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ASYMPTOTIC DISTRIBUTION OF THE NUMBER

AND SIZE OF PARTS IN UNEQUAL PARTITIONS

G, SZEKERES

An asymptotic formula is derived for the number of partitions of

a large positive integer n into r unequal positive integer

parts and maximal suiranand k . The number of parts has a normal

distribution about its maximum, the largest summand an extreme-

value distribution. For unrestricted partitions the two

distributions coincide and both are extreme-valued. The problem

of joint distribution of unrestricted partitions with r parts

and largest summand k remains unsolved.

1. Introduction.

Let q (n) denote the number of partitions of n into r unequal

positive integer parts (unequal partitions for brevity). The asymptotic

behaviour of q (n) for fixed large n and variable r is known over

a wide range of r[6] , but in a form which is not very easy to handle.

For applications it is better to have a simple expression which, although

valid in a more restricted range, is nevertheless sufficiently extensive

to include almost all partitions.
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It is well known (Erdos and Lehner [3], in a more precise form in

C6]) that the maximum occurs very nearly at rn = —**— vn where
U Q

(1) 0 = - 2 — =0.90689968... ,
2/3

and the following is a fairly straight forward consequence of the main

asymptotic formula of [6] :

THEOREM 1. Let

(2) a = v -

Then

(3)

where

(4)

asymptoti cal ly for

(n) --

Y =

large. 1 n

1

4n Jh~y

1 -
log

exp (2c<M

-i2
= 0

) exp

41S83S

c o

Hence the distribution about r. is Gaussian, with variance -£— -Jn

Note that

I q (n) = — - — exp(2c/n) f° c a
exP - r —

da

.31'4 n3'4
= Q(n) ,

the well known asymptotic expression for the total number of unequal

partitions. This shows that (3) is valid over almost all partitions. The

symbol = will always mean that the quotient of the two sides tends to 1

w h e n n •*•<*>.

Next consider Qr,(n) • the number of those unequal partitions in

which k is the largest summand. Erdos and Lehner have shown [3] that

for almost all unequal partitions the largest summand is

k = — log -Jn + 0(Jn m(n)) where u(n) tends to infinity arbitrarily

k k~1
slowly. Using the generating function x ~[T Ĉ +x ) = £ Q,(n)x one

v=i n
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can obtain by the circle method the following more specific result:

THEOREM 2. Let X be determined from the equation

(5) log X = -5- log n - — k , X = /n exp - —

^ & [ ̂  j
Then for large n and for X = 0(n1/6) , 1/X = 0(n1/S) ,

(6) Qv(n) = Q(n) — exp
a

The result of Erdos and Lehner follows from here immediately

(but not the other way round). Formula (6) represents a so called

extreme-value distribution about k^ = — log — , with variance 2n ,

see for example [7, p.930].

What can one say about the distribution of unequal partitions of

n in which both the number of summands, r , and the largest summand, k ,

vary? This problem came up recently in the counting of spiral walks on

a triangular lattice [7] where it was assumed that for every fixed r in

a suitable neighbourhood of r , the distribution is still given by (6)

with Q(n) replaced q (n) . That is, it was assumed that the

distributions with respect to r and k are independent in a sufficiently

extensive region which embraces almost all partitions. We shall prove

the following more precise result which clearly contains both Theorems 1

and 2 as corollaries:

THEOREM 3. Let q(n; r, k) denote the number of those unequal

partitions of n in which the number of summands is r and the size of

the maximal summand is k . Then for large n and for

r _ jm-2. /„ = 0(n*">) t x = /« e"1""'"' = 0(n-/v), 1/X = 0(n1/6),

(8) q(n;r,k) \ exp - i - 22?. \ .

We shall only deal with the main asymptotic term; error terms can

be obtained but they are fairly complicated. A similar problem arises of

course with unrestricted partitions. The distribution of the number of
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parts and maximal summand for unrestricted partitions has been studied

extensively by Szalay and Turin [5] and by Erdos and Szalay [4], but they

never write down asymptotic expressions like (8) , not even like (4) or

(6) . The latter can be obtained quite simply from the general asymptotic

formula of [6]:

THEOREM 4. Let P-j.('n) denote the number of unrestricted partitions

of n into precisely k parts, or what is the same, in parts with

largest summand k . Let cr. = TS//6 , r\(n) a positive function tending

monotonically to 0 , and

kc
\i = — exp yco

Then

ye

2-^
V

pk(n) = P(n) —2-

where

P(n) = exp (2 c Jn)

4/3n °

is the total number of unrestricted partitions of n .

We thus have an extreme-value distribution about fe. = — log —

O O

(with variance n ) for both the maximal sinnmand and the number of parts.

The two counting numbers of course coincide because of the one to one

correspondence between partitions in k parts and conjugate partitions

with largest summand k . For the same reason the joint distribution

must necessarily be symmetric in k and r , but no analogy of Theorem

3 has been found for unrestricted partitions. The proof of Theorem 4 is

omitted.

2. Proof of the asymptotic formula.

For fixed k consider

Fk(x,t) = (l+tx)(l+tx2)...(l+txk) = I Q(n;r,k)xntT .
n,r

Clearly Q(n;r,k) is the number of partitions of n into r unequal
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parts, each S k . Hence

G,(x,t) = F,(x,t) - F, n(x,t) = tx F, n(x3t) = E q(n;r,k)x t

and so

q(n;v,k) = j—r jdz -r—r jdw Gk(z,w) z~
n~ w~r~

1 ( k~2 v 1

= - — g /̂ 2 /^ exp{ I lo9 (l+wz ) \s

(9) • f k-2 - \ -(n-k+1) -r
tz w

integrated over the product C x C of two circles

C : w = e""^41 , C : 3 =w ' z

Here a,6 can be any real numbers, but will be chosen so that the saddle

point conditions

k-1 k-1

v=l e "+1 v=l e v+l

be fulfilled, at least in suitable approximation. To achieve (10) write

(11) a = , B
y/n •fn yn

where c,y,a are defined as in (1), (4) and (7). Then since a = o(n ),

(12) V6 = ^ - 2-loSLi + oflogfi + Q(1) _
Q 6 a o i

y a y a Vn

Defining further u = \oq(Jn/X) where X is as in (5), we find from (7)

and (1) that

(13) u = -j log n - log X = ok/Jn

and

7.0 . ok log 2

The assumptions a = o(n ), X + 1/X = 0(n ) imply

(15) u = 0(log n), e~U = X/iR = 0(n~1/Z), k = 0(Jn log n) ,

, -1/6,
a = o(n ) ,

Using these and (7) we get from Euler-Maclaurin
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k-1

- log(l+e a U) )

— l o g

p
a.Jn a log 2

+0(1)

1/6

J^ l o g 2 + £.

l o g

log „;

Similarly

k-1
I

= r + 0(n ' log n)

J_ ,u tdt

B2 0 ea+t+l
+ 0(1)

= "T { 12 ~ a 1Og 2 + O(UB U) } + 0(nl/6 lo9 n)

= n + 0rn2/3 log MJ .

Since k = O(rn log «^ we see that in consequence of definition (11) and

our assumptions, (10) is replaced by

k-1 k-1
2/3log n)\ J = r+0(n1/6log n) •

k1
I I = n-k+0(n2/3log n), \ J

v=i e p+l v=j e +J

Both seem fairly crude approximations to (10) but they will suffice.

Returning now to the evaluation of the repeated integral (9) in the

neighbourhood of <j> = 0, 8 = 0 write

(17) t = e - ° + i * , z = e~*He , |* | , n" J / 5 , | e | s n5'7 .

The integrals over the complementary arcs n < |̂ | S n , n ' < | 9 | S

are negligible compared with the dominant part (17) ; this can be seen

just as in [6] or in Andrews [2]f chapter 6 and the estimates need not be

repeated here.

The integrand of (9) over the range (17) then becomes

k-1
I

v=l
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Here
k-1 . .

2 l o g (1+B ) = 2 1 ° 9

• I log

l o g H + e " 0 1 ,) + £r<j> + i(n-k)8 + 0f|<t>| n l o g K J + C C | e | n l o g n)

by (16). All summations go from 1 to k-1 . But n $= 0(n ) ,

2/3 —1/21
n = 0(n ) , hence the expression in (18) is equal to

" v=J re

Summarising from (9) and (19)

i k-1 - k-1 a+v0 „
(19) - exp { I log(l+e~a~Vii) -± I | - T 5- ($+v%r + o(l)

\ ^=7 ^ a + v f J ^ I

, , , 1 ar+B(n-k) j H1 , , , -a-vB, \
q(n;r,k) - —^ e exp •! I log(l+e ) > .

4-n I \)=7 •>

-1/5 -5/7

j d<$> f exp \ — ^ =• (§+— Q) dt \ dQ .
_n-l/5 _n-5/7 I 2 e 0 f e a + t + i r 6 >

But from (13) i t is seen that u goes to °° like log n throughout the

whole range of A and we can replace u by °° in the t-integral, also

— 1 /ft
a = 0(n ) by 0 . Furthermore

^ -±n , eV^»
c a

at the upper integration limits of <(> and 9 and we can replace these
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limits by infinity in the asymptotic expression. Hence
k-1

(20) q(n;r,k) - — j e exp \ \ Xog(l+e ) > .
4-n ^ v=l '

OO OO / 00 7* \

j d<j) / expj- jr j ^ 2 ($+ | Q)2dt \ dQ .
_oo _oo *• 0 (e +1) '

To evaluate the double integral note that

A = le I t 2 dt=-k> B = J-sl f 2 dt = ̂ 2 log 2
26 0 (et+l)2 4 B 2B2 0 (e'+l)2 2&2

Thus

f f

and

7 / _ _ s

(21) q(n;r,k) exp \ I log(l+e a VBj + ar
/ n * v=l* v=l

I t remains to evaluate the expression in the exponent. Once more
by Euler-Maclaurin

k—1 u
I a~vB) = 4 / log(l+e~art)dt - \ log(l+e'a) - 4ogCl+e~a~U) +o(1)

6 2 2

[ OO Qt 00 \

/ log(l+e~t)dt- f Xogil+e't)dt-\ log(l+e~a~t)dt\
0 0 u '

- j log 2 +

= i r i 2 ~ a l o g 2 v " i ~ ~ e"M;" i l o g 2

2
= oJn + - log 2 + ^ - - - - ^ log 2 +

and by (7), (11), (12)
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ar + &(n-k) = - — (a + ̂ -^- Jn ) + oJn + - log 2 - log ^ +
y/n °

Substituting these into (21) we finally obtain

4v6y n

that is, expression (8).
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