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Abstract

We study an important subclass of quasicircles, namely, symmetric quasicircles. Several characterizations
for quasicircles, such as the reverse triangle inequality, the M -condition and the quasiconformal extension
property, have been extended to symmetric quasicircles by Becker and Pommerenke and by Gardiner
and Sullivan. In this paper we establish several relations among various domain constants such as
quasiextremal distance constants, (local) reflection constants and (local) extension constants for this
class. We also give several characterizations for symmetric quasicircles such as the strong quadrilateral
inequality and the strong extremal distance property. They correspond to the quadrilateral inequality and
the extremal distance property for quasicircles.
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1. Introduction

A Jordan curve J in the plane C is said to be a symmetric quasicircle if

\a-w\ + \w-b\
(1.1) max ; > 1

weJ(a,b) \a — b\

as a,b e J and |a — Z?| -> 0, where 7 (a, fc) is the smaller arc of J between a and
&. This class of quasicircles was introduced by Becker and Pommerenke [BP] as
asymptotically conformal curves. They gave a number of analytical characterizations
for symmetric quasicircles in terms of conformal mappings (see [Po, Theorem 11.1]).
Later Gardiner and Sullivan [GS] introduced the corresponding concept of symmetric
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132 Shengjian Wu and Shanshuang Yang [2]

homeomorphisms of the unit circle (or real line) from a topological point of view.
They defined the group S of symmetric homeomorphisms as a natural topological
subgroup of the group QS of quasisymmetric homeomorphisms under the uniform
topology, and discussed a variety of analytical and geometrical properties of symmetric
homeomorphisms and symmetric quasicircles.

It is well known that quasisymmetric homeomorphisms are boundary values of
quasiconformal mappings and they can be characterized by the following so called
M-condition. A homeomorphism h of the unit circle S1 is said to satisfy the
M-condition if there is a constant M > 1 such that

(i.2) M

M ~ \h{b)-h{a)\ ~
for any symmetrically located triples a, b, con the circle. As proved by Gardiner and
Sullivan [GS, Theorem 2.1], symmetric homeomorphisms can be characterized by the
following strong M -condition: for any e > 0, there exists <5 > 0 such that

(i.3) I + C
K ' 1 + e- \h{b) - h(a)\ ~
for any symmetrically located triples a, b, c within a ^-neighborhood of each other.
Symmetric quasicircles have a similar characterization.

Let J be a bounded Jordan curve in the complex plane C. Denote its interior and
exterior domains by Q and Q*, respectively. Let / and g be Riemann mappings
which map the unit disk D onto £2 and the exterior D* onto £2*, respectively. Extend
/ and g homeomorphically to the boundary and define a homeomorphism h of S1

by h = g~l o f. Then J is a quasicircle or symmetric quasicircle if and only if h
is quasisymmetric or symmetric, respectively. We call h a homeomorphism induced
by J. Just like quasicircles can be characterized by a reverse triangle inequality,
symmetric quasicircles can be characterized by a strong reverse triangle inequality
([BP] and [GS, Theorem 6.1]). All smooth Jordan curves are symmetric quasicircles
and symmetric quasicircles do not allow corners. But a symmetric quasicircle can still
be very wild in the sense that it does not possess a tangent almost everywhere in the
linear measure [Po, page 249].

From the above and other characterizations given in [Po] and [GS] one can see
that the difference between a symmetric quasicircle and a nonsymmetric quasicircle
is detected only on fine scales. In this paper we give two more characterizations for
symmetric quasicircles, the strong quadrilateral inequality and the strong extremal
distance property (Theorem 4.1). These correspond to the quadrilateral inequality and
the extremal distance property for quasicircles (see [Ge, III.D.4 and III.E.4]). The
idea is to replace the appropriate constant by a constant that is closer and closer to the
constant corresponding to the circle as the scale gets smaller and smaller.
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[3] On symmetric quasicircles 133

In Section 2 we investigate the relations among various domain constants such as the
QED constant, reflection constant and quasicircle constant for symmetric quasicircles.
We show that a conjecture by Garnett and Yang [GY] does not hold for this class of
Jordan curves.

2. Domain constants and their relations

For a Jordan domain £2 its quasiextremal distance constant (or QED constant) with
respect to the boundary, denoted by Mb(Q), is defined as

modG4,5;C)
(2.i) Mb(a) = sup ; '

A,B mod04, 5;fi)
where the supremum is taken over all pairs of disjoint nondegenerate continua A
and B on the boundary 3 £2, and mod(A, B; Q) denotes the modulus of the family
T(A, B;Q) of curves that join A and B in £2. The quasiconformal reflection constant
(or reflection constant) of £2, denoted by /?(£2), is defined as

(2.2) R(Sl) = inf AT(/),

where the infimum is taken over all homeomorphic reflections / in the boundary
dQ and K(f) denotes the maximal dilatation of/ . A homeomorphic reflection in
a Jordan curve is a homeomorphism of C that interchanges the two components of
the complement of the curve taken with respect to the extended plane and fixes the
curve pointwise. For more information on the modulus of a curve family and maximal
dilatations of quasiconformal mappings, we refer the reader to [LV] or any other book
on the theory of quasiconformal mappings in the plane.

It is well known that both M6(fi) and R(Q) are invariant under Mobius transfor-
mations and that their values reflect, to some extent, the geometry of a domain. For
example, the following three statements are equivalent: Q is a disk or a half plane;
M6(S2) = 2; R(Q) = 1. It is also true that Mb(Sl) < R(Q) + 1 for any Jordan
domain £2. For more details and related results we refer the reader to [GY, Y3] and
the references therein. Furthermore, based on observations in some special cases, it
was conjectured in [GY] that Mft(f2) = R(£l) +1 for any Jordan domain Q. However,
after delicate analysis and estimates, we have recently shown that this conjectured
relation is not true for smooth Jordan domains [Y3]. In this paper, we further show
that this conjecture is false for all symmetric quasicircles other than circles and straight
lines. But we need to point out that the QED constant M(£l) considered in [GY, Y3]
is somewhat different from the one considered here and is defined by taking the
supremum over all pairs of disjoint nondegenerate continua A, B c £2 in (2.1) above.
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THEOREM 2.1. For any Jordan domain £2 whose boundary is a symmetric quasi-
circle, other than disks and half planes, we have

(2.3) Mb(a) </?(£2) + 1.

Similar to the reflection constant, we define the quasicircle constant K(Q) of £2
as the infimum of the maximal dilatations of all quasiconformal maps / of the plane
that map 3£2 onto the unit circle. Kiihnau [Ku] proved that /?(£2) = K(Q)2 for
any £2. Because the difference between a symmetric quasicircle and a nonsymmetric
quasicircle is only detected through a fine scale, we also consider the local versions
of the reflection and quasicircle constants. We let tf(£2) denote the local reflection
constant which is defined as in (2.2) with the maximal dilatation K(f) of/ being
replaced by the local maximal dilatation of/ in arbitrarily small neighborhoods of the
boundary. Note that //(£2) is exactly the boundary dilatation of the homeomorphism
of the unit circle induced by the boundary 3 £2 as defined by Fehlmann [Fe] (see also
[GS, Definition 3.3]). Corresponding to the quasicircle constant, we define the local
quasicircle constant H\ (£2) by replacing the global maximal dilatations with the local
ones in arbitrarily small neighborhoods of 3 £2. We establish the following relation
between H(Q) and #,(£2).

THEOREM 2.2. For any Jordan domain £2 we have

(2.4) 2

PROOF. We first show that H < H\. By the definition of Hu for any e > 0 there is
a QC mapping / : C —> C that maps the unit circle 3D onto 3 £2 with dilatation less
than or equal to Hx + e in a neighborhood of 3D. Set

F(z)=f oj of-\z)

where j is the conformal reflection about 3D. Then F is a reflection about 3£2
with dilatation not greater than (//, + e)2 in a neighborhood of 3£2. This shows that
H < H1.

To show that Hf < / / , le t / : C ->• C be any QC mapping with/ : D -+ £2 being
quasiconformal and f : D* -*• £2* being conformal. Let fi(z) denote the complex
dilatation of/ and Kf (z) the local maximal dilatation at z:

1 + \H(Z)\
Kf(Z) =

1
Set Hi(z) = t(z)fi(z), where

t(z) =
(K}'\z) + I)2
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[5] On symmetric quasicircles 135

By solving a Beltrami equation (and composing the solution with a conformal map if
necessary), one can construct QC map gi : D —»• D with complex dilatation

Let g2 = f o gj"1 : D —• Q. Direct computations show that

1 + |M1(Z)I 1/2, .

^ ^ " l - l M U z ) ! " 7 (Z)

and that

\n(z)-Mz)\ (l-t(z))\n(z)\
. 1 -

Thus it follows that

Kg2(gl(z)) = Kl/2(z).

Finally, let

(2.5) F(w) =

Then F : C ->• C is a QC map with F(D) = fi. Furthermore, since / is conformal
in D*, it follows that

If o j of ' o g2 o j (if), w € D*.

Kf^g2 = Kgl = K^(g;'oj(w)), weD*.

In particular, if the above QC map / has maximal dilatation less than or equal to
//(fi) + e in a neighborhood of dD, then the maximal dilatation of F is less than or
equal to (H(£l) + e)l /2. This shows that J7, < (H + e)1/2 for any e > 0. Thus it
follows that H2 < H as desired. D

REMARK. The above argument also proves the identity that R(Q) = K(£2)2 for the
global reflection and quasicircle constants which was first observed by Kuhnau [Ku].

In order to prove Theorem 2.1 we need the following refinement of the quasi-
invariance of moduli under quasiconformal mappings. For a doubly connected do-
main R we let mod(/?) denote the modulus of the curve family that joins the two
complimentary components of R.

LEMMA 2.3. Let R\ and R2 be two doubly connected domains and let f : R\ —> R2

be a quasiconformal map. Then

fmod(/?,) mod(/?2)l [[ Jg'(z)\2 , .
(2.7) max ———, ———- < C / / Kf (z) dxdy,

lmod(fl) mod(/?)J JJ Rl \g(z)\2
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where w = g(z) is a conformal map of R\ onto an annulus I < \w\ < r and C is a
normalization constant so that

•If,,
\g'(z)\2

 J

dxdy = 1.

This result follows directly from Grotzsch's length-area argument (see [Ga, page 26,
(29)-(30)]). In particular, if one maps the annulus 1 < \w\ < r onto a rectangle by the
logarithmic function and let /?i be the doubly connected domain whose complement
consists of two finite intervals [a, b] and [c, d] on the real axis, then from Lemma 2.3
one can deduce that

(2.8) m a x { — T T ^ T . —^7FT I - / / Kf(z)\<j> (z)fdxdy,
[ mod(«2) mod(/<i) J JJ Rl

where

(z — a)(z — b)(z — c)(z — d)

and C(a, b, c, d) is the normalization constant.

3. Proof of Theorem 2.1

For the proof of Theorem 2.1, we let Q, be a bounded Jordan domain other than a
disk. For each n > 1, fix disjoint nondegenerate continua An and Bn on the boundary
9£2 such that

(3.1) Mi(fi) = hm
mod{An, Bn;Q)

and that An and Bn converge in the Hausdorff metric to continua A and B, respectively.
We consider first the nondegenerate case, namely, the case when the limit sets A

and B are disjoint nondegenerate continua. In this case, by the continuity of moduli
(see, for example, [He, Theorem 3.3 and Theorem 5.9]), we have

mod(.A, B;Q)

Then an argument using capacity and harmonic functions (see [Y3, Section 3]) shows
that

( 3 . 3 )
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[7] On symmetric quasicircles 137

if (2.3) does not hold (namely, if Mb(Q) = 1 + R(£2)). On the other hand, let h be
a homeomorphism of the unit circle induced by 8 £2 as defined in the introduction. If
dQ is a symmetric quasicircle, then it follows from [Y2, Corollary 2.6] that

sup m ° d ( A ' g ; ^ = Kh < Kl = *(«).
f mod(Afi;£>) *

This contradicts (3.3) and shows that (2.3) holds in the nondegenerate case.
Depending on the size and relative positions of the limit sets A and B, there are

three degenerate cases to be considered.

Case 1. A, B both are nondegenerate and A fl B ^ 0;
Case 2. At least one of the two sets A, B is a single point and A n B = 0;
Case 3. At least one of the two sets A, B is a single point and A n fi ^ 0.

In all these cases we will show that

(3.4) Mb(Q) < 2H,

where / / is the local reflection constant of Q defined in the previous' section. Fix
e > 0. By the definition of H, there is a quasiconformal map / : C ->• C such that
/ : £2 ->• D is conformal and that

(3.5) K(f)<H + €

in a Jordan domain £2f that contains the closure of £2.
We shall deal with Case 1 first sinceit is the easiest. Using some basic properties

of the modulus, one can easily deduce that

mod(An, Bn; Qt) < (H + e) mod(A'n, B'n\

< 2(H + €) mod(A^, B'n\ D) = 2{H + e) mod(An, Bn; Q)

and hence that

(3.6) mod(An, Bn; C) < mod(An, Bn\ Q() + mod(3ft, 3S2f; Q

< 2(H + e)mod(An, Bn;Q)

We observe in this case that mod(An, Bn;Q,) —> oo and that mod(3£2, 3fi€;C) is
finite. Thus (3.6) yields that Mb(Q) < 2(H + e) and (3.4) follows by letting e -> 0.

To deal with Case 2, we need the following equivalent definition for the modulus
due to Bagby [Ba].

LEMMA 3.1 ([Ba, Theorem 5]). Let A, B be two nondegenerate continua in the
plane. For each n > 1 let
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where the infimum is taken over all choices of distinct points a\,... ,an e A and
bi,... ,bn e B, and [ah aj, bt, bj] is the absolute cross ratio defined as

r u u 1 lfl' -bj\\aj ~bi\
[aabb] =1"-"-"-" la._a.lla,_fe,l

Then

nnd(T.B;C) = 2% W"'
To establish (3.4) in Case 2, we observe that

mod(An, Bn; Q) = mod(A' B'; D) = - mod(A' B'\ C).

Thus it follows that

( 3 7 mod(An,gn;C) < 2 mod(An,gn;C)
mod(An, Bn;Q) ~ mod(An, B'n;Q'

We shall show that

- , B . .. mod(An,fin;(E-)

We will use Lemma 3.1 to estimate the left side of (3.8). By the Holder continuity
of quasiconformal maps, we have that

(3.9) \f (x) - f (y)\ < L\x - y\l/(H+f)

for all x,y e dQ, where L is a constant. Fix large n. For any sequences of
distinct points a^,... ,ak e An and bx,... , bk € Bn, let a\= f (a,) and b\ = / (bt)
(i = I,... ,k). Then, by (3.9) and the assumption that A n B = 0, it follows that

for i ^ j , where L\ is a constant independent of n, i, 7 . Therefore,

E
(log
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By Lemma 3.1, letting k -*• oo yields that

mod(An,Bn;Q

We obvserve that mod(An, Bn; Q -*• 0 as n -*• oo since A n B = 0. This yields (3.8)
by multiplying by mod(An, Bn; C) and letting n approach infinity in (3.10). Thus (3.4)
follows from (3.7) and (3.8) as desired in Case 2.

Next we deal with Case 3. In this case we will also show that (3.8) holds. In order
to apply Lemma 2.3 and (2.8), we replace the unit disk by the upper halfplane and
A'n, B'n by finite intervals A'n = [a'n, b'n], B'n = [dn, d'n] on the real axis such that a'n, b'n
and dn all approach zero as n -»• oo. Then by (2.8) we have that

(3.11)

where

and Cn is the normalization constant such that the total mass of \<p'(z)\2 is equal to 1.
It is easy to see that Cn -*• 0 as n —>• oo. Fix a neighborhood Ne of the origin such
that Kf-i(z) < H + € when z e N(. By breaking the integral into two parts, one can
deduce from (3.11) that

mod(An,Bn;Q
_ _ _ _ _ < < / / + e) + xc,.

where X is a constant. Letting n -> oo yields (3.8), and hence (3.4) follows.
Finally, we assume that the boundary of fi is a symmetric quasicircle. By [GS,

Proposition 3.2], H = 1. Thus (3.4) yields that Mb(&) < 2 in all the degenerate
cases. On the other hand, if Q is not a disk or halfplane, then R(Q) > 1. Thus (2.3)
follows and this completes the proof of Theorem 2.1. •

4. Characterizations of symmetric quasicircles

There are many different characterizations for quasicircles. For the most up to date
list, we refer the reader to Gehring's recent survey paper [Ge]. Several characteriza-
tions, such as the reverse triangle inequality, the M-condition and the quasiconformal
extension property, have been extended to symmetric quasicircles by Becker and
Pommerenke [BP, Po] and by Gardiner and Sullivan [GS]. Here we obtain two more
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characterizations for symmetric quasicircles by extending two corresponding proper-
ties for quasicircles and by using the results from previous sections. The main idea in
such an extension is to replace the appropriate constant for quasicircles by a constant
that is closer and closer to the constant for a circle as the scale gets smaller and smaller.

First we recall two important characterizations for quasicircles. A quadrilateral
Q = Q (zi, Zi, Zi, u) in £2 consists of a Jordan domain £2 together with four positively
oriented vertices Z1.Z2.Z3.Z4 € dQ which divides dQ into four sides. Then Q can be
mapped conformally onto a rectangle R = R(0,m,m + i, i) so that the vertices and
sides of Q and R correspond. The modulus of Q is defined as mod(Q) = m. The
conjugate quadrilateral of Q is defined as the quadrilateral Q* = £2*(24, z3, z2. Zi) in
Q*. It is easy to see that mod(0 is also the modulus of the curve family that join the
opposite sides from z\ to zi and from z3 to u in £2.

4.1. Quadrilateral inequality. We say that £2 has this property if there is a constant
c > 1 such that

1 mod(0
- < < c

c ~ mod(g*)

for all conjugate quadrilaterals Q and Q* in̂ £2 and Q*, respectively.
4.2. Extremal distance property. We say that £2 has this property if there is a

constant c > 2 such that

mod(A, B; C) < c mod{A, B; Q)

for any pair of disjoint continua A, B c dQ.

It is well known that 3 £2 is a quasicircle if and only if it satisfies the quadrilateral
inequality and if and only if it has the extremal distance property (see [Ge, Theo-
rem III.D.4 and Theorem III.E.4], or [LV, GM]). It is also known that £2 is a disk
or half plane if and only if it satisfies the quadrilateral inequality with c = 1 and if
and only if it has the extremal distance property with c = 2, [Yl]. Similar to the
strong reverse triangle inequality introduced by Pommerenke, we introduce the strong
versions of the above properties and use them to characterize symmetric quasicircles.
4.3. Strong quadrilateral inequality. We say that £2 has this property if for any

c > 0 there exists S > 0 such that

l + e ~ mod(Q*) ~

for all conjugate quadrilaterals Q and Q* in Q and Q* with one of the sides of Q
having diameter less than S.
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4.4. Strong extremal distance property. We say that £2 has this property if for any
e > 0 there exists 8 > 0 such that

mod(A, B; C) < (2 + e) mod(A, B; £2)

for all continua A, B c 9 f i with min{diam(A), diam(fi)} < 8.

THEOREM 4.1. For a Jordan domain £2, the following statements are equiva-
lent.

(a) d£l is a symmetric quasicircle;
(b) £2 has the strong extremal distance property;
(c) £2 satisfies the strong quadrilateral inequality.

PROOF. We first show that (a) implies (b). Suppose that 3 £2 is a symmetric qua-
sicircle. To show that £2 has the strong extremal distance property, we assume the
contrary. Then there exist e0 > 0 and disjoint continua An, Bn e 3£2 (n = 1 ,2, . . . )
such that

<4.5,

for all n > 1 and such that An and Bn converge in the Hausdorff metric to continua A
and B, respectively, where A is a singly point. Then the argument above for Case 2
and Case 3 in the proof of Theorem 2.1 shows that

,.,, -—mod(An,Bn;Q
(4.6) lim < 2H,

mod(AB;£2) ~

where H is the local reflection constant of 3 £2. Since 3 £2 is a symmetric quasicircle,
H — 1 by [GS, Proposition 3.2]. Therefore (4.6) contradicts (4.5). This proves that
£2 has the strong extremal distance property as desired.

Next we show that (b) implies (c). Assume that £2 has the strong extremal distance
property. For any e > 0 let 8 > 0 be as in (4.4). Let Q = £2(zi, z2, Zi, u) be any
quadrilateral in £2 with one of its sides, say the one from z\ to zi, having diameter less
that 8. Denote this side by A and its opposite side by B. Then it is easy to see that

mod(C) = mod(A, B; £2), mod(<2*) = mod(A, B; £2*),

where Q* is the conjugate quadrilateral of Q in £2*. By the monotonicity of the
modulus and by the strong extremal distance property, it follows that

mod(A, B;£2) + mod(A, B;£2*) mod(A,B;€)
mod(A,B;£2) ~ mod(A, B;£2) ~
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This yields that

mod«2*) = mod(A,B;Q*) <

mod(Q) mod(A,B;£l) ~

Thus the strong quadrilateral inequality (4.3) follows by symmetry.
Finally, we show that (c) implies (a). Assume that £2 satisfies the strong quadrilateral

inequality. Let h be a homeomorphism of the unit circle 3D induced by Q. Then the
strong quadrilateral inequality for Q implies that for any e > 0 there exists a 8 > 0
such that

(48) J_<mod(HA),h(By,D)<

1 + e - mod(A,B;D)

for any pair of disjoint nondegenerate continua A and B on the unit circle with
min{diam(A), diam(B)} < 8.

We shall show that h satisfies the strong M-condition (1.3). Suppose otherwise.
Then there exist e0 > 0 and positively oriented points an,bn,cn € 3D (n > 1) with
\an - bn\ - \bn - cn\ < l/n such that

\h(cn) - h(bn)\(4.9) — — — — > 1 + €0\h(bn) - h ( ) l

for all n > 1. Denote the opposite point of bn on the circle by dn and denote the images
of an, bn,cn, dn under h by a'n, b'n, c'n, d'n, respectively. By passing to subsequences,
we may assume that an,bn,cn —> a and dn —> d as n —>• oo. Furthermore, let An

denote the closed arc from an to bn and Bn the closed arc from cn to dn. Using some
basic properties for the modulus, one can deduce that

mod(h(An),h(Bn);D) = \ogV([an, bn, cn, dn])
mod(An, Bn; D) ~ log * ( [ < , £ ; , < , d'n]Y

where * : (0, oo) —> (l,oo) is a strictly increasing function determined by the
Teichmiiller ring domain and [a, b, c, d] denotes the absolute cross ratio:

\a-d\\b-c\
[a, b, c, d] =

\a-b\\c-d\

Since [an, bn, cn, dn] = 1 for all n > 1 and \d'n - a'n\/\d'n - c'n\ -»• 1 as n -> oo, it
follows from (4.8) and (4.10) that

1 1^41 .+ '
where e' = e'(n) —>• 0 as n —> oo. This contradicts (4.9) and shows that h satisfies a
strong M-condition on the unit circle. Hence h is symmetric and dQ is a symmetric
quasicircle. This completes the proof of Theorem 4.1. •
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REMARK. According to the strong quadrilateral inequality characterization, we can
make the following comparison between symmetric and non-symmetric quasicircles.
Let us consider the ratio of the extremal distances between any two continua A and B
on a Jordan curve when seen from inside and outside. Then at large scales this ratio is
bounded for both symmetric and non-symmetric quasicircles. However, at arbitrarily
small scales, this ratio is bounded by the same finite constant for a non-symmetric
quasicircle, whereas this ratio gets closer and closer to one for a symmetric quasicircle
as the scale gets smaller. As a corollary to this result, we finally derive a similar
characterization for symmetric homeomorphisms.

COROLLARY 4.2. Let hbea homeomorphism of the unit circle. Then h is symmetric
if and only if it satisfies the strong quadrilateral inequality: For any € > 0 there exists
8 > 0 such that

(4.ii)

for any quadrilateral Q = D(z\, Zi, z$, z*) in the unit disk with one of its sides having
diameter less than S.

PROOF. The sufficiency has been proved in Theorem 4.1 (see the part (c) im-
plies (a)). For the necessity, we observe that the argument for the degenerate case in
the proof of [Wu, Theorem 1] shows that

(4.12) j? H,
mod(/i(0) ~

where H is the boundary dilatation of h and where the supremum is taken over all
quadrilaterals Q in D with one of its sides having diameter less than S. Once again
h is symmetric implies that H = 1. Thus the strong quadrilateral inequality (4.11)
follows from (4.12). •
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