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Abstract

Designing a reasonable M/G/1 retrial queue system that enhances service efficiency
and reduces energy consumption is a challenging issue in Information and Com-
munication Technology systems. This paper presents an M/G/1 retrial queue system
incorporating random working vacation (RWV) and improved service efficiency during
vacation (ISEV) policies, and examines its optimal queuing strategies. The RWV
policy suggests that the server takes random working vacations during reserved idle
periods, effectively reducing energy consumption. In contrast, the ISEV policy strives
to augment service efficiency during regular working periods by updating, inspecting
or maintaining the server on vacations. The system is transformed into a Cauchy
problem to investigate its well-posedness and stability, employing operator semigroup
theory. Based on the system’s stability, steady-state performance measures, such as
service efficiency, energy consumption and expected costs, are quantified using the
steady-state solution. The paper subsequently demonstrates the existence of optimal
queuing strategies that achieve maximum efficiency and minimum expected costs.
Finally, two numerical experiments are provided to illustrate the effectiveness of the
system.

2020 Mathematics subject classification: 35F05.

Keywords and phrases: retrial queue, system dynamics, optimal queuing strategies,
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1. Introduction

Queuing theory has found extensive applications across various fields, including
Information and Communication Technology (ICT) systems, local area networking
and service industries. To address diverse requirements, researchers have investigated
and implemented different types of queue system models [5, 12, 17]. The retrial queue
system, in particular, has gained prominence as a noteworthy model for addressing
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the issue of customers having to leave the system due to finite waiting space during
peak demand, especially in telecommunication networks and mobile systems [1, 18,
20]. Falin and Templeton [12] have provided a comprehensive overview of the main
techniques and outcomes of a retrial queue system, while further research in this field
can be found in the works of Artalejo and Gómez-Corral [2–4].

Server vacation policies have been extensively studied as an effective measure
for energy conservation in systems that consume a substantial amount of energy
during idle periods, such as computer communication, manufacturing, production
and inventory systems. From an economic perspective, Burnetas and Economou [6]
investigated the relationship between the vacation setup times and energy consumption
in a single-server Markovian queue. Meanwhile, the hibernation strategy, studied by
Zhang et al. [30], Son et al. [23] and Wu et al. [28], has been shown to be effective
for energy-efficient base station vacations in cellular networks during periods of
inactivity. Furthermore, in the literature, queuing models with vacation have been
proposed by Doshi [9], Takagi [24] and Do [7], which incorporate vacations for checks,
maintenance and searching for new work, thereby enhancing server efficiency while
achieving additional energy savings.

Although server vacation is an effective energy-saving method to conserve energy,
increasing the server’s vacation-time may lead to an increased workload and the
sojourn time of jobs in the system, particularly in systems providing services such
as network, web, file transfer and mail services. To address such issues, the working
vacation (WV) policy was introduced by Servi and Finn [22] in an M/M/1 queue
system, where the server continues to provide services at a reduced speed during
the vacation period rather than ceasing service completely. Servi and Finn [22]
studied an M/M/1/WV queue system, and derived the transform formula for the
distribution of the number of customers in the system and the sojourn time in the
steady-state. Furthermore, Wu and Takagi [27] generalized the results of [22] to
an M/G/1/WV queue, while Kim [16] analysed the queue length distribution of the
M/G/1/WV. Other notable studies on queue systems with working vacations can be
found in the works of Liu and Song [19], Gao and Liu [13], Gao et al. [14] and
Zhang and Liu [29].

Aforementioned research on vacation or working vacation policies only considered
cases where a vacation commences when there are no customers in the orbit. However,
ICT systems that provide services over the internet often consume substantial energy
when the server is waiting for customers in the orbit to retry, such as network, file
transfer and mail services. To address this problem, a common approach is to close
the server when it is idle. Zhang and Wang [31] developed an M/G/1 retrial queue
system with reserved idle time and setup time from the perspective of server vacation
for energy-saving. Once the server becomes idle, it can be shut down with a certain
probability, even if there are customers in the orbit. However, shutting down the server
completely when it is idle will increase its workload and decrease its productivity,
which cannot meet the requirements of ICT systems. Therefore, there exists a trade-off
between energy consumption and service efficiency, which presents important and
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challenging problems in developing a reasonable M/G/1 retrial queue system for
ICT systems and designing optimal queuing strategies for energy-saving and service
efficiency improvement.

In this paper, we construct an M/G/1 retrial queue system with random working
vacation (RWV) and increased service efficiency during vacation (ISEV) policies. The
RWV policy, which means the server takes a random working vacation with a given
probability during reserved idle periods, is proposed to reduce energy consumption.
The ISEV policy is to perform update, inspection or maintenance during working
vacations to augment service efficiency in the regular working periods.

The remainder of this paper is organized as follows. Section 2 formulates the retrial
queue system and transforms it into an abstract Cauchy problem in a suitable Banach
space. In Section 3, the dynamic behaviour of the retrial queue system is studied
and the equilibrium condition for the system to be stable is derived to ensure the
feasibility of the system. Based on the stability analysis in Section 3, Section 4 carries
out an equilibrium analysis of the system with its special cases to demonstrate the
advantages of the proposed system and further obtain the optimal queuing strategies
for energy-saving and cost reduction. In Section 5, two numerical experiments are
presented to illustrate the effectiveness of the proposed system. Section 6 concludes
the paper.

2. Retrial queue system formulation

In ICT systems [17], service disciplines stipulate that unprocessed jobs upon arrival
will be resent at a later time, aligning with the concept of retrial queues. For example,
within a local area network, stations or processors are interconnected by a single
bus (server) that is essential for facilitating communication among these stations.
Messages generated by users (primary customers) reach the stations from external
sources. Upon receipt of a message, the station verifies whether the bus is idle. If
the bus is idle, the message is transmitted via the bus to the target station. Conversely,
the message is stored in a buffer (retrial customers) and will attempt to access the
bus again after a specified interval, typically referred to as the retrial orbit. The
message repeats this process within the retrial orbit until it successfully locates an
idle bus.

To optimize utilization efficiency, the bus generally does not maintain a continuous
open state; instead, it sets a period of reserved idle time. Specifically, when the bus
is idle, it remains in the state for a predetermined duration, waiting for incoming
messages (from primary or retrial customers) and initiating transmission immediately
upon message arrival. If no messages are received during the reserved idle period,
it can be reasonably assumed that the station has few stored messages, and the bus
will shut down until the arrival of new messages prompts it to reactivate. This service
strategy with reserved idle time and reactivate settings is often used in switched virtual
channel connection (SVCCs) services, where VCC dynamically sets up and shuts down
virtual channel connections as needed.
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FIGURE 1. Network topology for the model.

However, to minimize the mean sojourn time of messages awaiting bus setup and
consequently enhance the efficiency of the system, the bus can transition to an RWV
period rather than shutting down when no messages arrive during the reserved idle
time. This strategy is referred to as the RWV policy in this paper. Upon the arrival of
new messages to the system, the bus operates at a reduced efficiency until the working
vacation concludes. Furthermore, the server may undertake additional tasks during the
working vacation stage to the ISEV policy within this paper.

Grounded in these principles, this paper presents a mathematical transformation
of the aforementioned operations and strategies, and then constructs an M/G/1 retrial
queue system with RWV and ISEV policies.

2.1. Model assumption and descriptions Before constructing the mathematical
model of a system, in this subsection, we first make reasonable assumptions based on
the model description. The network topology for the model is presented in Figure 1.
The detailed descriptions and assumptions of the model are as follows.

• Arrival process: The primary customers arrive at the system according to a
Poisson process with rate λ.

• Retrial process: We assume that there is no waiting area available, and customers
who find the server idle will immediately occupy it. If the server is busy or on a
working vacation, the arriving customers will join a retrial orbit. After joining the
orbit, customers will attempt to retry the service only after the server completes a
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regular service. The retrial time is assumed to follow an exponential distribution
with parameter θ.

• RWV policy: Once the server completes a service, it enters an idle state and
remains active for a certain period of time, referred to as reserved idle time, which
follows an exponential distribution with parameter β. If no customers access the
server during the reserved idle time, the server enters a working vacation period
and provides service with low working efficiency to any occupying customers
until the service is completed or the vacation ends. We assume that the service
time during the working vacation period follows an exponential distribution with
parameter μ1, and the time until the end of the vacation follows an exponential
distribution with parameter α, which is also called vacation interruption rate in
this paper.

• ISEV policy: The ISEV policy is implemented to reduce the loss due to low
service efficiency during the server’s working vacation. This involves the server
undergoing rejuvenation, inspection or maintenance during the working vacation
period to increase its service efficiency when it completes the vacation and enters
a regular working period.

• Regular service process: If customers arrive during the idle period, they can
immediately occupy the server. It is reasonable to assume that the service time
under the ISEV policy follows a general distribution with a hazard rate of
μ2(x), where the variable x ∈ [0,∞) represents the elapsed service time. The
hazard rate μ2(x) quantifies the instantaneous likelihood of service completion
at a specific moment. Therefore, the probability of a service completing in
an interval Δx can be approximated by μ2(x)Δx + o(Δx), where o(·) denotes
the higher-order infinitesimal quantity. In this paper, the function μ2(x) is also
referred to as the service completion rate under the ISEV policy. Since the
ISEV policy is implemented to increase the server’s service efficiency when
it completes the vacation and enters a regular working period, thus let μ−2 (x)
be the service completion rate without the ISEV policy, then μ2(x) can be
assumed to be

μ2(x) = (1 + f (α))μ−2 (x),

where f (α) is a nonnegative, bounded real-value function designed to measure the
impact of the vacation interruption rate α on μ2(x). As the vacation interruption
rate α increases and tends towards infinity, 1/α will decrease and approach
0, implying that the mean vacation time of the server decreases to 0. In
this situation, the ISEV policy becomes ineffective in improving the server’s
efficiency when it completes the vacation. Therefore, it is further assumed that
f (α) is a monotonically decreasing function with respect to α, and f (α)→ 0 as
α→ ∞.

Based on such assumptions above, we denote the state of the server and the number of
customers in the orbit at time t by C(t) and N(t), respectively. Then,
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C(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if the server is in regular working period
and the server is idle,

1 if the server is in working vacation period
and the server is busy,

2 if the server is in working vacation period
and the server is idle,

3 if the server is in regular working period
and the server is busy.

In ordinary M/G/1 queues, the stochastic process {N(t), t ≥ 0} is not Markovian.
Thus, in the next subsection, we will employ the random variable X(t), which denotes
the elapsed service time of the customers in service at time t to form a Markovian
process {(C(t), N(t), X(t)) : t ≥ 0} and further construct the system.

2.2. System abstraction Based on the model assumptions and descriptions pre-
sented in Section 2.1, the retrial queue system can be described as a semi-Markov
process {(C(t), N(t), X(t)) : t ≥ 0} by introducing additional variables. This subsection
will derive the Chapman–Kolmogorov forward equations of the system based on the
process {(C(t), N(t), X(t)) : t ≥ 0}, and transform it into a Cauchy problem for further
analysis.

Let Pi,n(t) (i = 0, 1, 2, n = 0, 1, 2, . . .) denote the probability that the server is in
state i, and there are n customers in the queue at time t. Similarly, P3,n(t, x) dx (n =
0, 1, 2, . . .) represents the probability that the server is in state 3, there are n customers
in the queue and the elapsed time of the customer being served is between x and
x + dx at time t. Then, the state space of the process {(C(t), N(t), X(t)) : t ≥ 0} can be
denoted by

{(0, j), (1, j), (2, j), (3, j, x) | 0 ≤ j < ∞, 0 ≤ x < ∞}.

The corresponding transition rate diagram can be summarized and presented in
Figure 2. By relating the states of the system at time t and t + Δt, we can derive the
Chapman–Kolmogorov forward equations [21] and further develop the system model
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP0,n(t)
dt

= (−λ − β − nθ)P0,n(t) +
∫ ∞

0
μ2(x)P3,n(t, x) dx,

dP1,n(t)
dt

= (−λ − α − μ1)P1,n(t) + λP1,n−1(t) + λP2,n(t),

dP2,n(t)
dt

= −λP2,n(t) + βP0,n(t) + μ1P1,n(t),

∂P3,n(t, x)
∂t

+
∂P3,n(t, x)
∂x

= (−λ − μ2(x))P3,n(t, x) + λP3,n−1(t, x),

(2.1)
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FIGURE 2. Transition rate diagram.

where n = 0, 1, 2, . . . , and P1,−1(t) = 0, P3,−1(t, x) = 0. The boundary conditions and
the initial values are

.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P3,n(0) = αP1,n + (n + 1)θP0,n+1 + λP0,n,
P0,0(0) = 1, P0,j(0) = 0, j = 0, 1, 2, . . . ,
Pi,j(0) = 0, P3,j(0, x) = 0, i = 1, 2, j = 0, 1, 2, . . . .

Regarding the practical background, for any fixed α, we assume that

.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ2(x) ≥ 0, sup
x∈[0,∞)

μ2(x) < ∞,
∫ T

0
μ2(x) dx < ∞ for all T ∈ [0,∞),

∫ ∞
0
μ2(x) dx = ∞.

Next, we translate the system into an abstract Cauchy problem in a Banach space. First,
let the state space

X =
{
�P = (P0, P1, P2, . . .)T | ‖�P‖X =

∞∑
n=0

‖Pn‖ < ∞
}
,

where
Pn = (P0,n, P1,n, P2,n, P3,n(x))T ∈ R3 × L1(R+), R+ = [0,∞),
‖Pn‖ = |P0,n| + |P1,n| + |P2,n| + ‖P3,n(x)‖L1 , n = 0, 1, 2, . . . ,

and (P0, P1, P2, . . .)T stands for the transpose of vector (P0, P1, P2, . . .). Note that (X,
‖ · ‖X) is a Banach space. We define some operators in X for simplicity:

A = diag{A0, A1, A2, . . .}, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 0 0 0 · · ·
B1 B0 0 0 · · ·
0 B1 B0 0 · · ·
0 0 B1 B0 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C�P = diag{C0P0, C1P1, C2P2, . . .},
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where

An = diag
{
− λ − β − nθ, −λ − α − μ1, −λ, − d

dx
− λ − μ2(x)

}
,

B0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0 λ

β μ1 0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
λ

0
λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , CnPn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Gn

0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Gn =

∫ ∞
0
μ2(x)P3,n(x) dx.

We denote the domain of operators A, B and C by D(A), D(B) and D(C), respectively.
Here,

D(A) =
{
�P = (P0, P1, P2, . . .)T ∈ X |

dP3,n(x)
dx

∈ L1(R+)
}
,

where P3,n(x) are continuous functions satisfying

P3,n(0) = αP1,n + (n + 1)θP0,n+1 + λP0,n, n = 0, 1, 2, . . . ,

and D(B) = D(C) = X. Thus, by denoting �P(t) = (P0(t), P1(t), P2(t), . . .)T and Pi(t) =
(P0,i(t), P1,i(t), P2,i(t), P3,i(t, x))T, i = 0, 1, . . ., the M/G/1 retrial queue system with
RWV and ISEV policy (2.1) can be rewritten as an abstract Cauchy problem in
the Banach space X as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d�P(t)
dt
= (A + B + C)�P(t),

�P(0) = ((1, 0, 0, 0)T, (0, 0, 0, 0)T, (0, 0, 0, 0)T, . . .)T.
(2.2)

Following this, studying the evolution of stochastic process {(C(t), N(t), X(t)) |
t ≥ 0} can be transformed into the problem of analysing the dynamic behaviour of the
system (2.2). Therefore, in the next section, we will utilize operator semigroup theory
to study the system operator A + B + C, thereby investigating the dynamic behaviour
of the system.

3. Dynamic behaviour of the retrial queue system

The well-posedness and asymptotic stability of a system are important characteris-
tics that describe the dynamic behaviour of the system, and they are also necessary
conditions for conducting research on optimal queuing strategies for the system.
Based on Cauchy problem (2.2), this section will investigate the well-posedness and
asymptotic stability of the system to study the dynamic behaviour of the system by
using C0-semigroup theory and spectral theory.

A system is considered well-posed if and only if it possesses a unique nonnegative
time-dependent solution. According to Engel et al. [10, page 151, Definition 6.8 and
Corollary 6.9], system (2.2) can be regarded as well-posed if the system operator
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A + B + C can generate a contractive C0 semigroup in the system space X. With
reference to the Hille–Yosida theorem [21], it is evident that the operator A + B + C
can indeed generate a C0 semigroup on the space X. We summarize the main theorem
as follows.

THEOREM 3.1. The M/G/1 retrial queue system with RWV and ISEV policy (2.2)
has a unique nonnegative time-dependent solution �P(t), which can be expressed as
�P(t) = T(t)�P0, where {T(t)}t≥0 are the C0 semigroups generated by the system operator
A + B + C and �P0 is the initial condition. Moreover, for any t ≥ 0, �P(t) satisfies that

‖�P(t)‖X = 1.

The well-posedness of system (2.2) indicates that the system possesses a unique
nonnegative dynamic solution. A similar proof to that of Theorem 3.1 can be found
in [8, 25, 26]. In the following, we investigate the spectrum distribution of the system
operator A + B + C and demonstrate that the dynamic solution of the system strongly
converges to the steady-state solution under necessary conditions.

THEOREM 3.2. If λ
∫ ∞

0 e−
∫ x

0 μ2(ξ) dξ dx < 1 and λ ≤ α, the time-dependent solution
of the M/G/1 retrial queue system with RWV and ISEV policy (2.2), �P(t) strongly
converges to its steady-state solution �P∗ as t → ∞.

PROOF. According to the asymptotic stability theorem introduced by Gupur [15, page
48], we can divide the proof into three steps as follows.

• Step 1: We prove that {γ ∈ C | Reγ > 0 or γ = ia, a ∈ R\{0}} belongs to the
resolvent set of system operators A + B + C.

According to the closed operator and inverse operator theorems, {γ ∈ C |
Reγ > 0 or γ = ia, a ∈ R\{0}} belongs to the resolvent set of system operators
A + B + C, which is equivalent to the existence of the bounded invertible operator
γI − (A + B + C). So, by verifying that the operator equation [γI − (A + B +
C)]�P = �Y has a unique nonzero solution, for any

γ ∈ {γ ∈ C | Reγ > 0 or γ = ia, a ∈ R\{0}},

and �Y ∈ X, we can accomplish the proof of Step 1.
• Step 2: We prove that 0 is an eigenvalue of the system operator A + B + C and the

eigenvector of 0 is positive if

λ

∫ ∞
0

e−
∫ x

0 μ2(ξ) dξ dx < 1 and λ ≤ α.

It is difficult to solve the equation corresponding to eigenvalue 0 as an
infinite-dimensional problem under the threshold condition. In this paper, we
resolve this difficulty by flexibly utilizing several properties of the series; the
details of the proof are given in Appendix A.
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• Step 3: We verify that 0 is a simple eigenvalue of operator (A + B + C)∗, and the
algebraic multiplicity of 0 is one, where (A + B + C)∗ is the conjugate operator
of (A + B + C).

By calculating the expression of operator (A + B + C)∗ and combining with the
definition of algebraic multiplicity, it can be proved that 0 is a simple eigenvalue
of operator (A + B + C)∗, and the algebraic multiplicity of 0 is one. The details
of the proof are also given in Appendix B.

With Step 1–Step 3, we derive that

σp(A + B + C) ∩ iR = {0} and {γ ∈ C | γ = ia, a � 0, a ∈ R}

belong to the resolvent set of A + B + C; the algebraic multiplicity of 0 in X∗ is
one. Furthermore, according to the asymptotic stability theorem of Gupur [15, page
48], time-dependent solution of the system �P(t) strongly converges to its steady-state
solution �P∗ as t → ∞. �

Theorems 3.1 and 3.2 ensure the well-posedness and stability of the M/G/1 retrial
queue system with RWV and ISEV policy, which means that the system (2.1)
considered in this study has a unique time-dependent solution, and the solution
asymptotically converges to the steady-state solution. Therefore, based on the theo-
retical analysis in Section 3, we can study the steady-state indices of the system and
investigate the optimal queuing strategy.

4. Optimal queuing strategies

In this section, we investigate optimal queuing strategies for the M/G/1 retrial queue
system with RWV and ISEV policies. First, we calculate the steady-state indices of the
system, including its special cases. Then, based on these indices, we define and analyse
the system’s performance measures, including energy consumption, service efficiency
and expected cost. Finally, we demonstrate the existence of optimal queuing strategies
from the point of efficiency and expected cost. We also show that the optimal strategy
can be achieved by adjusting the vacation length.

4.1. Steady-state indices calculation Since 0 is the eigenvalue of the system
operator, the steady-state solution of the system is equivalent to the eigenvector
corresponding to 0, which can be derived from equation (A + B + C)�P = 0, that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ + β + nθ)P0,n −
∫ ∞

0
μ2(x)P3,n(x) dx = 0,

(λ + α + μ1)P1,n − λP2,n − λP1,n−1 = 0,
λP2,n − βP0,n − μ1P1,n = 0,
d
dx

P3,n(x) + (λ + μ2(x))P3,n(x) − λP3,n−1(x) = 0,

(4.1)
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with P3,n(0) = αP1,n + (n + 1)θP0,n+1 + λP0,n, where

Pi,n = lim
t→∞

Pi,n(t), i = 0, 1, 2, P3,n(x) = lim
t→∞

P3,n(t, x), P1,−1 = 0, P3,−1(x) = 0.

It is possible for us to use the generation function method [31] to calculate the
important indices. Let

Πi(z) =
∞∑

j=0

Pi,jzj, i = 0, 1, 2 and Π3(z, x) =
∞∑

j=0

P3,j(x)zj

for all complex variables |z| < 1. Such definitions of Πi(z) and Π3(z, x) at z = 1 are
reasonable, since the stability of the system has been derived in Section 3. Then, by
multiplying (4.1) by zn and summing over n, the equation can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ + β)Π0(z) + θzΠ′0(z) =
∫ ∞

0
μ2(x)Π3(z, x) dx,

(λ + α + μ1)Π1(z) = λΠ2(z) + λzΠ1(z),
λΠ2(z) = βΠ0(z) + μ1Π1(z),(
∂

∂x
+ λ + μ2(x)

)
Π3(z, x) = λzΠ3(z, x),

(4.2)

with the boundary condition

Π3(z, 0) = θΠ′0(z) + αΠ1(z) + λΠ0(z). (4.3)

Solving (4.2) with (4.3), we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π1(z) =
β

λ + α − λzΠ0(z), Π2(z) =
(
β

λ
+

μ1β

λ(λ(1 − z) + α)

)
Π0(z),

Π3(z, x) =
[
θΠ′0(z) +

(
λ +

βα

λ + α − λz

)
Π0(z)

]
exp
(
−
∫ x

0
λ(1 − z) + μ2(ξ) dξ

)
,

Π0(z) = C exp
{
−
∫ 1

z

(λ(λ + α − λy) + αβ)h(y) − (λ + β)(λ(1 − y) + α)
θ(λ + α − λy)(y − h(y))

dy
}
,

where

h(y) =
∫ ∞

0
μ2(x)e−

∫ x
0 λ(1−y)+μ2(ξ) dξ dx,

C is a constant and Π0(1) = C. We define Π3(z) =
∫ ∞

0 Π3(x, z) dx. Then, applying the
normalizing condition Π0(1) + Π1(1) + Π2(1) + Π3(1) = 1, we obtain

C =
λα(1 − λβ1)

λα + αβ + λβ + (1 − λβ1)βμ1
, β1 =

∫ ∞
0

e−
∫ x

0 μ2(ξ) dξ dx.

Let K(t) be the number of customers in the system. Then the probability generating
function of K(t) is Π(z) = Π0(z) + zΠ1(z) + Π2(z) + zΠ3(z), and the mean number of
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12 Z. Chen, H. Xu and H. Huo [12]

customers in the system is E[K] = ∂Π(z)/∂z|z=1. By denoting the probabilities of the
system in state 0, 1, 2 and 3 as P0, P1, P2 and P3, respectively, we derive
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 =
λα(1 − λβ1)

λα + αβ + λβ + (1 − λβ1)βμ1
, P1 =

λβ(1 − λβ1)
λα + αβ + λβ + (1 − λβ1)βμ1

,

P2 =
β(1 − λβ1)(α + μ1)

λα + αβ + λβ + (1 − λβ1)βμ1
, P3 =

λβ1(λα + αβ + λβ)
λα + αβ + λβ + (1 − λβ1)βμ1

,

E0[K] =
α(λα + αβ + λβ)(β1(1 − λβ1) + λβ2)

α(1 − λβ1)[λα + αβ + λβ + (1 − λβ1)βμ1]
+
β + αββ1 + λαβ1

αθ(1 − λβ1)

+
[β(λ + α) + μ1β(1 − λβ1)](1 − λβ1)

α(1 − λβ1)[λα + αβ + λβ + (1 − λβ1)βμ1]
,

(4.4)

where β2 =
∫ ∞

0 xe−
∫ x

0 μ2(ξ) dξ dx.
To show the effectiveness of the proposed system, we consider three special cases

of the system as follows.

Case 1: f (α) ≡ 0, μ1 � 0 and β � 0. This means that the system does not perform
the ISEV policy, the M/G/1 retrial queue system with RWV and ISEV policies will
degrade into an M/G/1 retrial queue system with RWV policy. We denote the stationary
probabilities of the system in state 0, 1, 2 and 3 as P(1)

0 , P(1)
1 , P(1)

2 and P(1)
3 , respectively.

Then, the stationary probabilities of the system and the mean number of customers in
the system E1[K] can be obtained according to (4.4), that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(1)
0 =

λα(1 − λβ′1)

λα + αβ + λβ + (1 − λβ′1)βμ1
, P(1)

1 =
λβ(1 − λβ′1)

λα + αβ + λβ + (1 − λβ′1)βμ1
,

P(1)
2 =

β(1 − λβ′1)(α + μ1)

λα + αβ + λβ + (1 − λβ′1)βμ1
, P(1)

3 =
λβ1(λα + αβ + λβ)

λα + αβ + λβ + (1 − λβ′1)βμ1
,

E0[K] =
α(λα + αβ + λβ)(β′1(1 − λβ′1) + λβ2)

α(1 − λβ′1)[λα + αβ + λβ + (1 − λβ′1)βμ1]
+
β + αββ′1 + λαβ

′
1

αθ(1 − λβ′1)

+
[β(λ + α) + μ1β(1 − λβ′1)](1 − λβ′1)

α(1 − λβ′1)[λα + αβ + λβ + (1 − λβ′1)βμ1]
,

(4.5)

where β′1 =
∫ ∞

0 e−
∫ x

0 μ
−
2 (ξ) dξ dx and β′2 =

∫ ∞
0 xe−

∫ x
0 μ
−
2 (ξ) dξ dx.

Case 2: f (α) ≡ 0, μ1 = 0 and β � 0. The system does not utilize the ISEV policy,
and the working vacation state changes to a normal vacation. In this case, the M/G/1
retrial queue system with RWV and ISEV policies will degrade to an M/G/1 retrial
queue system with reserved idle time and setup time, which has been previously
studied by Zhang and Wang [31]. Furthermore, the states of the server C(t) = k,
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where k = 0, 1, 2, 3 at time t, will transform to indicate idle, setup, off and busy states,
respectively. We denote the stationary probabilities of the system being idle, setup,
off and busy as P(2)

0 , P(2)
1 , P(2)

2 and P(2)
3 , respectively. The stationary probability of the

system and the mean number of customers in the system E2[K] can be expressed as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(2)
0 =

λα(1 − λβ′1)

λα + αβ + λβ
, P(2)

1 =
λβ(1 − λβ′1)

λα + αβ + λβ
,

P(2)
2 =

αβ(1 − λβ′1)

λα + αβ + λβ
, P(2)

3 = λβ
′
1,

E2[K] =
α(λα + αβ + λβ)(β′1(1 − λβ′1) + λβ′2) + β(λ + α)(1 − λβ′1)

α(1 − λβ′1)(λα + αβ + λβ)

+
β + αββ′1 + λαβ

′
1

αθ(1 − λβ′1)
,

(4.6)

which agrees with the conclusions of Zhang and Wang [31].

Case 3: f (α) ≡ 0, μ1 = 0 and β = 0. This means that the server will never take a
vacation, so the M/G/1 retrial queue system with RWV and ISEV policy will degrade
into a classical M/G/1 retrial queue system. The probability of the system in idle P(3)

0

and in busy P(3)
1 and the mean number of customers in the system E3[K] can be derived,

that is, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P(3)

0 = 1 − λβ′1, P(3)
1 = λβ

′
1,

E3[K] =
β′1(λ + θ) + λθβ′2 − λθβ

′
1

2

θ(1 − λβ′1)
,

(4.7)

which also agrees with the conclusion of Falin and Templeton [12].

4.2. System performance measures analysis Energy consumption, service effi-
ciency and expected cost are the three most critical performance measures used to
evaluate the quality of a queue system. In this subsection, we define and discuss the
system’s performance measures for the retrial queue system proposed in this paper, as
well as its special cases. Before delving into this, we introduce some notation for the
systems considered in Section 4.1 for convenience.

• sys.0: The M/G/1 retrial queue system with RWV and ISEV policy proposed in
this paper.

• sys.1: The M/G/1 retrial queue system with RWV policy in Case 1.
• sys.2: The M/G/1 retrial queue system with a reserved idle time and setup time

in Case 2, which was studied by Zhang and Wang [31].
• sys.3: The M/G/1 retrial queue system in Case 3, which was studied by Falin and

Templeton [12].
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14 Z. Chen, H. Xu and H. Huo [14]

In this paper, we measure the service efficiency of the systems using the mean
number of customers in the system. As indicated in Section 4.1, the mean number of
customers in the system are denoted by Ei[K], where i = 0, 1, 2, 3. These values are
given by (4.4)–(4.7).

To discuss the energy consumption and expected cost of the systems, we introduce
the following definitions:

• Ci, i = rwb, rwi, represents the energy consumption of the server in the regular
working period when the server is busy and idle, respectively;

• Cj, j = wvb, wvi, represents the energy consumption of the server in the working
vacation period when the server is busy and idle, respectively;

• Cs represents the energy consumption when the server is in setup state;
• ch represents the holding cost for each customers present in the system (including

the customers in the orbit);
• csys represents the cost per unit energy consumption of the server;
• cm(α) represents the cost function of the server being maintained during the work-

ing vacation period. Here, cm(α) is assumed to be a monotonically increasing
bounded function of α.

To ensure that the definitions for the energy and expected cost functions are realistic,
we assume that the following relationship is satisfied:

Crwb > Cwvb > Crwi > Cwvi > Cs, ch > csys.

Then, by denoting the energy consumption and expected cost of the sys.i, which
were defined at the beginning of this subsection, as ECi, SCi, i = 0, 1, 2, 3, respectively,
we deduce

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EC0 = CrwiP0 + CwvbP1 + CwviP2 + CrwbP3,

EC1 = CrwiP
(1)
0 + CwvbP(1)

1 + CwviP
(1)
2 + CrwbP(1)

3 ,

EC2 = CrwiP
(2)
0 + CsP

(2)
1 + CrwbP(2)

3 ,

EC3 = CrwiP
(3)
0 + CrwbP(3)

1 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SC0 = csysEC0 + chE0[K] + cm(α),
SC1 = csysEC1 + chE1[K],
SC2 = csysEC2 + chE2[K],
SC3 = csysEC3 + chE3[K].

4.3. Optimal queuing strategies investigation Based on the definition provided
before, we investigate optimal queuing strategies in this subsection. Before delving into
this, we analyse the performance of the systems under different actual arrival rates λ
to demonstrate the advantages of the M/G/1 retrial queue system with RWV and ISEV
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policies. Specifically, we analyse the energy consumption and service efficiency of the
system with different λ, while keeping all other system parameters fixed.

THEOREM 4.1. For the M/G/1 retrial queue system with RWV and ISEV policy (2.1),
there exists a unique λ∗ ∈ (0, 1/β′1). If λ∗ < k′ = min{1/β′1,α}, then λ∗ is called the
equilibrium arrival rate, and for any λ ∈ (λ∗, k′), the energy consumption and the mean
number of customers in sys.0, sys.1, sys.2 and sys.3 have the following properties:

⎧⎪⎪⎨⎪⎪⎩
EC0 < EC2 < EC1 < EC3,

E0[K] < E3[K] < E1[K] < E2[K],
(4.8)

which means that for any λ ∈ (λ∗, k′), the M/G/1 retrial queue system with RWV and
ISEV policies can not only consume the least energy, but also provide the highest
service efficiency than other systems.

PROOF. According to (4.4)–(4.7), we can derive that for any λ < 1/β′1, E3[K] <
E1[K] < E2[K] and EC2 < EC1 < EC3. Let G1(λ) = E0[K] − E3[K] and G2(λ) =
EC0 − EC2. Note that the real value functions G1(λ) and G2(λ) on λ are continuous
functions defined in (0, 1/β′1). Thus, by performing careful calculations, we can verify
that the first-order derivatives of G1(λ) and G2(λ) are negative for any λ ∈ (0, 1/β′1).
Moreover, we deduce that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
λ→0+

G1(λ) =
βα + βμ1(1 − β1)
α(αβ + βμ1)

+
β + αββ1

αθ
> 0,

lim
λ→{1/β′1}−

G1(λ) = −∞,

lim
λ→0+

G2(λ) = Cwvi − Crwi > 0,

lim
λ→{1/β′1}−

G2(λ) = (EC0 |λ=1/β′1 −1)Crwb < 0.

Hence, G1(λ) and G2(λ) are decreasing in (0, 1/β′1), and there exists a unique
solution λ1 such that G(λ1) = 0, and a unique solution λ2 such that G(λ2) = 0. Let
λ = max{λ1, λ2}; if λ < k′, then all λ ∈ (λ, k′) can ensure the stability of the system
model and satisfy the inequalities E0[K] − E2[K] < 0 and EC0 − EC1 < 0. Thus,
inequality (4.8) holds and λ is called the equilibrium arrival rate. However, if λ ≥ k,
although equations G(λ1) = 0 and G(λ2) = 0 have a unique solution, the system is not
necessarily stable when λ ∈ (k′, λ). �

Theorem 4.1 establishes that given that the system is stable, the M/G/1 retrial queue
system with RWV and ISEV policies outperform other systems in terms of both energy
consumption and service efficiency, provided that the actual arrival rate λ > λ∗.

While Theorem 4.1 highlights the advantages of the system proposed in this paper,
the focus of management design is typically on maximizing service efficiency or
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minimizing expected cost. To achieve this, we need to investigate the optimal queuing
strategies for the system.

THEOREM 4.2. For the M/G/1 retrial queue system with RWV and ISEV policy (2.1),
there exists an optimal vacation interruption rate α1 such that

E0[K] |α=α1
= min
α∈Z

E0[K],

and there exists an optimal vacation interruption rate α2:

SC0 |α=α2
= min
α∈Z

SC0,

where Z = {α | λ ≤ α, λβ1 < 1}.

PROOF. We analyse the range of α to discuss the existence of the optimal queuing
strategies. According to Section 3, the equilibrium threshold condition of the system
to be stable is λ ≤ α and

λβ1 = λ

∫ ∞
0

e−
∫ x

0 (1+f (α))μ−2 (ξ) dξ dx < 1.

For any fixed arrival rate λ, if

λβ′1 = λ

∫ ∞
0

e−
∫ x

0 μ
−
2 (ξ) dξ dx < 1,

then for any α ≥ 0, λβ1 < 1 and the system (2.2) is stable, which means that Z = [λ,∞).
However, if λβ′1 ≥ 1, by taking ISEV policy, we can reasonably adjust the vacation
length so that λβ1 < 1. Since f (α) is a monotonically decreasing function with respect
to α ≥ 0, there exists a unique solution α′ of equation λβ = 1. Thus, the range of α for
the system to be stable is Z = [λ,α′) if α′ > λ. Otherwise, Z = ∅.

Here, we analyse the situation of λβ′1 ≥ 1; the situation of λβ′1 < 1 can be derived
in the same way. We study the optimal queuing strategies of the system on the service
efficiency in Z = [λ,α′). The first-order derivative of E0[K] with α is

d
dα

E0[K] =
I1 + I2 + I3

J2 ,

where

I1 = α
2[S(1 − λβ1)(S + Q)[(1 − 2λ + λβ1)β′1 + λβ

′
2]

+ λ2S(S + Q)β2 + (λSβ′1 + (λ + β)(1 − λβ1))OQ]θ2,

I2 = [−λαβ′1(1 − λβ1)(S + Q − λβ)Q − (1 − λβ1)2[(S + Q)2 − λα(S − λβ)]]θ2,

I3 = [(1 − λβ1)(α(λα + αβ)β′1 − β) + λαβ
′
1R](S + Q)2θ,

J = α(1 − λβ1)(S + Q)θ,
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and

S = λα + αβ + λβ, Q = (1 − λβ1)βμ1,
O = β1(1 − λβ1) + λβ2, R = β + αββ1 + λαβ1.

To derive the unique optimal vacation interruption rate α∗1 on the service efficiency,
the solution of equation (d/dα)E0[K] = 0 should be considered. By taking careful
calculation, we can verify that the first-order derivatives of the real value function
g(α) are monotonically increasing in (0,α′). Then, we can verify that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim
α→0+

d
dα

E0[K] = −∞,

lim
α→α′−

d
dα

E0[K] = lim
λβ1→1

d
dα

E0[K] = +∞,

which indicates that equation (d/dα)E0[K] = 0 has unique solution α1 ∈ (0,α′). Thus,
if α0

1 > λ, it means that the mean sojourn time of the customer in the orbit E0[K]
will decrease first in (λ,α0

1) and then increase in (α0
1,α′). Thus, the optimal vacation

interruption rate to maximize the service efficiency is α∗1 = α
0
1. However, if α0

1 < λ,
then E0[K] will monotonically increase in [λ,α′), and the optimal vacation interruption
rate to maximize the service efficiency is α∗1 = λ.

Therefore, by taking into account the above two situations, we can demonstrate that
there exists an optimal vacation interruption rate α∗1 such that

E0[K] |α=α∗1= min
α∈Z

E0[K].

However, we can investigate the optimal queuing strategies on the expected cost of the
system (2.2) by using the similar method. Therefore, we also deduce that there exists
an optimal vacation interruption rate α∗2 such that

SC0 |α=α∗2= min
α∈Z

SC0. �

According to Theorem 4.2, there exist optimal queuing strategies that can improve
the efficiency and reduce the expected cost. Furthermore, it is demonstrated that
adjusting the vacation interruption rate α can help identify the optimal strategy.

5. Numerical experiments

In this section, we present two numerical experiments to illustrate the theoretical
results from the perspectives of energy consumption, service efficiency and expected
cost.

We assume that the service time of the server in the regular working period without
ISEV policy follows the Erlang-2 distribution [11], with a probability density function
g(x) = φ2xe−φx, where φ is a constant. Thus, we can deduce the service completion
rate of the server under the ISEV policy as μ2(x) = (1 + f (α))(φ2x/(φx + 1)). Taking
φ = 2 and f (α) = 1/(α2 + 2), we can deduce β′1 = 1. Using the values of the system
parameters:
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FIGURE 3. Mean number of customers in the system with different arrival rate λ.

Crwb = 350, Crwi = 100, Cwvb = 150, Cwvi = 50,

Cs = 45, ch = 5, csys = 1, cm(α) = 180
( 1
α2 + 2

)
,

we conduct the following numerical experiments.

EXAMPLE 5.1. Assuming β = 0.6, θ = 1.4, α = 1 and μ1 = 0.45, we can use the
theoretical analysis in Section 3 to deduce that λ < 1 will ensure the asymptot-
ical stability of sys.i,i = 0, 1, 2, 3. The service efficiency and energy consumption
of the systems under different arrival rates λ are illustrated in Figures 3 and 4,
respectively.

As shown in Figures 3 and 4, for any λ < 1, the RWV policy can improve service
efficiency but consume more energy, as evidenced by E1[K] < E2[K] and EC1 > EC2.
Additionally, for any λ > 0.7778, the mean number of customers in sys.0 (the “+” line)
is smaller than other systems, as illustrated in Figure 3. Moreover, for any λ > 0.322,
the energy consumption of sys.0 (the “+” line) is lower than other systems, as shown
in Figure 4. Thus, for any λ > max{0.7778, 0.322}, the mean number of customers and
energy consumption of sys.0 are both the lowest, in agreement with the conclusion of
Theorem 4.1.

EXAMPLE 5.2. Figures 5 and 6 present the mean number of customers in the system
and the expected cost of sys.0 on the vacation interruption rate α, when the actual
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FIGURE 4. Consumption of systems state with different arrival rate λ.

FIGURE 5. Mean number of customers in the system with different α.
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FIGURE 6. Expected cost of systems with different α.

arrival rate is λ = 0.7, β = 0.5, θ = 1.4 and μ1 = 0.45. Figure 5 shows that the optimal
vacation interruption rate α∗1 = 1.995, which minimizes the mean number of customers
in sys.0 (the “+” line) with respect to service efficiency. However, Figure 6 shows that
the optimal vacation interruption rate α∗2 = 5.287, which minimizes the expected cost
of sys.0 (the “+” line). Example 5.2 directly follows from Theorem 4.2.

6. Conclusion

In this study, we proposed an M/G/1 retrial queue system with RWV and ISEV
policies and investigated its optimal queuing strategies. First, we studied the dynamic
behaviour of the system and derived the equilibrium threshold condition for the system
to be stable. Then, we obtained some explicit expressions for the steady-state indices
of the system and its special cases. Additionally, we obtained some important system
performance measures, including energy consumption, service efficiency and expected
cost. We also investigated the optimal queuing strategies of the system, and proved that
the proposed system outperforms other systems by consuming the least energy while
providing the highest service efficiency. Meanwhile, we demonstrated the existence of
optimal strategies for improving efficiency and reducing expected costs, which can be
obtained by adjusting the vacation interruption rate. Finally, we validated our analytical
results through numerical experiments.

The proposed model is a generalized version of many existing queue models with
vacations and vacation interruption policies, and has potential real-life applications in
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ICT systems. Our investigation may provide valuable insights for system managers to
design and optimize their systems for energy savings and efficiency improvement.

Appendix A. Proof of Step 2 in Theorem 3.2

First, we consider the equation (A + B + C)�P = 0. That is,

(λ + β + nθ)P0,n −
∫ ∞

0
μ2(x)P3,n(x) dx = 0, (A.1)

(λ + α + μ1)P1,n − λP2,n − λP1,n−1 = 0, (A.2)

λP2,n − βP0,n − μ1P1,n = 0, (A.3)
d
dx

P3,n(x) + (λ + μ2(x))P3,n(x) − λP3,n−1(x) = 0, (A.4)

where n = 0, 1, 2, . . . , and P1,−1 = 0, P3,−1(x) = 0. The proof can be divided into two
parts. First, we prove that {P0,n, n = 0, 1, 2 . . .} is a positive sequence. Second, we prove

that
∞∑

n=0
P0,n < ∞ if

λ

∫ ∞
0

e−
∫ x

0 μ2(ξ) dξ dx < 1 and λ < α.

For the first part, we obtain the following equations by careful calculation:

P1,n =
λnβ

(λ + α)n+1 P0,0 + · · · +
β

λ + α
P0,n, (A.5)

P2,n =
μ1

λ

[
λnβ

(λ + α)n+1 P0,0 + · · · +
β

λ + α
P0,n

]
+
βP0,n

λ
, (A.6)

P3,n(x) = P3,n(0)g0(x) +
∫ x

0
λP3,n−1(υ)g1(x, υ) dυ, (A.7)

and

(n + 1)θP0,n+1 =
1∫ ∞

0 μ2(x)g0(x) dx

∫ ∞
0
μ2(x)

[ n∑
j=0

j∑
i=0

(λx)n−j

(n − j)!
β
(
λ

λ + α

)j−i+1
P0,i

+

n−1∑
i=0

(λx)n−i

(n − i)!
(λ + β)P0,i +

n∑
j=0

(λ + β + jθ)RjP0.j

]
g0(x) dx, (A.8)

where

g0(x) = e−
∫ x

0 (λ+μ2(ξ)) dξ, g1(x, υ) = e−
∫ x
υ

(λ+μ2(ξ)) dξ,

R0 =

∞∑
j=n+1

(λx)j

j!
, Ri =

∞∑
j=n+2−i

(λx)j

j!
, 0 < i ≤ n.
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Equations (A.8) and (A.5)–(A.7) imply that for any fixed n, the solutions of
(A.1)–(A.4) are positive if P0,0 is positive. Obviously, P0,0 > 0 can be derived by taking
n = 0 into (A.1)–(A.4).

For the second part, we provide the following notation for convenience. Let

bn =

∫ ∞
0

1
(n − 1)!

(λx)n−1μ2(x)e−
∫ x

0 (λ+μ2(ξ)) dξ dx.

According to Zheng et al. [32, Theorem 2.1], we obtain the following estimates:

∞∑
i=1

bi = 1, b1 ≥
μ

λ + μ
,

∞∑
i=n

bi ≤
(
λ

λ + μ

)n−1
,

∑∞
i=n bi

b1
≤ λ
μ

(
λ

λ + μ

)n−2
, n ≥ 2,

(A.9)

where 0 ≤ (1/x)
∫ x

0 μ2(τ) dτ ≤ μ for any x ∈ [0,∞). According to (A.8) and (A.9),

P0,n+1 <
1

n + 1

[(
β

θ

λ

λ + α
+
λ + β

θ

λ

μ
+ n
λ

μ

λ

λ + μ

)
P0,n

+

((
β

θ

(
λ

λ + α

)2(
1 +

λ

λ + μ

)
+
λ + β

θ

λ

μ

λ

λ + μ
+ (n − 1)

λ

μ

(
λ

λ + μ

)2)
P0,n−1

+ · · ·

+

(
β

θ

(
λ

λ + α

)n+1(
1 +

λ

λ + μ
+ · · · +

(
λ

λ + μ

)n)
+
λ + β

θ

λ

μ

(
λ

λ + μ

)n)
P0,0

]
.

For convenience, let

ϕ(n+1)
i =

β

θ

(
λ

λ + α

)i(
1 +

λ

λ + μ
+ · · · +

(
λ

λ + μ

)i−1)

+
λ + β

θ

λ

μ

(
λ

λ + μ

)i−1
+ (n + 1 − i)

λ

μ

(
λ

λ + μ

)i
,

and denote k = min{μ,α}, K = max{μ,α}.
For any fixed n, let

δ(n+1)
1 =

λ

λ + k
+ f (n+1)

max ,

where f (n+1)
max is the maximum of the continuous function

f (n+1)(i) =
1

n + 1 − i
βK
θλ

(
λ

λ + α

)i+1

in the interval [1, n + 1]. It is not difficult to verify that {f (n+1)
max } is a positive sequence

and that it monotonically decreases toward 0. Thus, we can deduce that for any fixed n
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and i ∈ [1, n], the following inequality holds:

δ(n+1)
1 ϕ(n+1)

i − ϕ(n+1)
i+1 = (n + 1 − i)

λ

μ

(
λ

λ + μ

)i+1
[f (n+1)

max − f (n+1)(i)]

+
β

θ

λ

μ

(
λ + μ

λ + k
− λ + μ
λ + α

)(
λ

λ + α

)i
+
λ + β

θ

λ

μ

(
λ

λ + k
− λ

λ + μ

)

+ (n − i)
λ

μ

(
λ

λ + k
− λ

λ + μ

)(
λ

λ + μ

)i
+
λ

μ

λ

λ + k

(
λ

λ + μ

)i

+ f (n+1)
max

(
β

θ

λ + μ

μ

(
λ

λ + α

)i(
1 −
(
λ

λ + μ

)i)
+
λ + β

θ

λ

μ

(
λ

λ + μ

)i−1)
> 0.

Therefore, we can derive that

P0,n+1 <
1

n + 1
(ϕ(n+1)

1 P0,n + δ
(n+1)
1 ϕ(n+1)

1 P0,n−1 + δ
(n+1)
1 ϕ(n+1)

2 P0,n−1

+ · · · + δ(n+1)
1 ϕ(n+1)

n P0,0)

<
ϕ(n+1)

1

n + 1
(P0,n + δ

(n+1)
1 P0,n−1 + (δ(n+1)

1 )2P0,n−2 + · · · + (δ(n+1)
1 )n+1P0,0)

<
ϕ(n+1)

1

n + 1

(
δ(n+1)

1 +
ϕ(n)

1

n

)(
δ(n)

1 +
ϕ(n−1)

1

n − 1

)
. . . (δ(2)

1 + ϕ
(1)
1 )P0,0.

Because the positive sequence {δ(n+1)
1 + ϕ(n)

1 /n} is monotonically decreasing, and
that conditions λ

∫ ∞
0 e−

∫ x
0 μ2(ξ) dξ dx < 1 and λ ≤ α hold,

lim
n→∞

(
δ(n+1)

1 +
ϕ(n)

1

n

)
=
λ

λ + k
+
λ

μ

λ

λ + μ
< 1,

which implies that there must exist an N > 0 such that δ(n+1)
1 + ϕ(n)

1 /n < 1 for any
n > N. Therefore, it can be deduced that for any n > N,

P0,n+1 <
ϕ(n+1)

1

n + 1

(
δ(n+1)

1 +
ϕ(n)

1

n

)(
δ(n)

1 +
ϕ(n−1)

1

n − 1

)
. . . (δ(1)

1 + ϕ
(0)
1 )P0,0

<
ϕ(n+1)

1

n + 1

(
δ(N+2)

1 +
ϕ(N+1)

1

N + 1

)n+1−N N∏
i=1

(
δ(i+1)

1 +
ϕ(i)

1

i

)
P0,0

<
(
δ(N+2)

1 +
ϕ(N+1)

1

N + 1

)n+1−N
M,

where

M =
(
β

θ

λ

λ + α
+
λ + β

θ

λ

μ
+
λ

μ

λ

λ + μ

) N∏
i=1

(
δ(i+1)

1 +
ϕ(i)

1

i

)
P0,0.
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Thus,
∞∑

n=0

P0,n =

N∑
n=0

P0,n +

∞∑
n=N+1

P0,n <

N∑
n=0

P0,n +M
∞∑

n=N+1

qn−N

=

N∑
n=0

P0,n +M lim
n→∞

q
1 − q

(1 − qn) < ∞.

According to the expressions of P1,n, P2,n and P3,n(x), in (A.5), (A.6) and (A.7), we can
derive

‖P‖X =
∞∑

n=0

(|P0,n| + |P1,n| + |P2,n| + ‖P3,n(x)‖L1 ) < ∞.

This implies that equation (A + B + C)�P = 0 has a unique nonzero solution and 0 is
an eigenvalue of the system operator A + B + C, and the eigenvector of 0 is positive if
λ
∫ ∞

0 e−
∫ x

0 μ2(ξ) dξ dx < 1 and λ ≤ α.

Appendix B. Proof of Step 3 in Theorem 3.2

First, we recall the definition of algebraic multiplicity of an eigenvalue from the
work of Gupur [15, page 5].

DEFINITION B.1. Let T be a linear operator whose domain D(T) and range R(T) both
lie in the same complex normed linear space X. Assume γ ∈ σp(T), then the dimension
of

{x ∈ D(T) | Tx = γx}

is called the geometric multiplicity of γ. We call the smallest integer k such that

{f ∈ D(Tk) | (γI − T)kf = 0} = {f ∈ D(Tk+1) | (γI − T)(k+1)f = 0}

is the algebraic index of γ. The dimension of the spectral subspace

RangP = Rang
{ 1

2πi

∫
Γ∗

(γI − T)−1 dγ
}

is called an algebraic multiplicity of γ, where Γ is the circle with centre γ and
sufficiently small radius such that there are no other eigenvalues of T except for γ.

DEFINITION B.2. Let T be a linear operator whose domain D(T) and range R(T) both
lie in the same complex normed linear space X. Assume γ ∈ σp(T). If the geometric
multiplicity of γ and the algebraic index of γ are equal to 1 simultaneously, then the
algebraic multiplicity of γ is also equal to 1 and called a simple eigenvalue of T.

According to Definitions B.1 and B.2, to prove that 0 is a simple eigenvalue of
operator (A + B + C)∗ with algebraic multiplicity one is equivalent to verify that the
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geometric multiplicity of 0 and the algebraic index of 0 are equal to 1 simultaneously.
Therefore, we show that as follows. Let

X∗ = {�Q = (Q0, Q1, Q2, . . .)T | ‖�Q‖ = sup{‖Qn‖, n = 0, 1, 2, . . .} < ∞}

be the adjoint space of X, where Qn = (Q0,n, Q1,n, Q2,n, Q3,n(x))T ∈ R3 × L∞(R+)
and ‖Qn‖ = sup{|Q0,n|, |Q1,n|, |Q2,n|, ‖Q3,n(x)‖L∞}, n = 0, 1, 2, . . .. Let (A + B + C)∗ be the
adjoint operator of (A + B + C), then for all �Q ∈ X∗, we can verify that

(A + B + C)∗�Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0Q0,0 + βQ2,0 + λQ3,0(0)
HQ1,0 + λQ1,1 + αQ3,0(0) + μ1Q2,0

−λQ2,0 + λQ1,0
μ(x)Q0,0 + FQ3,0(x) + λQ3,1(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
...⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EnQ0,n + βQ2,n + nθQ3,n−1(0) + λQ3,n(0)
HQ1,n + λQ1,n+1 + αQ3,n(0) + μ1Q2,n

−λQ2,n + λQ1,n
μ(x)Q0,n + FQ3,n(x) + λQ3,n+1(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with the domain

D((A + B + C)∗) = {�Q = (Q0, Q1, Q2, . . .)T ∈ X∗ | Qn ∈ R3 × L∞(R+),
Q3,n(x) are continuous functions},

where

En = −λ − β − nθ, Fφ(x) =
(
− d

dx
− λ − μ(x)

)
φ(x), H = −λ − α − μ1.

Obviously, operator equation (A + B + C)∗�Q = 0 has the nonzero solution

�Q(k) = k ((1, 1, 1, 1(x)T, (1, 1, 1, 1(x))T, . . .)T, k � 0.

Thus, 0 is the eigenvalue of (A + B + C)∗ and the geometric multiplicity of 0 is 1.
Now, we show that the algebraic index of 0 is also equal to 1. Let �Q(k′) be the

eigenvector of 0 and let �P′ ∈ N(A + B + C) which satisfies 〈�P′, �Q(k′)〉 � 0. We assume
that there exists �Q∗ ∈ X∗ such that (A + B + C)∗�Q∗ = �Q(k′), then we have

0 = 〈(A + B + C)�P′, �Q∗〉 = 〈�P′, (A + B + C)∗�Q∗〉 = 〈�P′, �Q(k′)〉 � 0,

which indicates a contradiction. Therefore, there is no �Q∗ ∈ X∗ such that (A + B +
C)∗�Q∗ = �Q(k′). According to Definition B.1, the algebraic index of 0 is equal to 1, and
thus 0 is a simple eigenvalue of the operator (A + B + C)∗ with algebraic multiplicity
one.
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