know about how those predictions hold up. I conclude by briefly
discussing where we seem to be when it comes to how well UG+stats proposals help us
understand the development of morphology and syntax knowledge.

1 Introduction

The goal of this special issue is to make different theoretical proposals concrete enough
to provide testable predictions. If those predictions are then borne out, the proposal is
supported; if not, the proposal isn’t. Generating precise, testable predictions for theories
is something I deeply support, and computational cognitive modeling (a methodology I
use most often in my own work) provides one way to do exactly this (e.g., see Pearl, in
press for more detailed discussion on this point).

Here, I’ve been asked to represent the perspective of proposals that involve both
Universal Grammar (UG) and statistics (so I’ll refer to them as UG+stats proposals).
In almost every case study where I’ll present the UG+stats proposals I’m aware of, a
proposal is implemented concretely in a computational cognitive model. Why the
focus on computational cognitive models? This is because it’s often hard to pin
down a specific prediction that a UG+stats proposal makes without a concrete model

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the
terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Child Language (2021), 48, 907–936
doi:10.1017/S0305000920000665

https://doi.org/10.1017/S0305000920000665 Published online by Cambridge University Press

mailto:lpearl@uci.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0305000920000665&domain=pdf
https://doi.org/10.1017/S0305000920000665


that uses the proposed UG knowledge and implements a specific learning strategy
relying on the proposed statistics. When we have a computational cognitive model,
predictions about children’s behavior can be generated that are precise enough to
evaluate with empirical data that either already exist or can be obtained in the future.

So, computational cognitive modeling offers a way to implement a UG+stats
developmental theory, which is typically a theory of both the linguistic
representations the child is learning (this is usually the UG part) and the acquisition
process the child undergoes (this is usually the statistics part). The computational
model then becomes a “proof of concept” for the developmental theory, as
implemented by that model (see Pearl, 2014; Pearl, in press for more detailed
discussion about this). This is in fact why an effective way to evaluate a UG+stats
theory (or really, any developmental theory) is to implement it in a computational
cognitive model; implementing the model involves (i) embedding the relevant prior
knowledge and learning mechanisms proposed for the child in the model, (ii) giving
the modeled child realistic input to learn from, and (iii) generating output
predictions from that modeled child that connect in some interpretable way to
children’s behavior. This is the approach that the proposals reviewed here have
generally taken for investigating how children learn morphology and syntax.

Also, it’s likely I’ve been asked to represent the UG+stats perspective because I often
work on learning problems where UG representations are combined with statistical
learning in some form. This is because I think UG approaches to development can
often greatly benefit from integrating statistical learning approaches (see Pearl, in press
for more detailed discussion on this point). However, for some of the case studies in
the development of morphology and syntax that will be discussed here, I don’t
necessarily agree that the UG+stats proposals I’m aware of are the best approaches. As
relevant, I’ll briefly note the caveats I have for the UG+stats proposals discussed.

In the remainder of this article, I’ll first briefly review what UG is meant to be and
why UG has traditionally been part of many developmental theories of language. I’ll
then discuss some common statistical learning approaches that are often part of
UG+stats proposals. I’ll then turn to specific morphology and syntax phenomena,
including aspects of core syntax and morphology, as well as more complex
phenomena, and how UG+stats proposals account for each (or don’t yet). More
specifically, for each phenomenon, I’ll first discuss specific UG+stats proposals for
learning it, including a brief overview of both the UG part and the statistics part. I’ll
then present the predictions that the UG+stats proposals make, aiming to specify at
least one prediction that would support a specific proposal and one that would
undermine it. I’ll then discuss whether the proposal predictions hold up, don’t hold
up, or if we just don’t know yet. In cases where we don’t know yet, we have a clear
path forward for fruitful future avenues of behavioral research (namely, studies that
would test specific proposal predictions). I’ll conclude with a brief summary of where
we are when it comes to how well UG+stats proposals help us understand the
development of morphology and syntax.

2 UG + statistics

2.1 The UG part

A key motivation for UG has always been developmental: UG could help children
acquire the linguistic knowledge that they do as quickly as they do from the data
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that’s available to them (Chomsky, 1981; Jackendoff, 1994; Laurence & Margolis, 2001;
Crain & Pietroski, 2002). That is, UG would allow children to solve what’s been called
the Poverty of the Stimulus (see Pearl, 2020 for a recent review), where the available data
often seem inadequate for pinpointing the right linguistic knowledge as efficiently as
children seem to. So, without some internal bias, children wouldn’t succeed at
language acquisition. UG is then a proposal for what that internal bias could be that
enables language acquisition to in fact succeed.

Typically, a UG proposal would provide a way to structure the child’s hypothesis
space with respect to a specific piece of linguistic knowledge – that is, UG can help
define what explicit linguistic hypotheses are considered, and what building blocks
allow children to construct those explicit hypotheses for consideration. For instance,
traditional linguistic parameters (Chomsky, 1981; Chomsky, 1986) are building
blocks that children can construct their linguistic system from. So, a language’s
system would be described by a specific collection of parameter values for these
linguistic parameters. Having these parameter building blocks then allows a child to
construct and consider explicit hypotheses about a language’s system as she
encounters her language’s data. In some of the phenomena we’ll discuss below (basic
word order, lack of inflection, movement), linguistic parameters supplied by UG
allow the child to construct a constrained set of possible hypotheses to navigate
through, given her input.

More generally, a working definition of UG is that it’s anything that’s both innate
and language-specific (Pearl, 2020; Pearl, in press). So, linguistic parameters fit this
definition because they would be innate knowledge and they’re only used for
learning language. In the specific linguistic phenomena reviewed in this article, we’ll
see a variety of examples of UG knowledge, as relevant for morphology and syntax.

2.2 The statistics part

In UG+stats proposals, the statistics part refers to statistical learning. That is, on the basis
of the statistics of her input, the child is learning something. One reason that statistical
learning can work so well in combination with UG is that statistical learning is often
used to navigate through a hypothesis space to identify the correct hypothesis for the
language. Because UG can provide a hypothesis space to the child, statistical learning
can then naturally complement UG proposals to language development.

How does this work exactly? At its core, statistical learning is about counting things
(this is the “statistical” part), and updating hypotheses on the basis of those counts (this
is the “learning” part, sometimes also called inference (Pearl, in press)). Counting things
is a domain-general ability, because we can count lots of different things, both linguistic
and non-linguistic (even as babies: Saffran, Aslin & Newport, 1996; Aslin, Saffran &
Newport, 1998; Saffran, Johnson, Aslin & Newport, 1999; Fiser & Aslin, 2002;
Kirkham, Slemmer & Johnson, 2002; Wu, Gopnik, Richardson & Kirkham, 2011;
Stahl, Romberg, Roseberry, Golinkoff & Hirsh-Pasek, 2014; Ferry et al., 2016; Aslin,
2017; Fló et al., 2019). These counts can then be converted into probabilities – for
example, seeing something 3 times out of 10 yields a probability of 3

10 = 0.30. Then,
things with higher probabilities can be interpreted as more likely than things with
lower probabilities.

So, to effectively use statistical learning, a child has to know what to count. UG can
identify what to count, because UG defines the hypothesis space. This means that the
relevant things to count are the relevant things for determining which hypothesis in the
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hypothesis space is the right one for the language. For language acquisition, the relevant
things are typically linguistic things (though sometimes non-linguistic things might be
relevant to count too, depending on what the child’s trying to learn). Importantly, the
statistical learning mechanism itself doesn’t seem to change – once the child knows the
units over which inference is operating, counts of the relevant units are collected and
inference can operate. In the rest of this subsection, I’ll briefly review some common
approaches to doing inference over collected counts: Bayesian inference,
reinforcement learning, and the Tolerance & Sufficiency Principles (for a more
comprehensive overview of each, see Pearl, in press). Table 1 summarizes which
inference mechanisms are used by particular UG+stats proposals for the different
morphology and syntax phenomena discussed in the rest of this article.

2.2.1 Bayesian inference
Bayesian inference operates over probabilities (as mentioned above, probabilities can be
derived from counts). This inference mechanism involves both prior assumptions about
the probability of different hypotheses and an estimation of how well a given hypothesis
fits the data. A Bayesian model assumes the learner (for our purposes, the modeled
child) has some space of hypotheses H, each of which represents a possible
explanation for how the data D in the relevant part of the child’s input were
generated. For example, a UG+stats modeled child relying on a linguistic
parameter to determine if her language has wh-movement might consider both
a + wh-movement option and a -wh-movement option as two hypotheses
({+wh-movement, -wh-movement} ϵ H ); the data might be the collection of
questions in the child’s input involving wh-words ({What did Jack climb?, Jack
climbed what?!,…} ϵ D).

Given D, the modeled child’s goal is to determine the POSTERIOR probability of each
possible hypothesis h ϵ H, written as P(h|D). This is calculated via Bayes’ Theorem as
shown in (1).

(1) P(h|D) = P(D|h)∗P(h)
P(D) = P(D|h)∗P(h)∑

h′[H
P(D|h′)∗P(h′) / P(D|h)∗P(h)

In the numerator, P(D|h) represents the LIKELIHOOD of the data D given hypothesis h,
and describes how compatible that hypothesis is with the data. Hypotheses with a
poor fit to the data (e.g., the -wh-movement hypothesis for a dataset where 30% of

Table 1. Common inference mechanisms in statistical learning that are used by UG+stats proposals for
different morphology and syntax phenomena: basic syntactic categories (syn cat), basic word order
(word order), inflectional morphology (infl mor), showing a temporary lack of inflection (no infl),
movement (mvmt), and constraints on utterance form and interpretation (constr).

syn
cat

word
order

infl
mor

no
infl mvmt constr

Basic counts &
probabilities

✓ ✓ ✓ ✓ ✓ ✓

Bayesian inference ✓ ✓ ✓ ✓

Reinforcement learning ✓ ✓ ✓

Tolerance & Sufficiency ✓
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the data are compatible only with +wh-movement) have a lower likelihood; hypotheses
with a good fit to the data have a higher likelihood.

P(h) represents the PRIOR probability of the hypothesis. Intuitively, this corresponds
to how plausible the hypothesis is, irrespective of any data. This is often where
considerations about the complexity of the hypothesis will be implemented (e.g.,
considerations of simplicity or economy, such as those included in the grammar
evaluation metrics of Chomsky, 1965, and those explicitly implemented in Perfors,
Tenenbaum & Regier, 2011 and Piantadosi, Tenenbaum & Goodman (2012). So, for
example, more complex hypotheses will typically have lower prior probabilities.
A hypothesis’s prior is something that could be specified by UG – but all that
matters is that the prior is specified beforehand somehow, wherever it comes from.

The likelihood and prior make up the numerator of the posterior calculation, while
the denominator consists of the normalizing factorP(D), which is the probability of the
data under any hypothesis. Mathematically, this is the summation of the likelihood *
prior for all possible hypotheses in H, and ensures that all the hypothesis posteriors
sum to 1. Notably, because we often only care about how one hypothesis compares
to another (e.g., is +wh-movement or -wh-movement more probable after seeing the
data D?), calculating P(D) can be skipped over and the numerator alone used (hence,
the ∝ in (1)).

From a developmental perspective, there’s a considerable body of evidence
suggesting that young children are capable of Bayesian inference (3 years: Xu &
Tenenbaum, 2007; 9 months: Gerken, 2006; Dewar & Xu, 2010; Gerken, 2010;
6 months: Denison, Reed & Xu, 2011, among many others). Given this, Bayesian
inference seems a plausible statistical learning mechanism for language acquisition.

2.2.2 Reinforcement learning
Reinforcement learning also operates over probabilities and is a principled way to
update the probability of a categorical option which is in competition with other
categorical options (see Sutton & Barto, 2018 for a recent overview). For example,
with a wh-movement linguistic parameter, a child might consider both
a + wh-movement and a -wh-movement option. A common implementation used by
UG+stats proposals is the linear reward-penalty scheme (Bush & Mosteller, 1951). As
the name suggests, there are two choices when a data point is processed – either the
categorical option under consideration is rewarded or it’s penalized. This translates to
the option’s current probability being increased (rewarded) or decreased (penalized).
For instance, if the + wh-movement option is under consideration, and it’s
compatible with the current data point (like What’s Jack climbing _what?),
the + wh-movement option is rewarded and its probability is increased. In contrast, if
that same option is under consideration, but it’s not compatible with the current
data point (e.g., an echo question like Jack’s climbing what?!), the +wh-movement
option is penalized and its probability is decreased.

While applying reinforcement learning in UG approaches to language acquisition is
a fairly recent innovation, reinforcement learning itself is well-supported in the child
development literature more generally (sometimes under the name “operant
conditioning”). In particular, we have evidence that very young children are capable
of it (under 18 months: Hulsebus, 1974; 12 months: Lipsitt, Pederson & Delucia,
1966; 10 months: de Sousa, Garcia & de Alcantara Gil, 2015; 3 months:
Rovee-Collier & Capatides, 1979; 10 weeks: Rovee & Rovee, 1969; Watson, 1969;
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among many others). So, it seems plausible that young children could use
reinforcement learning for language acquisition.

2.2.3 Tolerance and Sufficiency Principles
The Tolerance and Sufficiency Principles (Yang, 2005; Yang, 2016) together describe a
particular inference mechanism, and this mechanism operates over specific kinds of
counts that have already been collected. More specifically, these principles together
provide a formal approach for when a child would choose to adopt a “rule”,
generalization, or default pattern to account for a set of items. For example, these
principles can be used to determine if there’s a general rule for forming the past
tense in English from a verb’s root form (e.g., kiss → kissed).

Both principles are based on cognitive considerations of knowledge storage and
retrieval in real time, incorporating how frequently individual items occur, the
absolute ranking of items by frequency, and serial memory access. The learning
innovation of these principles is that they’re designed for situations where there are
exceptions to a potential rule. In the English past tense example above, there are
certainly exceptions in the child’s input: past tense forms like drank (rather than
drinked) and caught (rather than catched).

So, these two principles help the child infer whether the rule is robust enough to
bother with, despite the exceptions. In particular, a rule should be bothered with if it
speeds up average retrieval time for any item. For instance, it’s faster on average to
have a past tense rule to retrieve a regular past tense form (like -ed for English).
However, if the past tense is too irregular, it’s not useful to have the rule: retrieving
the target information (i.e., the correct past tense form) takes too long on average.

The Tolerance Principle determines how many exceptions a rule can “tolerate” in the
data before it’s not worthwhile for the child to have that rule at all; the Sufficiency
Principle uses that tolerance threshold to determine how many rule-abiding items
are “sufficient” in the data to justify having the rule. This means, of course, that the
child needs to have previously counted how many items obey the potential rule and
how many don’t. With these counts in hand, the child can then apply the Tolerance
and Sufficiency Principles to infer whether the data justify adopting the rule under
consideration (or not).

Together, these two principles have been used for investigating a rule, generalization,
or default pattern for a variety of linguistic knowledge types (Yang, 2005; Legate & Yang,
2013; Yang, 2015; Schuler, Yang & Newport, 2016; Yang, 2016; Pearl, Lu & Haghighi,
2017; Yang, 2017; Irani, 2019; Pearl & Sprouse, 2019a). However, there isn’t yet much
evidence that children are capable of using the Tolerance and Sufficiency Principles –
the main support comes from the study by Schuler et al. (2016), which demonstrates
that 5- to 8-year-old behavior is consistent with children using these principles. Still,
these principles seem like a promising statistical learning mechanism for UG+stats
proposals, given their current success at predicting child behavior (more on this in the
subsection on learning morphology in highly-inflected languages).

3 The phenomena

3.1 Core syntax: Basic syntactic categories

Foundational knowledge in any language includes the syntactic categories of the
language, and which words belong in each category. For instance, how does a child
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learn that her language has categories like NOUN, VERB, and DETERMINER? For English, how
would a child learn that both kitty and idea are NOUNs, while kissed is a VERB and the is a
DETERMINER? Ambridge (2017) notes that developmental researchers who are interested
in UG have largely turned their attention away from investigating how children learn
basic syntactic categories. I think why that is will become clearer when we look at
the predictions that can currently be generated. Relatedly, it can be tricky to tell if a
proposal is really a UG+stats proposal; this is because the UG part would need to be
innate, language-specific knowledge about syntactic categories, and it’s not always
clear the prior knowledge assumed by a proposal is necessarily UG-type knowledge
(more on this below).

3.1.1 Specific UG+stats proposals (potentially): Semantic bootstrapping
The main proposal I’m aware of that could potentially be a UG +stats proposal is
semantic bootstrapping (Pinker, 1984; Pinker, 1987). This proposal suggests that
children have innate links between abstract syntactic categories and semantic
relations (e.g., NOUN ↔ name of a concrete thing). These innate links allow children
to initially break into the syntactic category system, as children would expect that
similar semantic relations (e.g., concrete things like ball and kitty) map to the same
syntactic category (which we refer to as NOUN). Children would then rely on
statistical learning to fine-tune which words really belong to which categories, on the
basis of their input. So, children start with abstract syntactic categories, and via their
input, they identify the true implementation of that category in their language
(Valian, 2009; Valian, 2014). Importantly, the true implementation typically will go
far beyond a specific semantic relation (e.g., the NOUN idea isn’t a concrete thing).

Specific UG+stats proposals (potentially): The UG part
If children have innate links from innate abstract syntactic categories to certain semantic
relations, then that would be UG knowledge – the child has innate knowledge that’s
specifically about language. However, it could be that the links emerge from the
child considering the words that seem to be clustered together in her language in a
particular category. That is, the child notices that the semantic relations encoded by
the members of CATEGORY1 (which we as adults recognize as a type of NOUN) seem to
include a lot of concrete things. So, on the basis of that observation, the child
constructs the hypothesis about the link (CATEGORY1 ↔ concrete things), and uses this
hypothesized link to accomplish whatever the innate link would have accomplished.
Moreover, if there are innate abstract categories that are language-specific (i.e.,
something like NOUN and VERB), then these too would be UG knowledge. However,
it’s possible that the innate knowledge about categories may not necessarily be
language-specific. For example, suppose a child innately knows that there are in fact
categories of some kind, but doesn’t have something as specific as NOUN and VERB in
mind. Could we tell the difference between innate knowledge that CATEGORY1 and
CATEGORY2 exist, as opposed to innate knowledge that NOUN and VERB exist? What
would that difference be? If the difference is about the links between categories (e.g.,
NOUN ↔ concrete thing), then the innate knowledge is really about the links and not
the categories themselves. That is, this link could just as easily be expressed as
SOME_CATEGORY ↔ concrete thing. As we saw above, it’s not clear that this link is
necessarily innate, rather than something that could be derived from the child’s
input. So, more generally, it’s not obvious that the UG part for semantic
bootstrapping is necessarily UG.
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Specific UG+stats proposals (potentially): The statistics part
The learning mechanism for fine-tuning a language’s syntactic category
implementations is distributional learning. In distributional learning, items with the
same distributions (that is, appearing in the same contexts, and so for instance
preceded and followed by the same elements) are perceived as the same kind of
thing. The way a child might tell that two items have the same distributions is by
tracking which elements precede and/or follow those items. One common
implementation of distributional learning for discovering a language’s syntactic
categories is called Frequent Frames (Mintz, 2003; Mintz, 2006; Xiao, Cai & Lee,
2006; Wang & Mintz, 2008; Chemla, Mintz, Bernal & Christophe, 2009; Erkelens,
2009; Weisleder & Waxman, 2010; Wang, Höhle, Ketrez, Küntay & Mintz, 2011;
Bar-Sever & Pearl, 2016). A child using Frequent Frames tracks which items appear
between two elements (e.g., two words like the_is for a NOUN, or two morphemes like
is_ing for a VERB) – this is the “frames” part. The “frequent” part is that the child
tracks how often frames appears and only really pays attention to those frames that
are frequent (a simple way to do this is by counting how many instances of a frame
have appeared). The frequent frames then form the foundation of the language-
specific syntactic categories. Under a UG+stats approach, these language-specific
categories can be matched against the innate, abstract categories, based on the
semantic relations they encode. For instance, the the_is frame’s items may map to
NOUN, if these items correspond to concrete objects (Mintz, 2003). However, frequent
frames are also compatible with a non-UG +stats approach; in that case, the child
fine-tunes her language’s categories by using the frequent-frame-based categories as a
starting point and noticing what semantic relations these categories encode.

3.1.2 Predictions made
A lot of syntactic categorization research is about when children seem to demonstrate
knowledge of different syntactic categories in their language (Valian, 1986; Capdevila i
Batet & Llinàs i Grau, 1995; Pine & Martindale, 1996; Pine & Lieven, 1997; Tomasello,
2000; Fisher, 2002; Tomasello & Abbot-Smith, 2002; Booth & Waxman, 2003;
Tomasello, 2004; Kemp, Lieven & Tomasello, 2005; Rowland & Theakston, 2009;
Theakston & Rowland, 2009; Tomasello & Brandt, 2009; Valian, Solt & Stewart,
2009; Yang, 2011; Shin, 2012; Pine, Freudenthal, Krajewski & Gobet, 2013;
Theakston, Ibbotson, Freudenthal, Lieven & Tomasello, 2015; Ambridge, 2017;
Meylan, Frank, Roy & Levy, 2017; Bates, Pearl & Braunwald, 2018). In general, very
early knowledge of language-specific syntactic categories has been tacitly taken as a
signal that children rely on innate (UG) knowledge to achieve that level of linguistic
development so early. That is, from a UG perspective, the assumption has been that
innate knowledge of abstract syntactic categories and links from those categories to
semantic relations should speed up the development of language-specific categories.
So, when children seem to converge on language-specific syntactic categories very
early (say, before age two), this has been interpreted as evidence for UG knowledge.

However, it’s difficult to be sure about this interpretation without knowing what
developmental trajectory we expect with vs. without the abstract category and linking
knowledge. That is, how can we know that children’s acquisition of syntactic
categories is faster than it should have been if they didn’t have this innate
knowledge? For instance, it’s not clear we have precise predictions about how long it
should take children to identify their language-specific NOUN category if they did in
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fact have abstract knowledge of NOUN and linking rules like NOUN ↔ concrete object.
(We could assume children used something like Frequent Frames to create
language-specific clusters of words and then mapped those clusters to abstract
categories on the basis of the number of concrete objects named by the words in any
given cluster.) Similarly, it’s not clear we have precise predictions for how long it
should take children if they didn’t in fact have that innate knowledge, but used
Frequent Frames to create language-specific clusters and then identified that some
clusters seemed to have a lot of words that named concrete objects.

One option to generate these kind of precise predictions that map to specific ages of
acquisition is to use an information-theoretic analysis, like the Minimum Description
Length (MDL) approach leveraged by Chater and colleagues for syntactic rule
acquisition (Hsu & Chater, 2010; Hsu, Chater & Vitányi, 2011, 2013; Chater, Clark,
Goldsmith & Perfors, 2015). In essence, MDL quantifies how much space it takes to
store information, with preference given to more compact storage options (see Pearl,
2020 for a more detailed discussion of the MDL approach). For language acquisition,
the information that needs to be stored is both the child’s internal representation of
some knowledge (like syntactic categories) and the data the child encounters, as
encoded by using that representation. So, more complex representations (e.g.,
involving abstract categories and linking rules) may not be very compact compared
to simpler representations (e.g., not involving either abstract categories or linking
rules). However, as the child encounters data from her input, she encodes the data
using the representation she has available – and a more complex representation may
offer some storage savings on the incoming data, compared to a simpler
representation. Over time, as the child encounters more data, those storage savings
add up and can yield a “breakeven” point, where the more complex representation
and the input data encoded so far take up less space than the simpler representation
and the input data encoded so far. That breakeven point can be mapped to a specific
age of acquisition, based on how frequently the child hears the data that the
representation is encoding. I should note that I don’t have a firm idea of how exactly
to implement this for the problem of syntactic category representations. However,
this approach seems like a promising avenue to explore if we want to try to generate
precise predictions about expected ages of acquisition with vs. without UG
knowledge. These expected ages could then be matched against observed ages of
acquisition for different language-specific syntactic categories.

3.1.3 Prediction evaluation
As mentioned above, the basic problem of what we’re predicting hasn’t yet been solved,
at least with respect to the expected age of acquisition. So, it hasn’t yet been possible to
really evaluate UG +stats proposals against the available data on age of acquisition. This
may be why UG-friendly researchers haven’t spent as much energy on this area of
linguistic development. I think it’s still very worthwhile to understand the learning
strategies that are capable of yielding language-specific adult syntactic category
knowledge. But, this area is less interesting to researchers specifically interested in
UG approaches to language development.

3.2 Core syntax: Basic word order

Another type of core syntactic knowledge is the basic canonical word order of languages
that have (relatively) fixed word order. For example, English is canonically a
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Subject-Verb-Object (SVO) language, which is why the default way to express the idea
that Lily likes penguins is LilySubject likesVerb penguinsObject. In contrast, German has a
canonical word order of Subject-Object-Verb (SOV); so, we might reasonably think
that the way to express that same idea in German is LilySubject PinguineObject liebtVerb.
But, this isn’t quite right, because in main clauses, another syntactic operation occurs
called Verb-second (V2) movement, where the Verb moves to the second position in
the clause and something else (like the Subject or Object) moves to the first position.
This is why we’re likely to hear either LilySubject liebtVerb PinguineObject or
PinguineObject liebtVerb LilySubject to express the idea that Lily likes penguins, but not
the canonical SOV order. More specifically, these two utterances have a structure
something like what’s in (2c-i) and (2c-ii), where_element represents the underlying
position of the linguistic element:

(2) V2 movement with an underlying SOV canonical word order in German
a. LilySubject PinguineObject liebtVerb
b. liebtVerb LilySubject PinguineObject _Verb
c. i LilySubject liebtVerb _Subject PinguineObject _Verb
ii PinguineObject liebtVerb LilySubject _Object _Verb

These kinds of complications, where multiple syntactic operations may be active, can
make uncovering the canonical word order for a language difficult. For instance, if a
child encounters an SVO utterance, and she doesn’t know whether she’s learning
English or German, the canonical word order for her language could either be SVO
(English, no V2 movement) or SOV (German, with V2 movement). This kind of
ambiguity (and far more) is what children face when trying to identify the basic
word order of their language.

3.2.1 Specific UG+stats proposals: The variational learning approach
The variational learning (VarLearn) approach (Yang, 2002; Yang, 2004; Legate & Yang,
2007; Yang, 2012) combines the UG idea of linguistic parameters with reinforcement
learning; this combination allows a VarLearner to probabilistically search a
hypothesis space defined by the linguistic parameters. For instance, one parameter
may be VO vs. OV word order (corresponding to the SVO order of English vs. the
SOV order of German), while another is -V2 vs. +V2 movement. With these two
parameters and potential values, the hypothesis space consists of four possible
language word orders: VO and -V2 (English), VO and +V2, OV and -V2, and OV
and +V2 (German). More generally, L linguistic parameters with opt options each
will yield a hypothesis space of optL language word orders. In this small example,
that’s only 4 (22), but if we had 10 parameters with 2 possible values each, now we
have 210=1024. So, even with linguistic parameters, the word order hypothesis space
can get very large very quickly. This is why UG-oriented researchers have long been
interested in how a child could navigate a hypothesis space defined by linguistic
parameters (Clark, 1992; Gibson & Wexler, 1994; Niyogi & Berwick, 1996; Fodor,
1998b, 1998a; Sakas & Fodor, 2001; Sakas & Nishimoto, 2002; Yang, 2002; Sakas,
2003; Yang, 2004; Fodor & Sakas, 2005; Fodor, Sakas & Hoskey, 2007; Sakas &
Fodor, 2012; Boeckx & Leivada, 2014; Sakas, 2016; Fodor, 2017; Fodor & Sakas, 2017).

The VarLearn approach assigns probability to each parameter value for a given
parameter, and typically these values are equal initially. For example, a VarLearner
might start out with VO and OV each with probability 0.5, and -V2 and +V2 each

916 Lisa Pearl

https://doi.org/10.1017/S0305000920000665 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000920000665


with probability 0.5. When encountering a data point from the input, the VarLearner
probabilistically samples a complete set of parameter values (which is equivalent to
some language’s word order), based on the probability of those values. So, in our
example above, the VarLearner might select the VO and -V2 parameter values with
probability 0.5*0.5 (prob(VO) * prob(-V2)) = 0.25. Whichever word order is
sampled, the VarLearner then sees if that word order, as defined by the parameter
values chosen, can account for the data point. In this example, the word order
specified by VO and -V2 would be able to account for Lily likes penguins (Subject
Object Verb), but not for Pinguine liebt Lily (Object Verb Subject). If the word order
can account for the data point, all the participating parameter values are rewarded
(and have their probability increased); if not, all parameter values are penalized (and
have their probability decreased).

Over time (in particular, as the child encounters more input from her language), the
idea is that the language’s true parameter values will have their probabilities increased
until they’re near 1; the alternative parameter values will have their probabilities
correspondingly decreased. Importantly, this means that unambiguous data for a
parameter value are very impactful – these data will always reward the corresponding
parameter value and always penalize the alternative parameter value(s). For example,
data perceived by the child as unambiguous +V2 data will always reward the +V2
value and always penalize the -V2 value. This means that the parameter value
perceived as having more unambiguous data (that is, an unambiguous data
advantage) will be the one that has its probability increased to around 1 – it’s the
value the child will choose, given enough input. This is why VarLearn approaches
typically do an analysis of the unambiguous data advantage a child might perceive
from her input. The higher the unambiguous data advantage for a parameter value,
the faster a child using the VarLearn strategy should converge on that parameter
value. This means that age of acquisition predictions can be made from careful
analysis of the child’s input. Specifically, parameter values that have higher
unambiguous data advantages are predicted to be learned earlier.

Specific UG+stats proposals: The UG part
Linguistic parameters are meant to be innate, language-specific knowledge. One reason
linguistic parameters have been a core component of UG approaches to language
development is that they’re intended as extremely useful building blocks. More
specifically, linguistic parameters allow a child to construct a (potentially very large)
collection of explicit hypotheses about a language’s word order, without having to
specify all those hypotheses out beforehand. Moreover, linguistic parameters are
meant to constrain the child’s possible hypotheses to those that correspond to actual
languages the child may be learning. So, linguistic parameters are helpful for
acquisition because they’re a compact way to represent the space of possible
hypotheses a child might reasonably need to consider (in this case, about word
order). See Pearl and Lidz (2013), Pearl (in press - a), and Pearl (in press - b) for
additional discussion about why UG approaches to acquisition like to incorporate
linguistic parameters.

Specific UG+stats proposals: The statistics part
Reinforcement learning is a type of statistical learning, and forms the basis for the
VarLearn learning mechanism.
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3.2.2 Predictions made
As mentioned above, a VarLearn approach will often be able to analyze the
unambiguous data advantage for one linguistic parameter value over another that a
child would perceive from her input. On the basis of this advantage, a VarLearner
can generate predictions about relative order of acquisition for different word order
aspects related to different parameters. For instance, on the basis of one VarLearn
analysis from Yang (2012) (shown in Table 2), it appears that English has an
unambiguous advantage of 25% for wh-movement in questions. That is, in an
English child’s perceived input, the proportion of English wh-questions with
wh-movement (e.g., Who did you see?) is .25 more than the proportion of English
wh-questions without wh-movement (e.g., You saw who?). In contrast, it appears that
German has an unambiguous data advantage of 1.2% for allowing V2 movement. So,
we would then expect that +wh-movement in English would be learned earlier than
+V2 movement in German for a VarLearn child. Based on the observed ages of
acquisition shown in Table 2, that does seem to be true (+wh-movement in English
is learned by 1 year 8 months (1;8), while +V2-movement in German is learned
around 3 years old).

Perhaps more interestingly, the VarLearn approach predicts that similar
unambiguous data advantages ought to lead to similar ages of acquisition. This then
allows more precise predictions about what ages we ought to observe children
acquiring certain word order options. More generally, Table 2 shows existing
VarLearn child input analyses for several word order phenomena (see Yang, 2012
and Pearl, in press for more discussion about these individual word order phenomena).

As a concrete example, consider “pro-drop”, which allows the optional omission of
subjects. English isn’t a language like this –while English speakers do sometimes leave
out subjects in conversational speech (e.g., Speaker 1: “Are you going?” Speaker 2:
“Headed out now.”), the basic usage is that English speakers have to include the
subject. This is why (unlike languages like Spanish and Italian), English speakers use
what are called expletive subjects, which are subjects that aren’t contentful; some
examples of expletive subjects are the it in It’s raining and It seems that a penguin is
on the ice. In both cases, the “it” isn’t referring to anything, the way the pronoun
“it” typically does (e.g., It’s a penguin, Look what it’s doing). Instead, the “it” appears
because English requires the subject to be there as a default, whether the subject
refers to anything or not. Hence, English uses expletive subjects. So, expletive
subjects serve as an unambiguous signal that English is not a pro-drop language that
can optionally drop its subjects. The VarLearn analysis by Yang (2012) suggested
that expletive subjects (unambiguously signalling -pro-drop) had a 1.2% advantage in
children’s input over any -pro-drop signals (shown in Table 2). Notably, this is the
same unambiguous data advantage for +V2 movement in both German and Dutch
(i.e., 1.2%). When we look at the observed age of acquisition, -pro-drop in English –
just like +V2-movement in German and Dutch – appears to be acquired around age
3. So, the same unambiguous data advantage (1.2%) seems to correlate with the
same observed age of acquisition for these two word order phenomena.

This means that the VarLearn approach has the potential to generate fairly specific
predictions about age of acquisition, on the basis of the unambiguous data advantage a
VarLearn child would perceive in her input. So, for any language and any word order
linguistic parameter, we need to decide what the unambiguous data would be for the
parameter value of the language (e.g., +V2 or -pro-drop) as well as the unambiguous
data for any alternative parameter values (e.g., -V2 or +pro-drop). I should note that
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Table 2. The relationship noted by Yang (2012) between the unambiguous data advantage (Adv) perceived by a VarLearn child in her input and the observed age of
acquisition (AoA) in children for six word order parameter values across different languages.

Param Value Language Unambiguous Form Unambiguous Example Adv AoA

+wh-movement English wh-movement in questions Who did you see? 25% <1;8

+topic-drop Chinese null objects Wǒ méi kànjiàn 12% <1;8

I not see

“I didn’t see (him)”

+pro-drop Italian null subjects in questions Chi hai visto 10% <1;8

who have seen

“Who have you seen?”

+verb-raising French Verb Adverb Jack voit souvent Lily 7% 1;8

Jack sees often Lily

“Jack often sees Lily”

-pro-drop English expletive subjects It seems a penguin is on the ice. 1.2% 3;0

+V2 German Object Verb Subject Pinguine liebe ich. 1.2% 3;0–3;2

Dutch penguins like I

“I like penguins”

-scope-marking English long-distance wh questions Who do you think is on the ice? 0.2% >4;0

without medial-wh
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this is by no means trivial –what counts as unambiguous very much depends on what
the competing options are for the parameter in question, as well as what other word
order parameters in the language may obscure the target value’s observable signature
in the input. For instance, consider that the unambiguous signal for +V2 movement
involved the order Object Verb Subject but not Subject Verb Object – this is because
Subject Verb Object could be generated by -V2 combined with an SVO basic word
order. Still, with a concrete idea of what unambiguous data are for each parameter
value under consideration, we can calculate how much unambiguous data the child
would perceive for the target value vs. the other values, and so calculate the
unambiguous data advantage perceived by the child for the target value.

Once we know the unambiguous data advantage for the target word order parameter
values (in either the same language or across several languages), we then know their
predicted relative acquisition trajectory: those with a higher unambiguous data
advantage should be acquired earlier. If we have enough of this kind of data, we may
also be able to triangulate on a specific expected age of acquisition for any given
parameter value. Parameter values with similar unambiguous data advantages are
predicted to have similar observed ages of acquisition, like +V2 movement in
German and -pro-drop in English. Based on this, here’s an example specific
prediction the VarLearn account makes.

Predictions made: Specific prediction
Identify a word order phenomenon WOrdPhen in a language, and the unambiguous
data that correspond to it. Calculate the unambiguous data advantage for WOrdPhen
in children’s input. If the unambiguous advantage is less than 1.2%, the VarLearn
account predicts children acquire knowledge of WOrdPhen after age 3.

3.2.3 Prediction evaluation
As mentioned above, from the available VarLearn analyses shown in Table 2, it seems
that current predictions (both relative and absolute) are borne out. Of course, there are
many more word order aspects that can be captured by linguistic parameters and many
more languages where VarLearn analyses are yet to be done. The VarLearn approach
would be supported any time the unambiguous data advantage aligns with the
relative order of acquisition (e.g., learning WOrdPhen after age 3 if its advantage
is < 1.2%); if the unambiguous data advantage also allows us to pinpoint a specific
age of acquisition, then the VarLearn approach would be supported whenever that
predicted age of acquisition is in fact observed (e.g., learning WOrdPhen at age 3 if
its advantage = 1.2%).

In contrast, the VarLearn approach wouldn’t be supported any time the
unambiguous data advantage doesn’t align with the relative order of acquisition (e.g.,
learning WOrdPhen before age 3 when its unambiguous advantage < 1.2%) or
doesn’t predict the observed age of acquisition (e.g., learning WOrdPhen at some age
other than 3 when its unambiguous advantage = 1.2%). I do note that supporters of
the VarLearn approach might then argue that the data considered unambiguous for
the target parameter value might be the issue, rather than giving up on the VarLearn
approach altogether (that is, the calculated unambiguous data advantage was
incorrect). However, the burden of proof would be on those supporters to identify
plausible unambiguous data that would lead to the appropriate unambiguous data
advantage.
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3.3 Core morphology: Inflectional morphology

For languages that have a rich inflectional morphology system, children need to learn
how to indicate features like verb tense, person, and number, as well as noun case.
Even for languages with sparser morphology (like English), children still need to
learn to indicate some subset of features using morphology (e.g., past tense).
Whether rich or sparse, morphology systems are harder to learn the more irregular
they are – that is, the more exceptions there are to the default rule. This is because
the default morphological rule(s) may well get obscured in children’s input when
there are many exceptions. So, a core aspect of morphological acquisition is how
children figure out their morphology systems, particularly in the presence of
exceptions. In the interest of space, I’ll focus on one UG+stats approach that involves
reinforcement learning, but see studies by Gagliardi and colleagues (Gagliardi &
Lidz, 2014; Gagliardi, Feldman & Lidz, 2017) for an approach that involves Bayesian
inference.

3.3.1 Specific UG+stats proposals: The Tolerance and Sufficiency Principles
An approach to morphology acquisition proposed by Yang (2005); Yang (2016)
involves the Tolerance and Sufficiency Principles (TolP+SuffP), and has been used
to account for the acquisition of a variety of semi-regular morphology in both
English and German. More specifically, the TolP+SuffP learner identifies (i) whether
a morphological affix is productive, and so is applied to new word forms, or (ii)
whether the affix is restricted to a certain subclass of words in the language (i.e., an
exception to the productive rule). In English, this approach has been used to identify
productive morphology for the past tense (+ed default: kiss-kissed), noun plurals
(+s default: penguin-penguins), and derivational morphology (e.g., productive = -ness,
cute-cuteness; -ment, enjoy-enjoyment; -er, teach-teacher; -ity, stupid-stupidity;
unproductive = -age, pack-package, -th, true-truth). In German, this approach has
been used to identify productive noun plural morphology when the nouns have
certain properties, such as a certain grammatical gender (e.g., being +feminine), a
certain phonological property (e.g., a reduced final syllable), or a certain
morphological property (e.g., being monosyllabic). When the nouns don’t fit in any
of these specified classes, the TolP+SuffP learner can also identify -s (Auto-Autos) as
the productive plural, despite its infrequency.

The general approach a TolP+SuffP learner takes is to monitor the morphological
forms in her input, and on the basis of that input, hypothesize potential rules that
might be productive (e.g., for the English past tense, +ed and alternatives like “word
rime becomes /ɔt/”, as in catch-caught and buy-bought). Then, the TolP+SuffP
learner identifies the relevant domain where these potential rules could apply (e.g.,
all English verbs for the English past tense). The learner then uses the Tolerance and
Sufficiency Principles to identify how many exceptions a productive rule can tolerate
while still being productive; if there are sufficient rule-following words (i.e., the
exceptions are fewer than the specified number that a productive rule can tolerate),
the TolP+SuffP learner identifies that rule as the productive rule for that domain.
This process is done for every potential rule. Importantly, only one potential rule
could be the productive rule, because of the implementation of the Tolerance and
Sufficiency Principles – a productive rule requires a majority of the words that could
obey it to actually obey it (see Yang, 2016 and Pearl, in press for more detailed
discussion on exactly why this is.) So, after this evaluation process, a TolP+SuffP
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learner could either (i) identify one of the potential rules (i.e., morphological affixes) to
be productive within the specified domain of words, or (ii) identify that none of the
potential rules are productive (and so there is no productive morphological affix for
that domain of words).

Specific UG+stats proposals: The UG part
For the TolP+SuffP learner, it might be argued that these innate principles (i.e., the
Tolerance and Sufficiency Principles) are language-specific, as they’re derived from
considerations of linguistic item storage and retrieval in real time (see Yang, 2016 for
discussion of this perspective).

Specific UG+stats proposals: The statistics part
The Tolerance and Sufficiency Principles operate over counts of relevant items (i.e., how
many words obey a potential rule vs. how many are exceptions to that rule).

3.3.2 Predictions made: TolP+SuffP
As mentioned above, a TolP+SuffP approach is able to capture the correct qualitative
result for several cases of semi-regular morphology in English and German – that is,
a TolP+SuffP child can identify the correct generalization for productive
morphology. More generally, if a child acquires a productive rule for some piece of
morphology, we would expect to see application of that morphology to new words
that fall within the relevant domain. For example, once the child acquires the -ed
morphology rule for the English past tense, we would expect to see new words in the
past tense with the -ed form (e.g., Jack wugs today. He wugged yesterday.). In fact, a
productive rule might cause overregularizations in semi-regular systems where there
are exceptions, but the child hasn’t learned all the exceptions yet (e.g., drink-drinked,
go-goed). We see both these kind of child outputs in English and German, as
discussed by Yang (2016).

Similarly, we can consider lexical gaps, where certain forms with inflectional
morphology don’t seem to exist for adults. Some examples are the past participle of
stride in English (Jack has *stridden.), the first person singular in the present tense of
abolish in Spanish (*abuelo = I abolish), and the first person singular of non-past
verbs like win in Russian (*pobežu/*pobeždu = I win). When asked to create these
forms, adults in these languages don’t quite know what to do because the relevant
morphology isn’t productive for that domain of words. Yang (2016) demonstrates
how a TolP+SuffP learner can fail to identify a productive morphological rule in
these cases.

However, we have yet to see precise predictions about exactly what age TolP+SuffP
children should identify that certain morphology is productive (or not). In cases where
the morphology is in fact productive, we might expect that the recognition of
productivity depends on how frequently the individual words in the relevant domain
appear in the child’s input. The more often they do, the more likely the child is to
notice them and be able to make the correct generalization using the TolP+SuffP
approach. Importantly, applying the TolP+SuffP approach means the child has to
also identify the relevant domain where the morphology would be productive, and
it’s unclear that we have precise predictions about when this would happen (or
really, what might trigger this to happen).

In cases of lexical gaps where morphology isn’t productive, we face a similar problem
of not knowing precisely what age a child ought to figure out that there isn’t a
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productive morphological rule for some domain of words. However, given that the
target state at the end of development is the lack of a productive rule, we can at least
see if children’s input over time would lead a TolP+SuffP learner to decide there
isn’t a productive morphologial rule. What might be especially interesting is if a
child’s input could lead a TolP+SuffP learner to the temporary belief that there is in
fact a productive rule, and we see evidence of that temporary state in children’s
behavior (either through application to novel words in the domain, or
overregularization).

What’s in common for generating more precise predictions about children’s age of
acquisition for morphology under the TolP+SuffP approach is a more incremental
application of this approach to children’s input. That is, we need to understand
whether a TolP+SuffP child would predict a specific morphological affix to be
productive when given realistic child input from specific ages (e.g., up to 12 months
vs. 12–18 months vs. 18–24 months, and so on). With that kind of analysis, we
would have specific predictions about whether a child of a particular age in a
particular language should perceive a particular affix as productive or not (an
example specific prediction of this kind is below). Then, we can assess whether these
predictions are borne out in child linguistic behavior.

Predictions made: Specific prediction
Identify the ageMorAge when a productive morphological affix ProdMor first becomes
productive for children (e.g., the age when English-learning children overregularize past
tense + ed may be around 30 months (Maslen, Theakston, Lieven & Tomasello, 2004)).
A modeled TolP+SuffP child who learns from the data that children learn from just
before MorAge (e.g., 24–30 months for English + ed) should identify ProdMor as
productive. In contrast, a modeled TolP+SuffP child who learns from the data that
children learn from long before MorAge (e.g., before 12 months, or 12–18 months
for English + ed) should identify ProdMor as unproductive.

3.3.3 Prediction evaluation
As mentioned above, it seems like a TolP+SuffP learner can get the right adult
morphological generalizations for certain cases of semi-regular morphology in
English and German. However, we don’t yet have precise predictions about the
expected age of acquisition for these generalizations, given children’s input. So, it
seems that the way forward is to look for other morphology systems, especially
semi-regular ones where there are exceptions and/or probabilistic associations of
different types of information. Then, we can apply this UG +stats approach to the
acquisition of those morphology systems to generate predictions about how
acquisition ought to proceed, given realistic child input data.

3.4 A more complex thing: A temporary lack of inflection

In many languages that have relatively less inflectional morphology (e.g., those shown in
Table 3), children go through a stage where they seem to systematically leave off
obligatory inflection on verbs. So, the verb appears to be in the non-finite (infinitive)
form, where tense is missing. This stage is sometimes called the optional infinitive
(OI) stage, as children optionally use what seems to be the infinitive form of the
verb, instead of the appropriate inflected form.
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For example, in English, a child might want to express the idea that her father has
something – the target form Papa has it is expressed as Papa have it, where the verb
have is missing the 3rd person singular present morphology. In Hebrew, a child
might express the target form involving the present tense of sit by using the
infinitive equivalent (lashevet - to sit), which has additional morphology clearly
indicating that the child used the infinitive form with infinitive morphology, rather
than a root form with no morphology. This is also the case in Dutch, French, and
German, where the form the child uses has clear infinitive morphology (e.g.,
drinken-to drink in Dutch, dormir-to sleep in French, and hintelln-to put in German
from Table 3). Moreover, in these languages, the use of the infinitive is often
accompanied by a word order that’s appropriate for the infinitive form of the verb
but not for the inflected form.

Interestingly, children’s frequency of OIs seems to vary by language, with some
children using them very infrequently and tapering off OI use prior to age two (e.g.,
Spanish children), while other children still use OIs fairly frequently into age three
and beyond (e.g., English children). So, from an acquisition perspective, we want to
understand why children across the world’s languages show the amount of OI use
that they do and how they break out of this stage to reach the adult use (which
doesn’t involve these OIs).

3.4.1 Specific UG+stats proposals: The variational learning approach
Legate and Yang (2007) propose a VarLearn approach to explain the different rates of
OIs in child-produced speech, with the idea that children are relying on a linguistic
parameter that determines whether their language is one that uses tense morphology
(+Tense) or not (-Tense). +Tense languages like English, Hebrew, Dutch, French,
and German express tense morphosyntactically (e.g., English has = havepresent+3rd+sg);
-Tense languages like Mandarin Chinese don’t, relying on other linguistic
mechanisms to communicate tense (e.g., Mandarin Chinese Zhangsan zai da qiu =
Zhangsan ASPECT play ball = “Zhangsan is playing ball.”). The OI stage of a +Tense
language happens because children think the correct parameter value for their
language is -Tense. As children perceive more unambiguous +Tense data in their
input, the +Tense grammar is rewarded and the -Tense grammar generating the OIs
is penalized until it’s no longer active. How fast this happens depends on how many
more unambiguous +Tense data are available than unambiguous -Tense data (i.e.,
the +Tense unambiguous data advantage).

Table 3: Optional infinitive examples in child-produced speech in different languages, and their intended
meaning.

English Hebrew Dutch French German

Papa have it. Lashevet al
ha-shulxan

Thee
drinken

Dormir petit
bébé

Mein Kakao
hinstelln

Papa haveINF it sitINF on the-table tea
drinkINF

sleepINF little
baby

my cocoa putINF

“Papa has it” “Sits on the table” “Drinks
tea”

“Little baby
sleeps”

“Puts my
cocoa”
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Specific UG+stats proposals: The UG part
The Tense linguistic parameter is meant as UG knowledge, and children need to both
know this parameter exists and that it has two values (+/-Tense).

Specific UG+stats proposals: The statistics part
As with the VarLearn approach for word order, reinforcement learning forms the basis
of the learning mechanism.

3.4.2 Predictions made
As mentioned above, the VarLearn child is driven by the unambiguous data advantage
she perceives from her input. So, for any given language, the perceived unambiguous
data advantage for +Tense can be calculated. Then, unambiguous +Tense data
advantages can be compared across languages for a relative order of acquisition. In
particular, higher +Tense advantages indicate a shorter OI stage. Moreover, if the
length of the OI stage is known for a specific language (i.e., what age children leave
the OI stage), the +Tense advantage can be correlated with that age. Similar +Tense
advantages predict similar ages when children leave the OI stage.

3.4.3 Prediction evaluation
Legate and Yang (2007) use the VarLearn approach to analyze the perceived
unambiguous data advantage for +Tense in Spanish, French, and English children
(who are all learning +Tense languages); they find a qualitative fit between the
unambiguous data advantage and these children’s production of OIs. More specifically,
the unambiguous data advantage for +Tense in Spanish > French > English, while the
Spanish rate of OI production < French OI production < English OI production. This
in turn suggests that the OI stage for Spanish < French < English (i.e., the stage in
English lasts the longest), and this seems to be true. So, the greater the unambiguous
data advantage for +Tense in a language’s child-directed speech, the faster children
acquiring that language stop using OIs.

Still to do is to evaluate the VarLearn approach on other languages where children
have OI stages, such as Hebrew, Dutch, and German. I should also note an important
caveat – an alternative non-UG+stats account for investigating OIs called MOSAIC
(Model of Syntactic Acquisition in Children) has already been applied to a large
number of languages (Freudenthal, Pine, Aguado-Orea & Gobet, 2007; Freudenthal,
Pine & Gobet, 2009, 2010; Freudenthal, Pine, Jones & Gobet, 2015), including those
that the VarLearn approach has been applied to. (See Pearl, in press for more
discussion about the MOSAIC approach.) MOSAIC is also able to account for the
different cross-linguistic rates of OIs in children, and additionally offers an
explanation as to why certain specific verbs appear with OI errors. Currently, the
VarLearn approach doesn’t offer the same ability to explain OI errors with specific
verbs in these languages. So, for this reason, the non-UG+stats MOSAIC account
may be preferable for now to the VarLearn approach when it comes to OIs.

3.5 A more complex thing: Movement

A more sophisticated type of syntactic knowledge involves “movement”, where
linguistic elements are understood in certain positions of an utterance and yet don’t
appear to be in those positions. So, the idea is that the linguistic elements have
moved from the positions where they’re understood. Some examples of this are
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wh-movement in questions, passives, and raising vs. control structures. In the interest of
space, I’ll focus on raising vs. control structures, but see work by Yang (Yang, 2002;
Yang, 2004; Legate & Yang, 2007; Yang, 2012) for the VarLearn account of
wh-movement in questions, and Nguyen and Pearl (2019) for a Bayesian learning
approach to passives.

Raising vs. control structures
In subject-raising structures like Jack seemed to kiss Lily, the subject of the main clause
Jack doesn’t appear to have an AGENT thematic role for the main clause verb seem – that
is, Jack isn’t a “seemer” (whatever that is). Instead, Jack is the AGENT of kiss, which is the
embedded clause verb. That’s why this utterance can be rephrased as It seemed that Jack
kissed Lily, which has an expetive it as the main clause subject and Jack overtly as the
embedded clause subject. So, the original sentence would have a structure more like Jack
seemed _Jack to kiss Lily, where _Jack marks the position where Jack moved (or “raised”)
from.

Subject-raising structures contrast with subject-control structures like Jack wanted to
kiss Lily – here, the main clause subject Jack connects to two thematic roles: the AGENT of
main clause verb wanted and the AGENT of embedded clause verb kiss. (This is why we
can’t rephrase this utterance as *It wanted that Jack kissed Lily – expletive it can’t be the
AGENT of wanted.) Because traditional linguistic theory disliked linguistic elements
having more than one thematic role, a solution was for this utterance to have a
structure more like Jack wanted PRO to kiss Lily, where Jack is connected to the
silent pronoun PRO; this allows Jack to be the AGENT of wanted while PRO is the
AGENT of kiss. So, unlike raising structures, there’s no movement associated with
control structures. Instead, the child has to recognize the connection between the
main clause subject and the silent pronoun PRO.

The same raising vs. control distinction also happens for objects – that is, there are
object-raising verbs and object-control verbs. In object-raising structures like Jack
wanted Lily to laugh, the main clause object Lily is only the AGENT of the embedded
clause verb laugh, rather than also having a thematic role for the main clause verb
wanted. So, the structure is something like Jack wanted Lily_Lily to laugh, with Lily
raised from the embedded clause position. In contrast, in object-control structures
like Jack asked Lily to laugh, the main clause object Lily connects to two thematic
roles: the AGENT of embedded clause verb laugh and the GOAL of main clause verb
asked. So, the structure is something like Jack asked Lily PRO to laugh, with Lily and
PRO connected to each other.

For raising and control verbs, children therefore need to learn that these
interpretations are possible (i.e., the main clause subject or object effectively gets
associated with either one thematic role or two). This involves learning where the
main clause subject or object moved from (raising) or that the main clause subject
or object is connected to the silent PRO in the embedded clause (control). Moreover,
children need to identify which verbs allow which types of structures (e.g., seem is a
subject-raising verb, want is a subject-control verb and also an object-raising verb,
and ask is a subject-control verb and also an object-control verb). Current behavioral
evidence suggests that English four- and five-year-olds have these interpretation
options available and have sorted some frequent raising and control verbs into
relevant classes that allow adult-like interpretation of these verbs (Becker, 2006;
Becker, 2007, 2009; Kirby, 2009a, 2009b, 2010; Becker, 2014).
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3.5.1 Specific UG+stats proposals: Raising vs. control
The potential UG+stats approaches I’m aware of involve children attending to certain
features of verbs and their arguments (e.g., whether the subject is animate, or what
syntactic contexts a verb can appear in), and then using Bayesian inference to cluster
together verbs that behave the same way with respect to these features (Mitchener &
Becker, 2010; Becker, 2014; Pearl & Sprouse, 2019b). For instance, verbs that take
inanimate subjects are more likely to be subject-raising verbs (e.g., The rock seemed
to fall (seem is subject-raising) vs. *The rock wanted to fall (want is subject-control)).
The approach of Becker and Mitchener (Mitchener & Becker, 2010; Becker, 2014)
focuses primarily on the animacy of the subject, while the approach of Pearl and
Sprouse (2019b) considers the animacy of all verb arguments, the thematic roles the
verb arguments take (e.g., whether the subject is an AGENT or a THEME), and the
syntactic contexts a verb can appear in (e.g., a transitive frame like Jack kissed Lily or
a frame that involves a non-finite embedded clause like Jack wanted to kiss Lily).

Specific UG+stats proposals: The UG part
In these approaches, the main place where I see a role for UG is which features children
use to sort verbs into relevant classes. In particular, it could be that innate,
language-specific knowledge causes children to focus on animacy when clustering
verbs together into classes, as opposed to other salient conceptual features of verb
arguments. The Pearl and Sprouse approach considers a wider range of verb and
verb argument features than the Becker and Mitchener approach, but still restricts
the range of possibilities for the thematic role distinctions and the syntactic positions
that children perceive; these restrictions are based on current theoretical proposals in
the syntactic literature. If these thematic role and syntactic position distinctions are
innate, language-specific knowledge, then they would come from UG.

Specific UG+stats proposals: The statistics part
The learning mechanism for these approaches is Bayesian inference.

3.5.2 Predictions made: Raising vs. control
The Bayesian approaches cluster verbs into classes, where the classes allow different
raising and control constructions; these Bayesian approaches can then predict the
classes that children of different ages ought to cluster their verbs into. These
predicted verb classes can then be checked against behavioral data from children of
different ages. For example, if children treat two verbs the same way (e.g., both verbs
allowing subject-raising, but not subject-control, object-raising, or object-control),
then the Bayesian approaches ought to have clustered those two verbs together into
the same class. This prediction check can be done for all verbs where we have
empirical data about how children treat the verbs (i.e., as belonging to the same class
or not). An example specific prediction of this kind is below.

Predictions made: Specific prediction
One model variant from Pearl and Sprouse (2019b) predicts that English five-year-olds
treat want, like, and need as belonging to the same class, while another variant predicts
only want and like belong to the same class. We can check these predictions to see if
English five-year-olds treat want, need, and like the same (e.g., interpreting them as
subject-control verbs that take two thematic roles in instances like Jack wants/needs/
likes to go). If five-year-olds do treat these the same, the first model variant is
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supported; if they treat only want and need as the same, the second model variant is
supported; if they don’t treat any of these verbs the same, then no model variant is
supported – and maybe different features need to be considered for verb classification.

3.5.3 Prediction evaluation: Raising vs. control
The Bayesian approaches to clustering verbs into classes that involve raising vs. control
interpretations appear to match children’s verb classifications fairly well (Pearl &
Sprouse, 2019b). So, these approaches seem promising, particularly when we allow
children to consider a range of features (conceptual, thematic, and syntactic). A
useful aspect of a model predicting verb classes is that we have a variety of ways to
evaluate if children in fact have similar verb classes. One way is what’s been done
already – derive children’s verb classes from their aggregated behavioral data and
compare those against the model’s verb classes. However, another way is to use the
model’s predicted verb classes to predict child behavior in specific experiments. For
instance, given a specific context (i.e., animacy of the verb arguments, thematic roles
of the verb arguments, and syntactic context of the verb), what’s the probability that
a child will interpret a novel verb as raising vs. control? This quantitative prediction
about interpretation rate can be compared against the rates at which children
actually do interpret a verb a particular way in context. Becker and Kirby (Becker,
2006; Becker, 2007, 2009; Kirby, 2009a, 2009b, 2010; Becker, 2014) have already
conducted several behavioral experiments like these that can provide precise testing
grounds for these Bayesian approaches.

3.6 A more complex thing: Constraints

Another more sophisticated type of syntactic knowledge involves “constraints”;
constraints disallow certain structures (and their accompanying interpretations),
rather than specifying which structures are allowed. Two prominent examples of
constraints investigated by UG+stats proposals are syntactic islands (sometimes called
subjacency) and binding. In the interest of space, I’ll focus on syntactic islands; see
Orita, McKeown, Feldman, Lidz, and Boyd-Graber (2013) (and the discussion of that
study in Pearl, in press) for a Bayesian learning approach to binding that involves
UG knowledge of c-command.

Syntactic islands: Constraints on wh-dependencies
In English, a wh-word typically appears at the front of a question. The relationship
between the overt position of the wh-word and where it’s understood can be called a
dependency, and so (3a) shows a wh-dependency between What and where it’s
understood at the position marked by _what. It turns out that there are constraints on
the wh-dependencies that are allowed; one way to describe this is that there are
certain structures called syntactic islands that wh-dependencies can’t cross (Chomsky,
1965; Ross, 1967; Chomsky, 1973). Four examples of syntactic islands in English are
shown in (3b)–(3e), with the proposed syntactic island structure in square brackets
([…]). During acquisition, English children have to learn the constraints on
wh-dependencies that allow them to recognize that the wh-dependencies in (3b)–(3e)
aren’t allowed, while the wh-dependency in (3a) is fine.

(3) a. What does Jack think that Lily said that the goblins stole _what?
b. *What do you wonder [whether Jack bought _what]? (whether island)
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c. *What did you make [the claim that Jack bought _what]? (complex NP island)
d. *What do you think [the joke about _what] was hilarious? (subject island)
e. *What do you worry [if Jack buys _what]? (adjunct island)

3.6.1 Specific UG+stats proposals: Syntactic islands
Pearl and Sprouse (2013a) and Pearl and Sprouse (2013b, 2015) investigated a
probabilistic learning strategy that relies on trigrams (i.e., sequences of three
elements) constructed from certain pieces of syntactic structure in wh-dependencies.
So, we can think of this as a probabilistic syntactic trigrams approach (SynTrigrams).
The SynTrigrams strategy relies on children viewing a wh-dependency as a path from
the head of the dependency (e.g., Who in (4)) through the phrasal nodes that
contain the tail of the dependency, as shown in (4a)–(4b)). So, a SynTrigrams child
just needs to learn which wh-dependencies have grammatical syntactic paths and
which don’t. The SynTrigrams child does this by tracking smaller building blocks of
these syntactic paths – the syntactic trigrams. More specifically, a SynTrigrams learner
breaks the syntactic path of a wh-dependency into a collection of syntactic trigrams
that can be combined to reproduce the original syntactic path, as shown in (4c).

(4) Who did Jack think that the story about penguins amused _who?

The SynTrigrams child then tracks the frequencies of syntactic trigrams that the child
perceives in her input. Importantly, every instance of a wh-dependency is composed of
some set of syntactic trigrams, so a child can potentially learn about a specific syntactic
trigram (e.g., start-IP-VP) from a variety of wh-dependencies. That is, the building
blocks of a particular wh-dependency syntactic path can come from other

Journal of Child Language 929

https://doi.org/10.1017/S0305000920000665 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000920000665


wh-dependencies, not just that particular wh-dependency. The SynTrigrams child can
later use the syntactic trigram frequencies to calculate the probability of any
wh-dependency she likes, whether she’s encountered it before or not; this is because
all wh-dependencies can be broken into syntactic trigram building blocks, and the
child has a sense from her input of how probable any particular syntactic trigram is,
based on its frequency in her input. For example, the wh-dependency in What did
the penguin eat _what? can be characterized as in (5), and its probability generated
from some of the same syntactic trigrams observed in (4).

(5) What did the penguin eat _eat?

The predicted probability of a wh-dependency’s syntactic path corresponds to the
grammaticality of the dependency, with higher probabilities indicating more
grammatical dependencies. These predictions can then be compared to judgments of
how allowable different wh-dependencies are.

Specific UG+stats proposals: The UG part
A key component of the SynTrigrams approach is what elements the trigrams are
constructed from. In the implementation by Pearl and Sprouse (2013b) and Pearl
and Sprouse (2013a, 2015), the elements are the phrasal nodes that contained the
wh-dependency. How the child determines what these nodes are (e.g., the labels
CPthat or VP) is currently unknown. It could be that this kind of phrasal structure
representation requires the child to rely on innate, language-specific knowledge; if so,
this would be UG knowledge.

Specific UG+stats proposals: The statistics part
The SynTrigrams learner relies on tracking the frequencies of syntactic trigrams,
converting these frequencies to probabilities, and combining these probabilities into a
single probability for any wh-dependency’s syntactic path.

3.6.2 Predictions made: Syntactic islands
The SynTrigrams learner of Pearl and Sprouse (2013a) and Pearl and Sprouse (2013b,
2015) learned from a realistic sample of English child-directed speech, estimated
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syntactic trigram probabilities from that sample, and then generated probabilities for a
specific set of wh-dependencies that previous work (Sprouse, Wagers & Phillips, 2012)
had collected acceptability judgments for. More specifically, Sprouse et al. (2012) had
judgments about the relative acceptability of the four syntactic island types in
(3b)-(3e), as well as control wh-dependencies that varied with respect to their
syntactic path. These judgments served as a target for the SynTrigram learner and
allowed for the following specific prediction.

Predictions made: Specific prediction
If the SynTrigrams learner can generate the same relative judgment pattern (based on the
probability the learner calculated for each wh-dependency), then we can conclude that the
modeled learner has internalized a representation that’s similar to what humans used to
generate their judgments. If instead the SynTrigrams learner fails to generate the same
relative judgment pattern for these wh-dependencies, then we conclude that the
representation it internalized isn’t similar enough to the one humans use.

3.6.3 Prediction evaluation: Syntactic islands
The SynTrigrams learner of Pearl and Sprouse (2013a) and Pearl and Sprouse (2013b,
2015) was in fact able to replicate the observed judgment pattern that indicated
knowledge of the four syntactic islands investigated by Sprouse et al. (2012). This
suggests that the learning strategy of the SynTrigrams learner is a plausible way for
English children to acquire knowledge of these islands. What remains to be
investigated is how well this learning strategy fares cross-linguistically, as there’s
variation on the syntactic islands that languages seem to have (even among the four in
(3b)-(3e)). For instance, Italian and Spanish seem to have complex NP islands but not
wh-islands (Rizzi, 1982; Torrego, 1984); can this SynTrigrams learner yield the
appropriate adult judgment pattern after learning from Italian or Spanish
child-directed speech? Moreover, there are other types of wh-dependency constraints
(e.g., see discussion in Pearl and Sprouse, 2013a about wh-dependencies with multiple
gaps), and it’s unknown if a SynTrigrams strategy can handle these cases as well.

4 Conclusion

I’ve reviewed several UG+stats approaches to the acquisition of different specific
morphology and syntax phenomena, with the idea that these approaches make the
developmental theories they implement concrete enough to evaluate. In common
across nearly all these approaches is that the UG part helps determine what’s being
counted by the child from the vast array of information available in the input, while
the statistics part determines both how the counting is in fact done and how the
counts are used to update the child’s hypotheses about her language’s morphology or
syntax. Importantly, these UG+stats proposals have been specified in enough detail
to make specific predictions about child acquisition, which can then be evaluated
against available empirical data or data that can be obtained in the future. In the
cases I discussed, the predictions of the UG+stats proposals have generally held up –
this suggests that these proposals are worth pursuing more fully, and I’ve also
suggested possibilities for future exploration (often looking cross-linguistically or at
related morphology or syntax phenomena). With this in hand, I hope we can
continue making progress from the UG+stats perspective on understanding how
children learn all the things they do about morphology and syntax.
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