ASYMPTOTIC DISTRIBUTION OF THE NUMBER

and size of parts in unedual partitions

G. Szekeres

An asymptotic formula is derived for the number of partitions of a large positive integer n into r unequal positive integer parts and maximal summand k. The number of parts has a normal distribution about its maximum, the largest summand an extremevalue distribution. For unrestricted partitions the two distributions coincide and both are extreme-valued. The problem of jnint distribution of unrestricted partitions with r parts and largest summand k remains unsolved.

1. Introduction.

Let $q_{r}(n)$ denote the number of partitions of n into r unequal positive integer parts (unequal partitions for brevity). The asymptotic behaviour of $q_{r}(n)$ for fixed large n and variable r is known over a wide range of $r[6]$, but in a form which is not very easy to handle. For applications it is better to have a simple expression which, although valid in a more restricted range, is nevertheless sufficiently extensive to include almost all partitions.

Received 17 July 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ 22.00+0.00$. 89

It is well known (Erdös and Lehner [3], in a more precise form in [6]) that the maximum occurs very nearly at $r_{0}=\frac{\log 2}{c} \sqrt{n}$ where

$$
\begin{equation*}
c=\frac{\pi}{2 \sqrt{3}}=0.90689968 \ldots \tag{1}
\end{equation*}
$$

and the following is a fairly straight forward consequence of the main asymptotic formula of [6] :

THEOREM 1. Let

$$
\begin{equation*}
\sigma=r-\frac{\log 2}{c} \quad \sqrt{n}=o\left(n^{1 / 3}\right) \tag{2}
\end{equation*}
$$

Then asymptotically for large n

$$
\begin{equation*}
q_{p}(n) \simeq \frac{1}{4 n \sqrt{6 \gamma}} \exp (2 c \sqrt{n}) \exp \left(-\frac{c}{\gamma} \frac{\sigma^{2}}{\sqrt{n}}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=1-\left(\frac{\log 2}{c}\right)^{2}=0.41583918 \ldots \tag{4}
\end{equation*}
$$

Hence the distribution about r_{0} is Gaussian, with variance $\frac{\gamma}{2 c} \sqrt{n}$. Note that

$$
\begin{aligned}
\sum_{r} q_{p}(n) & \simeq \frac{1}{4 n \sqrt{6 \gamma}} \exp (2 c \sqrt{n}) \quad \int_{-\infty}^{\infty}\left(\exp -\frac{c}{\gamma} \frac{\sigma^{2}}{\sqrt{n}}\right) d \sigma \\
& \simeq \frac{\exp (2 c \sqrt{n})}{4.3^{1 / 4} n^{3 / 4}}=Q(n)
\end{aligned}
$$

the well known asymptotic expression for the total number of unequal partitions. This shows that (3) is valid over almost all partitions. The symbol \simeq will always mean that the quotient of the two sides tends to 1 when $n \rightarrow \infty$.

Next consider $Q_{k}(n)$, the number of those unequal partitions in which k is the largest summand. Erdös and Lehner have shown [3] that for almost all unequal partitions the largest summand is $k=\frac{\sqrt{n}}{c} \log \sqrt{n}+O(\sqrt{n} \omega(n))$ where $\omega(n)$ tends to infinity arbitrarily slowly. Using the generating function $x^{k} \prod_{v=1}^{k-1}\left(1+x^{v}\right)=\sum_{n} Q_{k}(n) x^{n}$ one
can obtain by the circle method the following more specific result:
THEOREM 2. Let λ be determined from the equation

$$
\begin{equation*}
\log \lambda=\frac{1}{2} \log n-\frac{c}{\sqrt{n}} k \quad, \quad \lambda=\sqrt{n} \exp \left(-\frac{c k}{\sqrt{n}}\right) \tag{5}
\end{equation*}
$$

Then for Zarge n and for $\lambda=0\left(n^{1 / 6}\right), \quad 1 / \lambda=0\left(n^{1 / 6}\right)$,

$$
\begin{equation*}
Q_{k}(n)=Q(n) \frac{\lambda}{\sqrt{n}} \exp \left(-\frac{\lambda}{c}\right) \tag{6}
\end{equation*}
$$

The result of Erdös and Lehner follows from here immediately (but not the other way round). Formula (6) represents a so called extreme-value distribution about $k_{0}=\frac{\sqrt{n}}{c} \log \frac{\sqrt{n}}{c}$, with variance $2 n$, see for example [1, p.930].

What can one say about the distribution of unequal partitions of n in which both the number of summands, r, and the largest summand, k, vary? This problem came up recently in the counting of spiral walks on a triangular lattice [7] where it was assumed that for every fixed r in a suitable neighbourhood of r_{0}, the distribution is still given by (6) with $Q(n)$ replaced $q_{r}(n)$. That is, it was assumed that the distributions with respect to r and k are independent in a sufficiently extensive region which embraces almost all partitions. We shall prove the following more precise result which clearly contains both Theorems 1 and 2 as corollaries:

THEOREM 3. Let $q(n ; r, k)$ denote the number of those unequal partitions of n in which the number of summands is r and the size of the maximal summond is k. Then for large n and for
(7) $\sigma=r-\frac{\log 2}{c} \sqrt{n}=o\left(n^{1 / 3}\right), \lambda=\sqrt{n} e^{-c k / \sqrt{n}}=O\left(n^{1 / 6}\right), 1 / \lambda=O\left(n^{1 / 6}\right)$,

$$
\begin{equation*}
q(n ; r, k) \quad \frac{\lambda}{4 \sqrt{6 \gamma} n^{3 / 2}} \exp \left\{2 c \sqrt{n}-\frac{\lambda}{c}-\frac{c \sigma^{2}}{\gamma \sqrt{n}}\right\} \tag{8}
\end{equation*}
$$

We shall only deal with the main asymptotic term; error terms can be obtained but they are fairly complicated. A similar problem arises of course with unrestricted partitions. The distribution of the number of
parts and maximal summand for unrestricted partitions has been studied extensively by Szalay and Turdn [5] and by Erdös and Szalay [4], but they never write down asymptotic expressions like (8), not even like (4) or (6). The latter can be obtained quite simply from the general asymptotic formula of [6]:

THEOREM 4. Let $p_{k}(n)$ denote the number of unrestricted portitions of n into precisely k parts, or what is the same, in parts with largest summand k. Let $c_{0}=\pi / \sqrt{6}, n(n)$ a positive function tending monotonically to 0 , and

$$
\mu=\frac{\sqrt{n}}{c_{0}} \exp \left(-\frac{k c_{0}}{\sqrt{n}}\right), \quad \mu+\frac{1}{\mu} \leq \sqrt{n} n(n)
$$

Then

$$
p_{k}(n) \simeq P(n) \frac{\mu c_{o}}{\sqrt{n}} e^{-\mu}
$$

where

$$
P(n) \simeq \frac{1}{4 \sqrt{3} n} \exp \left(2 c_{o} \sqrt{n}\right)
$$

is the total number of unrestricted partitions of n.
We thus have an extreme-value distribution about $k_{0}=\frac{\sqrt{n}}{c_{0}} \log \frac{\sqrt{n}}{c_{0}}$ (with variance n) for both the maximal summand and the number of parts. The two counting numbers of course coincide because of the one to one correspondence between partitions in k parts and conjugate partitions with largest summand k. For the same reason the joint distribution must necessarily be symmetric in k and r, but no analogy of Theorem 3 has been found for unrestricted partitions. The proof of Theorem 4 is omitted.

2. Proof of the asymptotic formula.

For fixed k consider

$$
F_{k}(x, t)=(1+t x)\left(1+t x^{2}\right) \ldots\left(1+t x^{k}\right)=\sum_{n, r} Q(n ; r, k) x^{n} t^{r}
$$

Clearly $Q(n ; r, k)$ is the number of partitions of n into r unequal
parts, each $\leq k$. Hence

$$
G_{k}(x, t)=F_{k}(x, t)-F_{k-1}(x, t)=t x^{k} F_{k-1}(x, t)=\Sigma q(n ; r, k) x^{n} t^{r}
$$

and so

$$
q(n ; r, k)=\frac{1}{2 \pi i} \int d z \frac{1}{2 \pi i} \int d w G_{k}(z, w) z^{-n-1} w^{-r-1}
$$

$$
\begin{equation*}
=-\frac{1}{4 \pi^{2}} \int d z \int d w \exp \left\{\sum_{v=1}^{k-1} \log \left(1+w z^{v}\right)\right\} z^{-(n-k+1)} w^{-p}, \tag{9}
\end{equation*}
$$

integrated over the product $C_{w} \times C_{z}$ of two circles

$$
C_{w}: w=e^{-\alpha+i \phi}, C_{z}: z=e^{-\beta+i \theta},-\pi<\phi \leq \pi,-\pi<\theta \leq \pi
$$

Here α, β can be any real numbers, but will be chosen so that the saddle point conditions

$$
\begin{equation*}
\sum_{v=1}^{k-1} \frac{v}{e^{\alpha+v \beta}+1}=n-k, \quad \sum_{v=1}^{k-1} \frac{1}{e^{\alpha+v \beta}+1}=r \tag{10}
\end{equation*}
$$

be fulfilled, at least in suitable approximation. To achieve (10) write

$$
\begin{equation*}
\alpha=-\frac{2 c \sigma}{\gamma \sqrt{n}}, \quad \beta=\frac{c}{\sqrt{n}}+\frac{\sigma \log 2}{\gamma n} \tag{11}
\end{equation*}
$$

where c, γ, σ are defined as in (1), (4) and (7). Then since $\sigma=o\left(n^{1 / 3}\right)$,

$$
\begin{equation*}
1 / B=\frac{\sqrt{n}}{c}-\frac{\sigma \log 2}{\gamma c^{2}}+\frac{\sigma^{2} \log ^{2} 2}{\gamma^{2} c^{3} \sqrt{n}}+o(1) \tag{12}
\end{equation*}
$$

Defining further $u=\log (\sqrt{n} / \lambda)$ where λ is as in (5), we find from (7) and (1) that

$$
\begin{equation*}
u=\frac{1}{2} \log n-\log \lambda=c k / \sqrt{n} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
k \beta=u+\frac{\sigma k \log 2}{n} \tag{14}
\end{equation*}
$$

The assumptions $\sigma=o\left(n^{1 / 3}\right), \lambda+1 / \lambda=O\left(n^{1 / 6}\right)$ imply

$$
\begin{align*}
u=O(\log n), e^{-u}=\lambda / \sqrt{n}=o\left(n^{-1 / 3}\right), \quad k & =o(\sqrt{n} \log n) \tag{15}\\
\alpha & =o\left(n^{-1 / 6}\right)
\end{align*}
$$

Using these and (7) we get from Euler-Maclaurin

$$
\begin{aligned}
\sum_{v=1}^{k-1} \frac{1}{e^{\alpha+v \beta}+1} & =\frac{1}{\beta} \int_{c}^{u} \frac{d t}{e^{\alpha+t}+1}+0(1) \\
& =\frac{1}{\beta}\left(\log \left(1+e^{-u}\right)-\log \left(1+e^{-\alpha-u}\right)\right)+0(1) \\
& =\frac{\sqrt{n}}{c} \log 2-\frac{\alpha \sqrt{n}}{2 c}-\frac{\sigma}{\gamma} \frac{\log ^{2} 2}{c^{2}}+0\left(n^{1 / 6} \log n\right) \\
& =\frac{\sqrt{n}}{c} \log 2+\frac{\sigma}{\gamma}\left(1-\left(\frac{\log 2}{c}\right)^{2}\right)+0\left(n^{1 / 6} \log n\right) \\
& =r+0\left(n^{1 / 6} \log n\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\sum_{v=1}^{k-1} \frac{v}{e^{\alpha+v \beta}+1} & =\frac{1}{\beta^{2}} \int_{0}^{u} \frac{t d t}{e^{\alpha+t}+1}-\frac{u}{2 \beta\left(e^{\alpha+u}+1\right)}+o(1) \\
& =\frac{1}{\beta^{2}}\left\{\frac{\pi^{2}}{12}-\alpha \log 2+o\left(u e^{-u}\right)\right\}+o\left(n^{1 / 6} \log n\right) \\
& =n+0\left(n^{2 / 3} \log n\right) .
\end{aligned}
$$

Since $k=O(\sqrt{n} \log n)$ we see that in consequence of definition (11) and our assumptions, (10) is replaced by

$$
\begin{equation*}
\sum_{v=1}^{k-1} \frac{v}{e^{\alpha+v \beta}+1}=n-k+0\left(n^{2 / 3} \log n\right), \quad \sum_{v=1}^{k-1} \frac{1}{e^{\alpha+v \beta}+1}=n+0\left(n^{1 / 6} \log n\right) \tag{16}
\end{equation*}
$$

Both seem fairly crude approximations to (10) but they will suffice. Returning now to the evaluation of the repeated integral (9) in the neighbourhood of $\phi=0, \theta=0$ write
(17) $\quad t=e^{-\alpha+i \phi}, z=e^{-\beta+i \theta}, \quad|\phi| \leq n^{-1 / 5}, \quad|\theta| \leq n^{-5 / 7}$. The integrals over the complementary arcs $n^{-1 / 5}<|\phi| \leq \pi, n^{-5 / 7}<|\theta| \leq \pi$ are negligible compared with the dominant part (17); this can be seen just as in [6] or in Andrews [2], chapter 6 and the estimates need not be repeated here.
The integrand of (9) over the range (17) then becomes
(18) $-\exp \left\{\sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-\nu \beta+i \phi+i v \theta}\right)-i(r-1) \phi-i(n-k) \theta\right\} d \phi d \theta$.

Here

$$
\begin{aligned}
& \sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-\nu \beta+i \phi+i v \theta}\right)=\sum \log \left\{1+e^{-\alpha-v \beta}\left(1+i(\phi+\nu \theta)-\frac{1}{2}(\phi+\nu \theta)^{2}\right.\right. \\
& \left.+O\left(|\phi+v \theta|^{3}\right)\right\} \\
& =\sum \log \left(1+e^{-\alpha-\nu \beta}\right)+\sum \log \left\{1+\frac{i}{e^{\alpha+\nu \beta}+1}(\phi+\nu \theta)-\frac{1}{2} \frac{(\phi+\nu \theta)^{2}}{e^{\alpha+\nu \beta}+1}+0\left(\frac{\left(\phi+\left.\nu \theta\right|^{3}\right.}{e^{\alpha+\nu \beta}+1}\right)\right\} \\
& =\sum \log \left(1+e^{-\alpha-v \beta}\right)+i \sum \frac{\phi}{e^{\alpha+v \beta}+1}+i \sum \frac{v \theta}{e^{\alpha+v \beta}+1} \\
& -\frac{1}{2} \sum \frac{e^{\alpha+\nu \beta}}{\left(e^{\alpha+\nu \beta}+1\right)^{2}}(\phi+\nu \theta)^{2}+o\left(\frac{|\phi|^{3}}{\beta}+\frac{|\theta|^{3}}{\beta^{4}}\right) \\
& =\sum \log \left(1+e^{-\alpha-\nu \beta}\right)+i r \phi+i(n-k) \theta+O\left(|\phi| n^{1 / 6} \log n\right)+O\left(|\theta| n^{2 / 3} \log n\right) \\
& -\frac{1}{2} \sum \frac{e^{\alpha+\nu \beta}}{\left(e^{\alpha+\nu \beta}+1\right)^{2}}(\phi+\nu \theta)^{2}+O\left(n^{-1 / 10}+n^{-1 / 7}\right)
\end{aligned}
$$

by (16). All summations go from 1 to $k-1$. But $n^{1 / 6} \phi=0\left(n^{-1 / 30}\right)$, $n^{2 / 3}=O\left(n^{-1 / 21}\right)$, hence the expression in (18) is equal to

$$
\begin{equation*}
-\exp \left\{\sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-\nu \beta}\right)-\frac{1}{2} \sum_{\nu=1}^{k-1} \frac{e^{\alpha+\nu \beta}}{\left(e^{\alpha+\nu \beta}+1\right)^{2}}(\phi+\nu \theta)^{2}+o(1)\right\} d \phi d \theta \tag{19}
\end{equation*}
$$

Summarising from (9) and (19)

$$
\begin{aligned}
& q(n ; r, k) \simeq \frac{1}{4 \pi^{2}} e^{\alpha r+\beta(n-k)} \exp \left\{\sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-v \beta}\right)\right\} . \\
& n^{-1 / 5} d \phi \int_{-n^{-1 / 5}}^{n^{-5 / 7}} \exp \left\{\frac{1}{2 \beta} \int_{0}^{u} \frac{e^{\alpha+t}}{\left(e^{\alpha+t}+1\right)^{2}}\left(\phi+\frac{t}{\beta} \theta\right)^{2} d t\right\} d \theta .
\end{aligned}
$$

But from (13) it is seen that u goes to ∞ like $\log n$ throughout the whole range of λ and we can replace u by ∞ in the t-integral, also $\alpha=O\left(n^{-1 / 6}\right)$ by 0 . Furthermore

$$
\phi^{2} / \beta \simeq \frac{1}{c} n^{1 / 10}, \quad \phi \theta / \beta^{2} \simeq \frac{1}{c^{2}} n^{3 / 35}, \quad \theta^{2} / \beta^{3} \simeq \frac{1}{c^{3}} n^{1 / 14}
$$

at the upper integration limits of ϕ and θ and we can replace these
limits by infinity in the asymptotic expression. Hence
(20)

$$
\begin{aligned}
& q(n ; r, k) \simeq \frac{1}{4 \pi^{2}} e^{\alpha r+\beta(n-k)} \exp \left\{\sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-\nu \beta}\right)\right. \\
& \int_{-\infty}^{\infty} d \phi \\
& \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2 \beta} \int_{0}^{\infty} \frac{e^{t}}{\left(e^{t}+1\right)^{2}}\left(\phi+\frac{t}{\beta} \theta\right)^{2} d t\right\} d \theta
\end{aligned}
$$

To evaluate the double integral note that

$$
\begin{gathered}
A=\frac{1}{2 \beta} \int_{0}^{\infty} \frac{e^{t}}{\left(e^{t}+1\right)^{2}} d t=\frac{1}{4 \beta}, \quad B=\frac{1}{2 \beta^{2}} \int_{0}^{\infty} \frac{t e^{t}}{\left(e^{t}+1\right)^{2}} d t=\frac{1}{2 \beta^{2}} \log 2, \\
C=\frac{1}{2 \beta^{3}} \int_{0}^{\infty} \frac{t^{2} e^{t}}{\left(e^{t}+1\right)^{2}} d t=\frac{1}{\beta^{3}} \frac{\pi^{2}}{12} .
\end{gathered}
$$

Thus

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(A \phi^{2}+2 B \phi \theta+C \theta^{2}\right)} d \phi d \theta & =\frac{\pi}{\sqrt{A C-B^{2}}}=2 \beta^{2}\left(\frac{1}{12}-\left(\frac{\log 2}{\pi}\right)^{2}\right)^{-1 / 2} \\
& \simeq \frac{12 c^{2}}{\sqrt{3 \gamma} n}=\frac{2}{\sqrt{3 \gamma} n}
\end{aligned}
$$

and
(21) $\quad q(n ; r, k) \frac{1}{4 \sqrt{3 \gamma} n} \exp \left\{\sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-\nu \beta}\right)+\alpha r+\beta(n-k)\right\}$.

It remains to evaluate the expression in the exponent. Once more by Euler-Maclaurin

$$
\begin{aligned}
\sum_{\nu=1}^{k-1} \log \left(1+e^{-\alpha-v \beta}\right)= & \frac{1}{\beta} \int_{0}^{u} \log \left(1+e^{-\alpha-t}\right) d t-\frac{1}{2} \log \left(1+e^{-\alpha}\right)-\frac{1}{2} \log \left(1+e^{-\alpha-u}\right)+o(1) \\
= & \frac{1}{\beta}\left(\int_{0}^{\infty} \log \left(1+e^{-t}\right) d t-\int_{0}^{\alpha} \log \left(1+e^{-t}\right) d t-\int_{u}^{\infty} \log \left(1+e^{-\alpha-t}\right) d t\right) \\
& -\frac{1}{2} \log 2+o(1) \\
= & \frac{1}{\beta}\left(\frac{\pi^{2}}{12}-\alpha \log 2+\frac{\alpha^{2}}{4}-e^{-u}\right)-\frac{1}{2} \log 2+o(1) \\
= & c \sqrt{n}+\frac{\sigma}{\gamma} \log 2+\frac{c \sigma^{2}}{\gamma \sqrt{n}}-\frac{\lambda}{c}-\frac{1}{2} \log 2+o(1)
\end{aligned}
$$

and by (7), (11), (12)

$$
\alpha r+\beta(n-k)=-\frac{2 c \sigma}{\gamma \sqrt{n}}\left(\sigma+\frac{\log 2}{c} \sqrt{n}\right)+c \sqrt{n}+\frac{\sigma}{\gamma} \log 2-\log \frac{\sqrt{n}}{\lambda}+o(1)
$$

Substituting these into (21) we finally obtain

$$
q(n ; r, k) \simeq \frac{\lambda}{4 \sqrt{6 \gamma} n^{3 / 2}} \exp \left(2 c \sqrt{n}-\frac{\lambda}{c}-\frac{c \sigma^{2}}{\gamma \sqrt{n}}\right)
$$

that is, expression (8).

References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc. 1969).
[2] G.E. Andrews, The theory of partitions (Addison-Wesley publishing Co., 1976).
[3] P. Erdös and J. Lehner, "The distribution of the number of summands in the partition of a positive integer", Duke Math. J. 8 (1941), 335-345.
[4] P. Erdös and M. Szalay, "On the statistical theory of partitions", Colloquia Math. Soc. Jânos Bolyai, 34 (1981), 397-449.
[5] M. Szalay and P. Turán, "On some problems of the statistical theory of partitions with application to characters of the symmetric group, I and II', Acta Math. Acad. Sci. Hungar., 29 (1977), 361-392.
[6] G. Szekeres, "Some asymptotic formulae in the theory of partitions (II)", Quart. J. Math. Oxford (2) 4 (1953), 96-111.
[7] G. Szekeres and A.J. Guttmann, "Spiral self-avoiding walks on the triangular lattice", J. Physics A: Math. Gen. 20 (1987), 481-493.

School of Mathematics,
University of New South Wales,
Kensington,
New South Wales, 2033
Australia.

