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A Note on p-adic Rankin–Selberg
L-functions

David Loeøer

Abstract. We prove an interpolation formula for the values of certain p-adic Rankin–Selberg
L-functions associated with non-ordinary modular forms.

1 Introduction

1.1 Background

Let f1, f2 be two modular eigenforms of weights k1 > k2. _en there is an associated
Rankin–Selberg L-function L( f1 , f2 , s),which is deûned by a Dirichlet series∑ cnn−s

such that for ℓ prime we have cℓ = aℓ( f )aℓ(g).
If p is prime, and f1 is ordinary at p, then a well-known construction due to Pan-

chishkin [Pan82] and (independently) Hida [Hid85] gives rise to a p-adic Rankin–
Selberg L-function Lp( f1 , f2 , σ). _is is a p-adic analytic function on the spaceW of
continuous characters of Z×p ,with the property that if σ is a locally algebraic character
z ↦ z j χ(z), with j in the critical range k2 ⩽ j ⩽ k1 − 1 and χ of ûnite order, then

Lp( f1 , f2 , σ) = (⋆) ⋅ L( f1 , f2 , χ−1 , j),

where (⋆) is an explicit factor. Hida [Hid88] subsequently showed that if f2 is also or-
dinary, then Lp( f1 , f2 , σ) extends to a 3-variable analytic function inwhich the forms
f1 and f2 are allowed to vary in Hida families F1 ,F2. _e existence of this p-adic L-
function plays a major role in several recent works on arithmetic of Rankin–Selberg
L-functions, in particular appearing in the explicit reciprocity law for the Euler sys-
tem of Beilinson–Flach elements [BDR15a,BDR15b,KLZ17] (which is in turn crucial
for several other recent works such as [BL16a,Cas15,Das16]).

It is natural to seek a generalisation of this construction to non-ordinary eigen-
forms, and variation in Coleman families. For ûxed f1 and f2 of level prime to p and
satisfying a suitable “small slope” hypothesis, such a construction was carried out by
My [My91], but allowing variation in families has proved to be substantially more
diõcult. A construction of a 3-variable p-adic L-function with the expected interpo-
lating property was initially announced in [Urb14], but an error in this construction
was subsequently found, and (to the best of the author’s knowledge) this has not been
fully resolved at the present time. (See “Note Added” at the end of this section.)
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In the author’s recent work with Zerbes [LZ16, _eorem 9.3.2], it was shown that
there exists a 3-variable p-adic L-function with the expected interpolating property
at crystalline points (i.e., where f1 and f2 are p-stabilisations of eigenforms of level
prime to p, and χ is trivial). Moreover, this p-adic L-function is related by an ex-
plicit reciprocity law to the Euler system of Beilinson–Flach elements, as in the or-
dinary case. Unfortunately, we were not able to establish unconditionally that the
p-adic L-function thus constructed also had the expected interpolation property at
non-crystalline points, so our results fell short of giving a full proof of the results an-
nounced in [Urb14].

_is gap in the published literature has become increasingly troublesome, since
several papers have now been published that assume this stronger interpolation prop-
erty; these include several papers making major contributions to famous open prob-
lems, such as the Iwasawa main conjecture for supersingular elliptic curves [BL16b,
Wan15] and the Birch–Swinnerton–Dyer conjecture in analytic rank 1 [JSW15].

1.2 Aims of this Paper

_e purpose of this note is to give a proof of an interpolation formula for the
L-function of [LZ16] at all critical points, crystalline or otherwise, in a certain special
case. _e assumption we make is that the Coleman family F2 is ordinary, although
F1 may not be; this suõces for the applications in the papers cited above (all ofwhich
correspond to the casewhereF2 is an ordinary family of CM-type). _e author is cau-
tiously optimistic that it might be possible to push thesemethods further in order to
give a full proof of the results announced in [Urb14], but believes it is in the interests
of the research community to release this partial proofwithout further delay, in order
to place the already-published papers conditional on this result on a ûrm footing.

Our strategy will be to relate the 3-variable “geometric” p-adic L-function, con-
structed using Beilinson–Flach elements, with two families of “analytic” p-adic
L-functions. _ese 2-variable functions, denoted here by superscripts ♠ and ♢, are
deûned over 2-variable slices of the full 3-variable parameter space. _eir construc-
tion involves nearly-overconvergent forms of a ûxed degree, and therefore can be car-
ried out using themethods of [Urb14]without the technical issues that arisewhen the
degree of near-overconvergence is allowed to vary. _e assumption that the second
Coleman family F2 is ordinary implies that it is deûned over an entire component
of weight space; this gives suõcient “room” to move along ♠ and ♢ families from an
arbitrary critical point to a crystalline one at which the results of [KLZ17] can be ap-
plied.
A secondary aim of this paper is to make the interpolation formula for the result-

ing p-adic L-function completely explicit, at least in the most important cases. _is
calculation is not new, but a precise statement of the formula seems to be diõcult to
ûnd in the existing references (particularly in the non-crystalline cases); so we have
given careful statements in Propositions 2.10 and 2.12 and an outline sketch of their
proofs in an appendix.

Note Added During Review Since the initial version of this paperwas released, the
the preprint [AI17] has appeared, which circumvents the problems with [Urb14] via a
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610 D. Loeøer

new approach to nearly-overconvergent modular forms (as sections of a certain sheaf
of Banach modules). _is should in due course lead to a proof of an analogue of_e-
orem 6.3 of this paper for arbitrary pairs of Coleman families, without the restriction
imposed here thatF2 be ordinary. However, the author believes that there is still value
inmaking thisnote available, since the preprint [AI17] hasnot yet been published, and
the preliminary version of [AI17] seen by the author only considers families over the
“centre” ofweight space and thus does not covermost non-crystalline classical points.

2 Complex Rankin–Selberg L-functions and Period Integrals

2.1 The Complex L-function

Let k, k′ be positive integers and let f1, f2 be two new, normalised cuspidal modular
eigenforms of weights k1 , k2 (and some levels N1 ,N2). We assume k1 ⩾ k2 without
loss of generality.

Deûnition 2.1 _e (imprimitive) Rankin–Selberg L-function of f1 and f2 is the
Dirichlet series

Limp( f1 , f2 , s) = L(N1N2)(ε1ε2 , 2s + 2 − k1 − k2) ⋅∑
n⩾1
an( f1)an( f2)n−s .

More generally, if χ is a Dirichlet character of conductor Nχ , we set

Limp( f1 , f2 , χ, s) = L(N1N2N χ)(ε1ε2 χ
2 , 2s+2− k1 − k2) ⋅ ∑

n⩾1
(n ,N χ)=1

an( f1)an( f2)χ(n)n−s .

_is L-function has an Euler product, in which the local factor for a primes ℓ ∤
N1N2Nχ is given by Pℓ( f1 , f2 , χ(ℓ)ℓ−s)−1, where

Pℓ( f1 , f2 , X) = (1 − α1α2X)(1 − α1β2X)(1 − β1α2X)(1 − β1β2X).

Here, α1 , β1 denote the roots of the polynomial X2−aℓ( f1)X+ℓk−1ε1(ℓ), and similarly
for α2 , β2.

Remark 2.2 We refer to this L-function as an “imprimitive” L-function, since it dif-
fers by ûnitely many Euler factors from the L-function of themotive associated with
f1 ⊗ f2 ⊗ χ (the “primitive” Rankin–Selberg L-function). _e only primes ℓ at which
the local Euler factors can diòer are those ℓ dividing at least two of the three inte-
gers N1 ,N2 ,Nχ ; so if these are pairwise coprime, then the primitive and imprimitive
L-functions coincide.

It iswell known that Limp( f1 , f2 , χ, s) has ameromorphic continuation to all s ∈ C.
It is entire unless k1 = k2 and f2 = f1 ⊗ ε−1

1 χ
−1, in which case there is a simple pole at

s = k1. _e critical values are those in the interval k2 ⩽ s ⩽ k1 − 1.

2.2 A Petersson Product Formula

Now let p be prime and choose an embedding Q↪ Qp .
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Deûnition 2.3 A locally algebraic character of Z×p is a homomorphism Z×p → Q
×
p of

the form x ↦ xn χ(x), where n ∈ Z and χ is a ûnite-order character (equivalently, a
Dirichlet character of p-power conductor). We denote this character by n + χ.

Deûnition 2.4 By a p-stabilised newform of tame level N , where N is an integer
coprime to p,we shall mean a normalised cuspidal Hecke eigenformof level Γ1(Npr),
for some r ⩾ 1, such that either f is a newform, or f is a Up-eigenform in the two-
dimensional space of oldforms associatedwith some newformof level N . In the latter
case, we say f is crystalline.

We deûne the weight-character of f to be the locally-algebraic character κ of Z×p
deûned by κ = k+εp ,where k is theweight of f and εp is the p-part of theNebentypus
character of f .

If f is a p-stabilised newform, we denote by f c the unique p-stabilised newform
with the same weight-character as f satisfying

an( f c) = εN , f (n)−1an( f ),

where εN , f is the prime-to-p part of the Nebentypus of f , for all (n,N) = 1 (even if
p ∣ n).

Remark 2.5 Note that if f is a p-stabilisednewformwhosenebentypus is trivial at p,
then f c has the sameHecke eigenvalues away from p as the conjugate form f ∗ deûned
by f ∗(τ) = f (−τ̄). However, f c and f ∗ donot generallyhave the sameUp-eigenvalue;
in particular, f c is ordinary if f is (which is not true of f ∗). On the other hand, if f
has non-trivial character at p, then the Hecke eigenvalues of f c and f ∗ away from p
are diòerent.

Let f1 , f2 be p-stabilised newforms of some tame levels N1 ,N2, and let κ1 = k1 +
ε1,p , κ2 = k2 + ε2,p be their weight-characters. We choose an integer N divisible by
both N1 and N2, and with the same prime factors as N1N2. Given σ = j + χ a locally
algebraic character, we consider the formal power series

EN(κ1 , κ2 , σ) ∶= ∑
n⩾1
p∤n

(∑
d ∣n
dσ−κ2( n

d )
κ1−σ−1

[ e2πid/N + (−1)κ1−κ2 e−2πid/N])qn .

Lemma 2.6 If 1 ⩽ k2 ⩽ j ⩽ k1 − 1, then EN(κ1 , κ2 , σ) is the q-expansion of a nearly-
holomorphic modular form of weight k1 − k2, level dividing Np∞, and degree at most
min(k1 − 1 − j, j − k2), on which the diamond operators at p act via the character
ε1,p − ε2,p .

Proof See [LLZ14, §5.3].

If Πhol denotes Shimura’s holomorphic projector, then the cuspidal modular form

Πhol( f2 ⋅ EN(κ1 , κ2 , σ))

has level dividing Np∞, and its weight-character agrees with that of f1 (and thus also
of f c1 ).
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612 D. Loeøer

Deûnition 2.7 Suppose f1 has ûnite slope (that is, ap( f ) /= 0). We let λ f c1 denote
the unique linear functional on Sk1(N1p∞ , ε̄1,p), which factors through the Hecke
eigenspace associated with f c1 , andmaps the normalised eigenform f c1 itself to 1. We
extend this to forms of tame level N by composing with the tracemap.

Deûnition 2.8 We set

I( f1 , f2 , σ) = Nκ1+κ2−2σ−2 ⋅ λ f c1 (Πhol( f2 ⋅ EN(κ1 , κ2 , σ))) .

_eorem 2.9 (Rankin–Selberg, Shimura) If 1 ⩽ k2 ⩽ j ⩽ k1 − 1, then we have

I( f1 , f2 , j + χ) = (⋆) ⋅ Limp( f1 , f2 , χ−1 , j),

where (⋆) is an explicitly computable factor.

We shall not give the precise form of the factor (⋆) in all possible cases, since this
rapidly becomes messy, butwe shall give a selection of useful cases. First, we treat the
case where f1 and f2 are crystalline, hence p-stabilisations of forms f ○1 , f ○2 of levels
N1 ,N2 coprime to p. We write α i for the Up-eigenvalue of f i , so that α i is a root of
the Hecke polynomial of f ○i at p, and β i for the other root of this polynomial. We
assume1 that α1 /= β1.

We deûne certain local Euler factors at p, as in [BDR15a] and [KLZ17, _eo-
rem 2.7.4], by

E( f1) = ( 1 − β1

pα1
) , E∗( f1) = ( 1 − β1

α1
) ,

E( f1 , f2 , j + χ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

( 1 − p j−1

α1α2
)( 1 − p j−1

α1β2
)( 1 − β1α2

p j )( 1 − β1β2
p j ) if χ = 1,

G(χ)2 ⋅ (
p2s−2

α21 α2β2
)

r if χ has conductor pr > 1.

Here G(χ) is the Gauss sum∑a∈(Z/prZ)× χ(a)e2πia/pr
.

Proposition 2.10 In the above setting, we have

I( f1 , f2 , j + χ) =
E( f1 , f2 , j)
E( f1)E∗( f1)

⋅
( j − 1)!( j − k2)!ik1−k2

π2 j+1−k2 22 j+k1−k2 ⟨ f ○1 , f ○1 ⟩N1

Limp( f ○1 , f
○
2 , χ

−1 , j).

Remark 2.11 For χ trivial, this formula is standard, and its derivation can be found
in many references such as [BDR15a, LLZ14, LZ16]. For χ non-trivial, references are
more scant; many sources, such as [Hid88], givemore general but less explicit formu-
las, and the work involved in recovering a completely explicit form for all the local
factors is routine but unpleasant. For the convenience of the reader, we give, in an
appendix to this paper, an account of themain steps required in this case to evaluate
I( f1 , f2 , j + χ).

1_is assumption is known to be true if k1 = 2, and is known to follow from the Tate conjecture if
k1 ⩾ 3 [CE98].
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_e other case we shall consider is that where f1 is still assumed crystalline, but f2
has some non-trivial character ε2,p at p, and neither χ nor χ′ = χε−1

2,p is trivial. We
deûne β2 = pk2−1ε2,N(p)/α2, andwe let the conductor of χ (resp. χ′) be pr (resp. pr′).

Proposition 2.12 In this setting, we have

I( f1 , f2 , j + χ) = ( p j−1

α1α2
)

r
G(χ)( p j−1

α1β2
)

r′
G(χ′)

×
( j − 1)!( j − k2)!ik1−k2

E( f1)E∗( f1)π2 j+1−k2 22 j+k1−k2 ⟨ f ○1 , f ○1 ⟩N1

Limp( f ○1 , f2 , χ
−1 , j).

3 Overconvergent Families

Let us ûx a ûnite extension L/Qp (contained in our ûxed choice of algebraic closure
Qp).

Deûnition 3.1 Let the weight space, W, be the rigid-analytic space over L
parametrising continuous characters of Z×p , so that for an aõnoid L-algebra A, we
haveW(A) = Hom(Z×p ,A×).

As in [KLZ17], we identify both Z and the set of Dirichlet characters of p-power
order with subsets ofW(L̄) in the natural fashion, and we denote the group law on
W additively. If κ = k + χ is a locally algebraic character, we write w(κ) ∶= k.

Now let N be an integer coprime to p. It will be convenient to assume that L con-
tains the N-th roots of unity; let ζN ∈ L× denote the image of e2πi/N ∈ Q under our
chosen embedding.

Lemma 3.2 _e power series in E[p]
k and F[p]

k in O(W)[[q]] given by

E[p]
k ∶= ∑

n⩾1
p∤n

(∑
d ∣n
dk−1(ζdN + (−1)kζ−dN ))qn ,

F[p]
k ∶= ∑

n⩾1
p∤n

(∑
d ∣n

(
n
d
)
k−1

(ζdN + (−1)kζ−dN ))qn

are both the q-expansions of families of overconvergent modular forms over W of tame
level Γ1(N) and weight k (with radius of overconvergence bounded below over any aõ-
noid in W).

Lemma 3.3 Let χ be a Dirichlet character of p-power conductor, with values in L.
_en, for any family of overconvergentmodular formsF of tame level Γ1(N) andweight
κ ∶ Z×p → A×, where A is an aõnoid algebra, the power series deûned by

θ χF ∶= ∑
n⩾1
p∤n

an(F)χ(n)qn

is the q-expansion of a family of overconvergent forms over A, of weight κ + 2χ.
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Sketch of proof Let χ have conductor pr . _en there is a “twisting homomorphism”
t j ∶X1(Np2r)→ X1(N), given in terms of complex uniformizations by τ ↦ τ+ j

pr , for
any j ∈ Z/prZ. _is preserves the component of the ordinary locus containing∞ and
extends to all suõciently small overconvergent neighbourhoods of it, so it induces
a pullback map on overconvergent modular (or cusp) forms. Since θ χF is equal to
∑ j∈(Z/prZ)× χ( j)−1 t∗j (F) up to a constant, it is overconvergent of level Γ1(Np2r) and
weight-character κ; and the diamond operators at p act on it via χ2, so it descends to
an overconvergent formof level Γ1(N)∩Γ0(p2r) andweight κ+2χ. Via the canonical-
subgroup map, we can regard it as an overconvergent form of level N .

In order to allow more general twists, we work with families of nearly-overcon-
vergent modular forms (of some ûnite degree r ⩾ 0), in the sense of [Urb14, §3.3.2].
If τ is a locally algebraic weight with w(τ) ⩾ 0, we can deûne θτ(F) as a family of
nearly-overconvergent forms of weight κ + 2τ and degree w(τ).

Lemma 3.4 If F is a Coleman family (a family of overconvergent normalised eigen-
forms of ûnite slope), new of some tame level N , deûned over some aõnoid A → W,
then there is a unique tame level N Coleman family Fc over A satisfying

an(F
c) = εN(n)−1an(F)

for all (n,N) = 1 (including n = p). Here, εN ∶ (Z/NZ)× → L× is the prime-to-p
nebentype of F.

Proof _is is proved in the same way as the previous lemma.

We now recall the construction of the universal object parametrising Coleman
families: the eigencurve.

Deûnition 3.5 Let CN denote the Coleman–Mazur–Buzzard cuspidal eigencurve,
of tame level N .

By deûnition, CN is a reduced rigid space, equidimensional of dimension 1, equip-
ped with a morphism CN → W, and there is a universal eigenform over CN ; that is,
CN comes equipped with a power series Funiv = ∑ anqn ∈ O(CN)[[q]], with a1 = 1
and ap invertible on CN , with the following universal property:

For any aõnoid X with a weight morphism κ∶X → W, and any
family of ûnite-slope eigenforms FX over X of tame level N and
weight κ, there is a unique morphism X → CN li�ing κ such that
FX is the pullback of Funiv.

4 Two-variable p-adic L-functions

Let U1 and U2 be two aõnoid subdomains ofW. We write ki ∶Z×p → O(U i)
× for the

pullbacks of the canonical character k. We suppose that we are given the following
data:
● a ûnite �at covering Ũ2 → U2,
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● an overconvergent family F2 ∈ M†
k2(Γ1(N); Ũ2) (not necessarily cuspidal or nor-

malised),
● a locally analytic character τ ∈W(L), with t = w(τ) ⩾ 0.

We deûne two families ofnearly-overconvergent forms overU1×Ũ2, both ofweight
k1 and degree of near-overconvergence ⩽ t, by

Ξ♠τ ∶= F2 ⋅ θτ(E[p]
k1−k2−2τ) ,

Ξ♢τ ∶= F2 ⋅ θτ(F[p]
k1−k2−2τ) .

We apply to both of these forms the overconvergent projector Πoc of [Urb14,
§3.3.4]. _is gives elements

Πoc(Ξ♠τ ),Π
oc(Ξ♢τ ) ∈

1
∏

2t
m=2(∇1 −m)

S†k1
(Γ1(N),U1 × Ũ2) ,

where ∇1 ∈ O(U1) is the pullback to U1 of the unique rigid-analytic function ∇ ∈
O(W) such that ∇(κ) = w(κ) for all locally-algebraic κ.

Proposition 4.1 Let (κ1 , κ2) be a locally-algebraic point ofU1 ×U2 such that 1 ⩽ k2 ⩽

k1 − 1− t, where k i = w(κ i), and with k1 ∉ {2, . . . , 2t}. Let κ̃2 be a point of Ũ2 above κ2
and let f2 be the specialisation of F2 at κ̃2. Let us suppose that f2 is a classical modular
form.

_en the specialisations of Πoc(Ξ♠τ ) and Πoc(Ξ♢τ ) at (κ1 , κ̃2) are given by

Πoc(Ξ♠τ )(κ1 , κ̃2) = Πhol( f2 ⋅ EN(κ1 , κ2 , κ1 − 1 − τ)) ,

Πoc(Ξ♢τ )(κ1 , κ̃2) = Πhol( f2 ⋅ EN(κ1 , κ2 , κ2 + τ)) .

Proof An elementary computation shows that θτ(E[p]
κ1−κ2−2τ) = EN(κ1 , κ2 , κ1−1−τ)

and similarly that θτ(F[p]
κ1−κ2−2τ) = EN(κ1 , κ2 , κ2+τ). _e result now follows from the

compatibility of the holomorphic and overconvergent projection operators.

Remark 4.2 We can consider the formal power series F2 ⋅EN(k1 , k2 , σ) as a family
of p-adicmodular forms overU1×Ũ2×W. _is is not overconvergent, or even nearly-
overconvergent, in any reasonable sense, since thenear-overconvergence degreesof its
specialisations are not bounded above over any open aõnoid in the parameter space
U1 × Ũ2 ×W. However, Proposition 4.1 gives two families of 2-dimensional “slices” of
the parameter space for which the above family does become nearly-overconvergent,
of bounded degree, over any given slice.

Let us now suppose that k1 ⩾ 2 is a non-negative integer lying in U1, N f is an
integer dividing N , and f1 ∈ Sk1(Γ1(N f ) ∩ Γ0(p), L) is a “noble eigenform” in the
sense of [LZ16, Deûnition 4.6.3]; that is, f1 is a p-stabilisation of some normalised
newform of level Γ1(N f ) whoseHecke polynomial at p has distinct roots, and amild
extra condition is satisûed in the case of critical-slope eigenforms.

_en, a�er possibly shrinking the aõnoid neighbourhood U1 ∋ k1, we can ûnd a
Coleman family of normalised eigenforms F1 over U1 whose specialisation at k1 is f1;
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and a continuous O(U1)-linear functional

λFc
1
∶ S†k1

(Γ1(N f ),U1) → O(U1)

factoring through theHecke eigenspace associatedwith the dual family Fc1 , andmap-
ping the normalised eigenform Fc1 itself to 1. We extend this to a linear functional on
forms of level N by composingwith the tracemap. We can therefore deûne twomero-
morphic functions, both lying in the space 1

∏2w(τ)
j=2 (∇1− j)

O(U1 × Ũ2), by the formulae

L♠p(F1 ,F2; τ) = N(−k1+k2+2τ)λFc
1
[Πoc(Ξ♠τ )] ,

L♢p(F1 ,F2; τ) = N(k1−k2−2τ−2)λFc
1
[Πoc(Ξ♢τ )] .

By construction, L♠p interpolates the values I( f1 , f2 , κ1 − 1 − τ), and L♢p the values
I( f1 , f2 , κ2 + τ), for varying f1 and f2 (but ûxed τ).

Remark 4.3 Our eventual goal is to show that there is a 3-variable L-function on
U1 × Ũ2 ×W interpolating all critical values of the Rankin L-function. _e 2-variable
L-functions L♠p and L♢p will turn out to be slices of this 3-variable L-function, along
two diòerent families of 2-dimensional subspaces of the parameter space.

Let us, ûnally, specialise to the casewhere Ũ2 is an aõnoid subdomain of the eigen-
curve CN2 , and F2 is the universal eigenform. One knows that CN2 is admissibly cov-
ered by aõnoids Ũ2 with the property that Ũ2 is a ûnite �at covering of an admissible
open inW, as above, and the above construction is clearly compatible on overlaps, so
we obtain two families ofmeromorphic functions on U1 × CN2 .

5 Compatibility of the Two Families

Deûnition 5.1 Given a locally algebraic τ with w(τ) ⩾ 0, we deûne two 2-dimen-
sional rigid-analytic subspaces of U1 × Ũ2 ×W by

W♠(τ) = {(κ1 , κ̃2 , κ1 − 1 − τ) ∶ κ1 ∈ U1 , κ̃2 ∈ U2},
W♢(τ) = {(κ1 , κ̃2 , κ2 + τ) ∶ κ1 ∈ U1 , κ̃2 ∈ U2}.

We set Σ♠crit(τ) = Σcrit ∩W♠(τ) and, similarly, Σ♠geom(τ), Σ♢crit(τ), Σ♢geom(τ).

We can then regard L♠p(F1 ,F2; τ) as a p-adicmeromorphic function onW♠(τ) in
a natural way, interpolating classical L-values at the points in Σ♠crit(τ), and similarly
for ♢.

We have the following technical lemma.

Lemma 5.2 Let τ, τ′ be two locally-algebraic characters with w(τ) ⩾ 0,w(τ′) ⩾ 0,
and suppose that we have

{κ − (1 + τ + τ′) ∶ κ ∈ U1} ⊆ U2 .

_en L♠p(F1 ,F2; τ) and L♢p(F1 ,F2; τ′) coincide as functions on W♠(τ) ∩W♢(τ′).
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Proof _e intersection W♠(τ) ∩ W♢(τ′) consists of those points of the form
(κ1 , κ̃2 , κ1 − 1 − τ) such that κ̃2 lies above the point κ1 − (1 + τ + τ′) of W. In par-
ticular, under the assumptions of the lemma, this is simply a ûnite covering of U1.

Let (κ1 , κ̃2 , σ) be a point in this intersection with κ1 locally algebraic, and such
that w(κ1) ⩾ 2max(w(τ),w(τ′)) + 1 in order to avoid singularities of the nearly-
overconvergent projection operators. _en the two p-adic L-functions specialise to
the image under λ f c1 of the nearly-overconvergent modular forms with q-expansions

f2θτ(E[p]
κ1−κ2−2τ) and f2θτ′(F[p]

κ1−κ2−2τ′).

Since these twomodular forms are identical,we deduce that the two L-functions agree
at the given point. As the set of locally-algebraic κ1 ∈ U1 with w(κ1) greater than any
given bound is clearly Zariski-dense, it follows that the two p-adic L-functions are
identically equal on this intersection.

Lemma 5.3 Let τ be a locally algebraic character with w(τ) ⩾ 0. If U2 is suõciently
large (depending on U1 and τ), then the union of the intersections W♠(t) ∩W♢(τ), as
t varies over integers ⩾ 0, is Zariski dense in W♢(τ).

Proof _is is easy to check.

6 The 3-variable Geometric L-function

We now turn from “p-adic analytic” methods to “arithmetic” ones; that is, we invoke
the existence of the Euler system of Beilinson–Flach elements.

_eorem 6.1 Suppose Ũ2 is the preimage ofU2 in the ordinary locus of the eigencurve,
and F2 the universal ordinary family over U2. _en there exists a p-adicmeromorphic2

function Lgeom
p (F1 ,F2) on U1 × Ũ2 ×W with the following property:

(†) For any crystalline character τ = t with t ⩾ 0, the 2-variable p-adic L-function
L♠p(F1 ,F2; τ) is the restriction of Lgeom

p to W♠(τ).

Moreover, Lgeom
p is related to the Euler system of Beilinson–Flach elements via the

formula

Lgeom
p (F1 ,F2) =

( c2 − εN ,1(c)−1εN ,2(c)−1c2s+2−k1−k2)
−1
(−1)sλ(F1)

−1⟨ cBF
[F1 ,F2] , ηF1 ⊗ ωF2⟩

in the notation of [LZ16, §9.1], for any c > 1 coprime to 6pN1N2.

Proof _e only diòerence in our present statement is that we are allowing U2 to be
arbitrary, and permitting some ûnite �at covering Ũ2 → U2, whereas in our earlier
work we assumed that both U1 and U2 were small neighbourhoods of some given

2It is analytic if the product of the prime-to-p nebentypus characters of F1 and F2 is non-trivial.
Otherwise, it may have poles along the near-central points (κ1 , κ2 , σ) such that κ1 + κ2 = 2σ . _is is
a consequence of the “smoothing factors” c2 − c? appearing in the construction of the Beilinson–Flach
elements. In particular, the restriction of Lgeom

p to any ♢ or ♠ slice is well deûned.
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eigenforms f1 , f2. However, the latitude to shrink U2 was only used in op.cit. at pre-
cisely two points:
● in the proof of Proposition 5.3.4 of op.cit., in order to arrange that all specialisations

of F2 at points of classical weight were classical; this is automatically satisûed for
ordinary families.

● in Sections 6.3 and 6.4 of op.cit., in order toûnd a triangulation of the (φ, Γ)-module
associatedwithF2, and canonical crystalline periods for the ûltration steps; this can
be carried out globally over an ordinary family, using Ohta’s results [Oht00], as in
[KLZ17].

In order to complete the proof, we shall manoeuvre from the rather weak interpo-
lating property (†) of Lgeom

p into a much stronger one by repeatedly using the com-
patibility between the ♠ and ♢ slices.

Corollary 6.2 Let τ be any locally-algebraic character (not necessarily crystalline)
with w(τ) ⩾ 0. If U2 is suõciently large (depending on U1 and τ), then

L♢p(F1 ,F2; τ) = Lgeom
p (F1 ,F2)∣W♢(τ) ,

L♠p(F1 ,F2; τ) = Lgeom
p (F1 ,F2)∣W♠(τ) .

Proof By Lemma 5.3, for the ûrst equality, it suõces to show that L♢p and Lgeom
p agree

on the intersection W♠(t) ∩W♢(τ), for integers t ⩾ 0. However, we know that L♢p
and L♠p coincide on these intersections and that Lgeom

p in turn coincides with L♠p .
For the second equality, we consider the intersection of W♠(τ) with the slices

W♢(τ′), where τ′ is an arbitrary locally-algebraic character of weight w(τ′) ⩾ 0. Us-
ing the previously-proved equality, we know that Lgeom

p agrees with L♠p(F1 ,F2; τ) on
each of these intersections. As before, the union of these is Zariski dense in W♠(τ),
as required.

We conclude, ûnally, the following interpolation formula. Recall that we are as-
suming F2 to be an ordinary family.

_eorem 6.3 Let (κ1 , κ̃2 , σ) be a triple of locally-algebraic points in U1 × Ũ2 ×W,
with 1 ⩽ w(κ2) ⩽ w(σ) ⩽ w(κ1) − 1. Let f1, f2 be the specialisations of F1 ,F2 at the
weights κ i , and suppose that these specialisations are classical.

_en we have

Lgeom
p (F1 ,F2)(κ1 , κ̃2 , σ) = I( f1 , f2 , σ).

Proof Given any such triple, let us write τ = κ1 − 1− σ and τ′ = σ − κ2. Both of these
are locally algebraic characters, and w(τ),w(τ′) ⩾ 0.

Since w(τ) + w(τ′) = w(κ1) − 1 − w(κ2), at least one of the quantities w(τ) and
w(τ′) must be ⩽ w(κ1)−1

2 . If w(τ) ⩽ w(κ1)−1
2 , then (κ1 , κ̃2 , σ) lies in the interval in

which L♠p(F1 ,F2; τ) interpolates the classical Rankin–Selberg period. Similarly, if
w(τ′) is smaller than this bound, we can invoke the interpolating property of L♢p .
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Since F2 is an ordinary family, we can assume without loss of generality that U2 is
arbitrarily large, and via the previous theorem, we can conclude that L♠p or L♢p coin-
cides with the appropriate specialisation of the 3-variable p-adic L-function.

A Evaluation of the Rankin–Selberg Period

For the convenience of the reader,we outline the derivation of the formula relating the
period I( f1 , f2 , σ) deûned above to the Rankin–Selberg L-function. Our approach is
closely based on that of [PR88]. We place ourselves in the setting of Proposition 2.10,
and, since the case of trivial χ is covered in many references, we will assume that χ is
non-trivial, of conductor pr with r ⩾ 1.

Step 1 We express the linear functional λ f c1 on Sk(Γ1(N) ∩ Γ0(pn)), for any n ⩾ 1,
via the formula

λ f c1 (h) = (
ε1(p)
α1

)
n−1

⋅
⟨gn , h⟩N(pn)

⟨g , f c1 ⟩N1(p)
,

where g = WN1 p( f1,β) and gn = g ∣k ( pn−1

1
). Here f1,β is the p-stabilisation of

f ○1 corresponding to the root β1 of the Hecke polynomial; and the subscript N(pn)
denotes the Petersson product at level Γ1(N)∩Γ0(Npn). Cf. [Hid85, Proposition 4.5].
A computation closely analogous to the ûnal step of [KLZ17, Proposition 10.1.1] shows
that the denominator term is given by

⟨g , f c1 ⟩N1(p) =
λ( f ○1 )αE( f1)E

∗( f1)
ε1(p)

⋅ ⟨ f ○1 , f
○
1 ⟩N1 ,

where λ( f ○1 ) denotes the Atkin–Lehner pseudo-eigenvalue of f ○1 . _is yields the for-
mula

I( f1 , f2 , j + χ) =
ε1(p)2r

α2r
1 λ( f ○1 )E( f1)E∗( f1)⟨ f ○1 , f ○1 ⟩N1

⟨ gn , f2 ⋅ E(k1 , k2 , j + χ)⟩ N(p2r) .

Step 2 We recognise the nearly-holomorphic Eisenstein series E(k1 , k2 , j + χ) of
level Np2r as the twist by the character χ of a simpler Eisenstein series Ẽ of level Npr

and character χ−2, whose q-expansion is

∑
n⩾1

qn
∑
d ∣n
p∤ n
d

d j−k2(n/d)k1−1− j χ(n/d)−2 (e2πid/N + (−1)k1−k2 e−2πid/N) .

Since an(g2r) = 0 unless p2r−1 ∣ n,we can pull the twist through thePetersson product
to write

⟨ g2r , f2 ⋅ E(k1 , k2 , j + χ)⟩ N(p2r) = χ(−1)⟨g2r , f2, χ ⋅ Ẽ⟩N(p2r) .

Step 3 We rewrite the last Petersson product using the localAtkin–Lehner operator
Wp2r acting on forms of level Np2r . We compute that

Ẽ ∣ Wp2r = p2r(k1−2− j)χ(−1) ∑
a∈(Z/p2rZ)×

χ(a)−2E1/N+a/p2r
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where the nearly-holomorphic Eisenstein series Eγ = Ek1−k2
γ (−, j− k1 + 1) for γ ∈ Q/Z

is as in [LLZ14, §4–5]. On the other hand, the action on f2, χ is given by

f2, χ ∣ Wp2r = p(k2−3)rε2(p)rG(χ)2 f2, χ−1 .
Combining these formulae, we deduce

⟨ g2r , f2 ⋅ E(k1 , k2 , j + χ)⟩ N(p2r) =

(
p(2k1+k2−5−2 j)rG(χ)2 χ(N2)

ε1(p)2rε2(p)r )⟨ f1,β ∣k1 WN1 , f2, χ−1 ⋅ E1/Np2r ⟩Np2r .

Step 4 Via the classical “unfolding” technique, integrating against the Eisenstein se-
ries E1/Np2r gives the (imprimitive) Rankin–Selberg L-function at s = j; cf. [Kat04,
_eorem 7.1]. _at is, we have

⟨ f1,β ∣k1 WN1 , f2, χ−1 ⋅ E1/Np2r ⟩Np2r =

( j − 1)!( j − k2)!ik1−k2Limp( f1,β ∣k WN1 , f2, χ−1 , j)
N k1+k2−2 j−2p2r(k1+k2−2 j−2)π2 j+1−k222 j+k1−k2

.

However, since all Fourier coeõcients an of f2, χ−1 with p ∣ n are zero, this formula
is unchanged if we replace f1,β ∣k WN1 with any form having the same Fourier coeõ-
cients away from p; one such form is λ( f ○1 ) f

○
1 , so this is

⟨ f1,β ∣k1 WN1 , f2, χ−1 ⋅ E1/Np2r ⟩Np2r =

( j − 1)!( j − k2)!ik1−k2 λ( f ○1 ) ⋅ L
imp( f ○1 , f ○2 , χ−1 , j)

N k1+k2−2 j−2p2r(k1+k2−2 j−2)π2 j+1−k222 j+k1−k2
.

Combining Steps 1, 3, and 4 gives the formula stated in Proposition 2.10. A similar
argument (using an Eisenstein series of level Npr+r′) can be used to prove Proposi-
tion 2.12.
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