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Abstract. We define as the Rydberg plasma the weakly ionized gas produced in
magneto-optical traps. In such a plasma, the neutral atoms can be excited in
Rydberg states. Wave propagation in Rydberg plasmas and the mutual influence of
plasma dispersion and atomic dispersion are considered. New dispersion relations
are established, showing new instability regimes and new cut-off frequencies.

1. Introduction
In recent years, there has been an increasing interest in the physics of very low
temperature plasmas, in the temperature range of 1 K, resulting from the ionization
of cold atomic molasses confined and laser cooled in a magneto-optic trap. This
extends the domain of application of plasma physics into a quite new direction,
which contrasts with the traditional view of a plasma medium as a very high
temperature gas, which electron temperatures of the order of or higher than the
energy of ionization, typically above an electronvolt.
It has been experimentally demonstrated that ultra-cold plasmas can be pro-

duced simply by direct photo-ionization of an ultra-cold gas [1], or as an alternative,
by spontaneous evolution from neutral to ionized gas, when the atoms are excited
in highly excited Rydberg quantum states [2]. Such a spontaneous ionization is
possibly attained after a cascading process occurring inside the Rydberg atomic
spectrum, from higher to lower energies, where the loss of internal energy of the
highly excited neutral atoms provides the additional energy for ionization to occur.
However, we should notice that Rydberg states are also excited in the case of direct
ionization. The result is a low ionized plasma where the remaining neutral atoms
have highly excited energy states [3–5].
The physics of this new area of ultra-cold plasmas has been reviewed recently [6],

where they are called ‘neutral plasmas’. As an alternative, here we propose to call
them ‘Rydberg plasmas’, because the term ‘neutral plasmas’ can be misleading,
for several different reasons. Firstly, most plasmas are electrically neutral, over
dimensions larger than their typical scale, the Debye length. This means that, inside
a Debye sphere, the total electron charge is equal to the total positive ion charge,
on average. Second, in quite exceptional conditions where such a charge neutrality
is not exactly fulfilled, we talk about ‘non-neutral plasmas’ [7]. Extreme examples
of such non-neutral plasmas are electron or positron beams. Finally, the ultra-cold

https://doi.org/10.1017/S0022377809007971 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809007971


714 J. T. Mendonça, J. Loureiro and H. Terças

neutral gas confined in a magneto-optical trap manifests itself as a ‘non-neutral
plasma’, due to the existence of an effective electric charge of the neutral atoms [8].
As a consequence, neutral atoms repel each other, as if they had the same electric
charge, which explains the observation of Coulomb-type explosions [9], and the
possible occurrence of many collective processes [10].
Here we discuss a new aspect of Rydberg plasmas, and examine the properties

of wave dispersion in this medium. A new dispersion relation is derived, which
contains contributions associated with both the electrons and the neutral atoms.
The resulting wave refractive index will depend on the electron susceptibility as
well as on the nearly resonant atomic transitions. It will be shown that low-
frequency electromagnetic waves can be destabilized due to energy transfer between
atoms and plasma electrons. Another important qualitative change is the possible
occurrence of wave propagation below the plasma cut-off frequency.

2. Basic formulation
Let us consider electromagnetic wave propagation in a weakly ionized plasma,
where the neutral atoms have highly excited energy states. We can state the wave
equation as (

∇2 − 1
c2

∂2

∂t2

)
E = μ0

∂2P
∂t2

− μ0
∂J
∂t

(1)

where J = −en0ve is the electron plasma current, and P is the polarization vector
associated with the neutral atoms. Here, e is the electron charge, n0 is the mean elec-
tron density, and ve the electron velocity. We know that, for transverse waves, the
amplitude of density perturbations is equal to zero. We then consider infinitesimal
wave perturbations with frequency ω and wavevector k of the form

(ve,E,P) = (v,Eω ,Pω ) exp(ik · r− iωt). (2)

From the electron equations of motion, we get

v = −i
e

me

Eω

(ω + iνe)
(3)

whereme is the electron mass. We retain the electron collision frequency νe because
very-low-frequency electromagnetic waves can eventually be considered. We can
also use the relation

Pω = Naχa(ω)Eω (4)

where Na is the density of the neutral atoms, and χa(ω) is the atomic susceptibility.
From the above equations we can then derive the dispersion relation

k2c2

ω2 = ε(ω) ≡ 1 + χe(ω) + Naχa(ω) (5)

where ε(ω) is the dielectric function of the medium, and the electron susceptibility
of the plasma is determined by

χe(ω) = χ′
e(ω) + iχ′′

e(ω) (6)

where the real and the imaginary parts are

χ′
e(ω) = −

ω2
pe

(ω2 + ν2
e )

, χ′′
e(ω) = −νe

ω
χ′
e(ω) (7)
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where ωpe = (e2n0/ε0me)1/2 is the usual electron plasma frequency. In order to
establish the atomic susceptibility χa(ω), we first notice that most of the Rydberg
states of the neutral atoms inside the ultra-cold partially ionized plasma are signi-
ficantly populated. The corresponding energy levels can be written in hydrogenic
form as

Eν = −E0

ν2 (8)

where E0 is a positive constant, and ν � 1 is an integer. The dominant contribution
to χa(ω) will come from the closest radiative transition, such that �ω � Eν+1 −Eν .
This can be approximately determined by

ω � 2E0

�ν3 (9)

Using the well-known theory for the radiative transitions in a two-level atom, with
quantum states |ν + 1〉 and |ν〉, and defining �ωa ≡ Eν+1 − Eν , we can write

χa(ω) = χ′
a(ω) + iχ′′

a(ω) (10)

where the real and the imaginary parts are

χ′
a(ω) = − fa

n0

ω2
peΔ

(Δ2 + γ2)
D, χ′′

a(ω) =
γ

Δ
χ′
a(ω). (11)

Here D = [ρ(0)
ν+1 − ρ

(0)
ν ] is the unperturbed population difference between the two

states, γ is the natural linewidth, and Δ = (ωa − ω) is the frequency detuning. We
have also defined the oscillator strength fa as

fa =
me

�
|〈ν + 1|z|ν〉|2 (12)

where the wave electric field Eω is assumed to be linearly polarized along the z-
axis. This is smaller by a factor of me/Ma, with respect to the usual definition.
An alternative way of writing (11) would be to use the electric dipole momentum
of the transition p = e〈ν + 1|z|ν〉, instead of fa. It should be noted that the
population difference D is nearly equal to zero over a considerable part of the
Rydberg energy spectrum, which tends to become homogeneously populated due
to atomic collisions [11,12]. However, there is also a significant part of this spectrum
where D can be significantly different from zero, and can take positive or negative
values around the state excited by the external ionization field [3].

3. Dispersive properties
We first neglect the imaginary part of both susceptibilities, χe(ω) and χa(ω), which
is an approximation that is valid in the limit νe � ω, and γ � Δ. Their influence
will be discussed later. We can write the dispersion relation for the electromagnetic
waves propagating in a Rydberg plasma in its simplest expression,

ω2 = k2c2 + ω2
pe

[
1 + β

ω2

(ωa − ω)

]
(13)

where the quantity

β = fa
Na

n0
D (14)

has the dimensions of time, and can be positive or negative, according to the sign
of the population difference D. In order to understand the effect of the resonance
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Figure 1. Cut-off frequency for electromagnetic waves propagating in a Rydberg plasma, for
α = ± 0.5 or β = ±1/2ωpe. Dimensionless parameters X = ω/ωpe and Y = ω/ωa are used.

term in the dispersion relation, let us consider ω = ω′ + iω′′, and assume the double
resonance condition

ω′ = ωa = (ω2
pe + k2c2)1/2 . (15)

Replacing this in (13), and assuming that the imaginary part of the frequency is
very small, |ω′′| � ω′, we get

ω′′ = ±ωpe
√

βω′/2. (16)

This shows that ω′′ can have real and positive values for β > 0, which corresponds
to an inversion of population, or D > 0. The resonant electromagnetic wave with
frequency (13) can then become unstable. Such an instability results from the
transfer of energy from the Rydberg atoms to the transverse electron oscillations
of the plasma medium. Another interesting aspect of the dispersion relation (13)
is the modification of the cut-off frequency. For β = 0 such a cut-off is simply
determined by ωpe, which is the usual plasma result. However, for β �= 0, the cut-
off is determined by the condition

(X2 − 1) = α
Y 2

(1 − Y )
(17)

where we have used the dimensionless quantities

X =
ω

ωpe
, Y =

ω

ωa
, α = βωa. (18)

We can see that, when Y → 0, we get X = 1, which is the usual plasma cut-off. In
addition, for Y → 1, we have a resonance X → ∞. Noting that X = Y (ωa/ωpe), we
conclude that such a resonance can only be approached for ωa � ωpe. Furthermore,
there is no real cut-off for Y > 1, or ω > ωa. The properties of the solution X =
X(Y ) are illustrated in Fig. 1, for both positive and negative values of α. Let us
now go back to the dispersion relation (5) and retain the influence of the quantities
νe and γ. With generality, we can write

kc

ω
= N(ω) =

√
1 + χe(ω) + Naχa(ω). (19)
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The refractive index is obviously complex, N(ω) = N ′(ω)+ iN ′′(ω), where N ′(ω) �√
1 + χ′(ω) for |χ′(ω)| � |χ′′(ω)|, and the sign of the imaginary part N ′′(ω) is equal

to the sign of χ′′(ω). It is therefore useful to represent the quantities ε′(ω) and χ′′(ω),
which determine the wave dispersion and the wave damping, respectively, and to
compare them with the case of a purely neutral medium. Here it is convenient to
introduce the following dimensionless quantities:

z =
δ

γ
, a =

ωa
ωpe

(20)

where z represents the wave frequency detuning, and

b =
fa
n0

ω2
peD

γ
, η =

νe
ωpe

, g =
γ

ωpe
. (21)

This allows us to write the real part of the susceptibility as

χ′(z) = − bz

z2 + 1
− 1

(a − zg)2 + g2 (22)

where the first term represents the contribution from the neutral atoms, and the
second term that of the plasma. Similarly, we have for the imaginary part

χ′′(z) = − b

z2 + 1
+

η

(a − zg)3 + (a − zg)η2 . (23)

The quantity 1+χ′(z) is represented in Fig. 2, for negative and positive inversion of
populations, b = ±1, respectively. Notice that wave propagation is forbidden when
this quantity is negative. These curves show a significant deviation with respect to
the purely neutral gas. We can see the appearance of the plasma cut-off for both
cases, with a significant qualitative difference for the case of b = −1 (no inversion
of the population).

4. Conclusions
Here we have proposed the use of ‘Rydberg plasmas’ to designate the ultra-cold and
partially ionized gas with highly populated Rydberg states of the neutral atoms,
in a Kelvin temperature range. We have studied the wave propagation in Rydberg
plasmas, established the corresponding dispersion relation, and discussed its main
dispersive properties. The Rydberg energy spectrum provides an infinite set of
nearly resonant transitions which contribute to wave dispersion. In particular, we
have shown that wave propagation below the plasma cut-off is possible, and that
wave instability can occur due to the energy transfer between the excited Rydberg
states of the neutral atoms and the free electrons of the plasma.
In this work we have neglected the influence of external magnetic fields, which

are very weak inside a magneto-optical trap. However, these results can easily be
extended to a magnetized Rydberg plasma. Finally, we should mention the case of
electrostatic waves. In principle, neutral atom susceptibility can also be added to the
usual electron plasma term, leading to a change in the properties of the electron
plasma waves in Rydberg plasmas, similar to that discussed here for transverse
electromagnetic waves. The corresponding oscillator strength fa would be formally
identical, the only difference being that the wave electric field is now parallel to
the direction of wave propagation. However, the electric dipole transition between
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Figure 2. The dielectric function ε′(z) = 1+χ′(z) (in bold) as a function of the wave frequency
detuning z = Δ/γ, for a = 1, g = η = 0.1, and (a) b = −1 and (b) b = 1. For comparison,
the curves of pure atomic dispersion corresponding to a non-ionized gas are also shown.

two adjacent Rydberg states is only non-zero for Δl = l − l′ = ±1, where l and
l′ are the two quantum numbers of the hydrogen-like Rydberg states. This means
that, in order to conserve angular momentum, we need to consider a finite angular
momentum for the electron plasma wave. However, in contrast to the photons, the
plasmons (or quanta of electron plasma waves) have no spin. Therefore, a finite
oscillator strength fa �= 0 would only be possible if the plasmons could have a finite
orbital angular momentum which is not inconceivable, but is highly speculative.
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