B.J. Geldzahler¹³, K.J. Johnston¹, J.H. Spencer¹, E.B. Waltman¹, W.J. Klepczynski², P.E. Angerhofer², D.R. Florkowski², D.D. McCarthy², and D.N. Matsakis² ¹E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D. C. 20375 ²U. S. Naval Observatory, Washington, D. C. 20390 ³NRC/NRL Cooperative Research Associate

In Table I we present the list of 38 celestial objects that have been observed since January 1978 at 2.7 and 8.1 GHz with the Green Bank interferometer. The sources fall naturally into three categories: radio stars, possibly Galactic sources, and extragalactic sources. SS433, Cyg X-3, and each extrgalactic source is measured several times per day while the other sources are measured once every three days. Reports on the entire program will be found in Geldzahler et al. (1983a), and on specific sources: SS433--Johnston et al. (1983a), BL Lac--Johnston et al. (1983b), Cyg X-3--Geldzahler et al. (1983b) and elsewhere in this volume), and CTA 26--Spencer et al. (1983).

We have defined for the variable sources a "rapidity index" which gives the number of maxima/year. This index includes major outbursts as well as "flickering". We also show in Table I the value of k (-d (log S _)/d(log λ)). The values of this index fall into three groups: k > 0, k \sim 0, and k \sim -0.4. A uniform source that is initially optically thick and whose energy losses occur primarily through adiabatic expansion should yield k = -1 (c.f. van der Laan 1966). We find that k > 0 when we have an optically thin object such as SS433 or Cyg X-3 during outburst. To make the value of k \sim -0.4 more agreeable with the standard model, we suggest the uniformity should be replaced by a variable opacity throughout the source. Finally k \sim 0 in those sources, such as the "quiescent" Cyg X-3, where repeated, rapid flickering has stretched and weakened the magnetic field in the immediate vicinity of the source.

REFERENCES

Geldzahler, B.J. <u>et al</u>.: 1983a, to be submitted to A. J. Geldzahler, B.J. <u>et al</u>.: 1983b, Ap. J. (Letters) in press. Johnston, K.J. <u>et al</u>.: 1983a, A. J. in press. Johnston, K.J. <u>et al</u>.: 1983b, Ap. J. (Letters) in press. Spencer, J.H. <u>et al</u>.: to be submitted to Ap. J. van der Laan, H.: 1966, Nature 211, 1131.

R. Fanti et al. (eds.). VLB/ and Compact Radio Sources, 179–180. © 1984 by the IAU.

Table I.	List	t of Program Sources				
Source	ID	a Observing Interval	Redshift	RI	k	Other Names
a. Radio Stars						
0236+610		5001-5007		I		LSI 61 +303
0323+285		4976-5006				UX Ari
0334+004		4971-5010		28.1:		HR1099
1617-155		4977-5517				Sco X-1
1909+048		4067-5017		574	0.53±0.03	SS433
1956+350		4976-5135			_	Cyg X-1
2030+407		4971-5017			0 04, +0 5	i Cyg X-3
2259+586		4974-5129				GF2259+586
b Possib	ly Ga	lactic Objects				
0125+628		4976-5517	1	4.0		G127. 11+0. 54
2013+370		4983-5517		3.7		G74. B9+1. 22
c Extragalactic Objects '						
0224+671	Q	3942-5517		3.6		
0235+164	BL	4971-5148		4.1 -	0. 42±0. 05	DD160
0237-234	G	3941-5148	2.223	1.5		OD-263, PHL8462
0316+413	G	3942-4056		I		3C84
0336-019	ġ.	3942-5148	0.852	6.0 -	0.01±0.03	CTA26
0355+508	EF	3941-5148		3.1		
0402-362	0	3941-4066	1.417	8.7:		
0727-115	-	5060-5148		24 9	0 09+0 02	
0742+103	FF	3942-4040. 5010-5059		1		
0851+203	BL	3942-5148	0.306::	3.9-	0. 48±0. 01	0J287
00004000	0	2842-4044	0 100	т		C28 25 04247 04240
09644450	0	2942-5517	0.077	21 -	0 04+0 02	637. 237 DH2077 BK340
1224+022	0	3042-5617	0 150	·	0. 0410. 0E	SCORE ACON DO NOAR DO DA SOL
1045-107	Š.	2042-5517	0.100	<u>``</u> ``		502757 4002. 527 M(H6400) 6N0447 BH524
1328+254	Ğ	3942-5517	1.055	0.0		3C287, 4C25, 43, NRAD424, OP247, DA345
1328+307	0	3942-5517	0 849	0 0		30286, 4030, 26, NR40425, OP348, DA346, CT460
1502+104	õ	2942-5517	1 833	27+0	08+0 03	08103
1510-272	å	3943-4047	1. 000	11 0		8/105
1641+200	ä	3941-5517	A 505	0.4		20245 AC28 48 NRA0512 00248 RA420
1749+701	BL	3943-5517	0. 375	2.4 -(0. 03±0. 04	W1
		00.40				5000F
1901+319	G	3943-4066		1		30342
2021+614	G	5010-5059		1		
2037+511	G	3943-4066	1.686			3C418, 4C51, 12, NRAU636
2048+312	Q.	49/0-551/	3.18	22.3		CL4
2134+004	G	4011-5517	1.936	I		MHL61, DADD3, DX057
2200+420	BL	3942-5517	0.0688	5.7 -0	. 30±0. 09	BL Lac
2251+158	G	3942-5517	0.859	3.9 -0). 12±0. 01	3C454. 3, 4C15. 76, DY185, NRAD701, DA506
2345-167	0	3942-4066	0. 600	20. 6:		02-176

a As of 1 July 1983 b Emission line redshifts taken from Hewitt and Burbidge (1980) c Rapidity Inder: the number of maxima per year: I= variations exist by the value of RI cannot be determined with reliability, -- = no obvious variation, : = value is uncertain due to short time base d k = (d log peak flux density)/(d log frequency) e In Cug X-3. k⁻⁰. 5 during optically thin outbursts and k⁻⁰.4 during optically thick outbursts