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LATTICE ISOMORPHISMS OF ORTHODOX
SEMIGROUPS

KATHERINE G. JOHNSTON

To the memory of Professor F.D. Cleary

It is shown that the set of all orthodox subsemigroups of an orthodox semigroup
forms a lattice. This lattice is a join-sublattice of the lattice of all semigroups, but is
not in general a meet-sublattice. We obtain results concerning lattice isomorphisms
between orthodox semigroups, several of which include known results for inverse
semigroups as special cases.

1. INTRODUCTION

Lattices of subalgebras have long been studied for various types of algebras, for
example groups, semigroups, completely simple semigroups, and inverse semigroups.
(See, for instance the surveys [15] and [16].) However, as was pointed out in [9], the
set of all regular subsemigroups of a regular semigroup does not form a lattice in any
natural way. We show here that for orthodox semigroups the partially ordered set
of regular (orthodox) subsemigroups of an orthodox semigroup S does form a lattice,
although it is not a sublattice of the lattice of all subsemigroups of S.

In Section 3 we consider lattice isomorphisms between orthodox semigroups, and
show that modular inverse semigroups are strictly lattice determined within the class
of orthodox semigroups.

In Section 4, lattice isomorphisms of simple and 0-simple orthodox semigroups
are studied in detail. We show that modular inverse semigroups are lattice determined
within the class of orthodox semigroups. The class of simple orthodox semigroups whose
non-zero idempotents do not form a left-zero or right-zero band is seen to be lattice-
closed. These results include several known results for inverse semigroups as special
cases.
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202 K.G. Johnston [2]

2. PRELIMINARIES

For a semigroup S, we shall denote by £ (5) the lattice of all subsemigroups of 5 .
If S is an orthodox semigroup, CO(S) will mean the set of all orthodox (equivalently,
regular) subsemigroups of 5 . Clearly CO(S) C £ ( 5 ) , and CO(S) is partially ordered
under set inclusion. Also, £ 0 ( S ) has a greatest element and a least element, S and
</>, respectively.

THEOREM 1. TaJre any orthodox semigroup S, and let {Si: i G /} be any subset
of CO(S). Then the join, V{S;: i G / } , is an orthodox subsemigroup of S.

PROOF: It suffices to show that T = V{5,-: i G 1} is regular. Take any x € T, say
x = XiiXij • • •*»„ , where Xik G 5,-fc . Each x,-t has an inverse x\ in Sik , and by [13],
x'inXin-i *'' x'h ^ V(x) > s o * ^las a n i n v e r s e in T. D

COROLLARY 2 . Let S be an orthodox semigroup. Then CO(S) is a complete
join-subsemilattice of C(S).

The following is an elementary result from lattice theory. (See, for example [3].)

RESULT 3. Let P be a partially ordered set with least and greatest element. If every
subset of P has a least upper bound in P, then P is a complete lattice.

Combining this with Theorem 1 we get the following.

THEOREM 4 . Let S be an orthodox semigroup. Then CO(S) is a complete
lattice.

From Theorem 4 we know that any subset of £O(S) has a meet; Theorem 6 below
gives a description of the meet. The meet in £(5) is set intersection. We give an
example to show that this is not the case in CO(S).

EXAMPLE. Let S = M°({0, 1}, {e}, {0,1, 2};P) where P = 0 e and {e} is the

e 0.
trivial group. Then A = M°({0, 1}, {e}, {0, 1};Q) and B = M°({0, 1}, {e}, {1, 2};R)
where

0 ej [e 0,
are regular subsemigroups of S, but A fl B — M°({0, 1}, {e}, {1}; [0 e]) which is not
regular. The meet of A and B in CG(S) is the one element band M°({1}, {e}, {1}; [e]).

In order to characterise the meet in CO(S) we use the following result due to T.E.
Hall [5, Result 7]. For a semigroup 5 , let Reg(S) denote the set of regular elements of
S.

RESULT 5. The regular elements of a semigroup S, Reg(S), form a subsemigroup if
and only if the product of any two idempotents of 5 is a regular element.
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We shall use the symbol A for the meet operation in CO(S). This will not cause
confusion since set intersection is the meet in C(S) and we shall consistently use D in
that case.

THEOREM 6 . Let A and B be orthodox subsemigroups of the orthodox semi-

group S. Then A A B = Reg(A fl B).

PROOF: Since A A B C A and A A B C B, clearly A A B C AnB, and since

A A B is regular, AAB C Reg (AnB).

Now Reg(AnB) C A and Reg{AnB) C B. Also Reg(AnB) £ £0(5 ) , by
Result 5, and hence Reg (AOB)CAAB. D

3. LATTICE ISOMORPHISMS

We shall say that two orthodox semigroups 5 and T are lattice isomorphic if there
is an isomorphism $ of CO(S) onto CO{T). A mapping a from 5 to T is said to
induce $ if A$ = Act for all A in CO(S).

Notice that if 5 is an inverse semigroup, then CO(S) is just the lattice of inverse
subsemigroups of S. Call an inverse semigroup S strongly (lattice) determined by
CO(S) within the class of orthodox semigroups K. if every lattice isomorphism from
5 to an orthodox semigroup T in K is induced by an isomorphism of 5 onto T. In
this section we shall show that the bicyclic semigroup B is strongly lattice determined
within the class of orthodox semigroups. If we restrict ourselves to the class of inverse
semigroups, we obtain the known result that B is strongly lattice determined within
the class of inverse semigroups.

First an example will show that an orthodox semigroup which is not inverse may
be lattice isomorphic to an inverse semigroup. Thus the class of inverse semigroups is
not necessarily lattice closed.

EXAMPLE 7. Let 5 = {e, / } be the two-element semilattice, and let T — {g, h} be the
two-element right-zero semigroup. Clearly, CO(S) = CO(T), but 5 is not isomorphic
to T.

Take any two orthodox semigroups 5 and T such that CO(S) is isomorphic to
CO(T) under the (lattice) isomorphism $, say. The atoms of CO(S) are precisely
those orthodox subsemigroups {e} where e is in Es- Thus $ induces a one-to-one
correspondence a from Es to ET, and Es$ = (V{{e}: e £ Es})$ = V{{e}$: e £

LEMMA 8 . Suppose S and T are orthodox semigroups, $ a lattice isomorphism

from CO(S) onto CO(T), and a the induced bijection from Es onto ET • Let e, f £
Es- Then {e, / } is a sufasemigroup o/ 5 (equivalently, eTZf, eCf, or e is comparable

to f) if and only if {ea, fa} is a subsemigroup of T.
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PROOF: Suppose (e, / ) = {e, / } . Thus

(eo, fa) = (ea) V (fa)

= ((e)*)V «/>*)

= {«,/}*•

Now {e, / } covers precisely the atoms {e} and {/} in CO(S) so {e, / } $ covers
precisely the atoms {e}$ = {ea} and {/}$ = {fa} in £ 0 ( T ) , whence {e, / } $ =
{ea, fa}, and so {ea, fa} is a subsemigroup of T. That $ - 1 is a lattice isomorphism
of T onto 5 gives us the reverse implication. U

Recall that the band ET is a semilattice Y of rectangular bands V(e), e £ ET •

(See, for example [7, Chapter VI].) Hall [6] defined a band E to be almost commutative

provided that ab = ba for all o, 6 in E where (a, 6) $ VE.

LEMMA 9 . If £O(S) = CO(T) and Es is a chain and e £ ET, then

(i) V{e) is either a left-zero or right-zero semigroup,

(ii) the structure semilattice of ET is a chain, and

(iii) ET is almost commutative.

PROOF: (i) By way of contradiction, suppose that V(e) has two 7^-classes and two

^-classes. Then there are distinct elements e, / , g, h 6 V'(e) such that eTZf ChiZg.

By Lemma 8, / and g are comparable elements in a rectangular band, a contradiction.

(ii) Take any e, f £ ET such that V(e) ^ V(f). By Lemma 8, e and / are

comparable, and thus V(e) and V ( / ) are comparable.

(iii) If e, / € ET and (e, / ) g VBT , then (e, / ) g U and (e, f) i C, whence e

and / are comparable. Thus ef = fe. D

LEMMA 1 0 . (Jones [11, Lemma 2.1]). If U and V are proper inverse subsemi-

groups of the bicych'c semigroup B such that U V V — B, then P f l V ^ B .

The technical lemma below generalises [11, Lemma 2.2].

LEMMA 1 1 . Suppose s is an orthodox semigroup such that Es is a semilattice

Y of rectangular bands V^e), e E Es, and Es is almost commutative. If, for each

e € Es, V{e) is a left-zero or right-zero semigroup and Y is a chain, then any union

of ~DS-classes is an orthodox subsemigroup.

PROOF: Take any collection {£><: t £ 1} of X>s-classes of 5 , and set D —

\J{Di: i £ I}. Select any x, y 6 D, say x 6 £ \ , y £ Dj. Pick x' G V{x) and

Case 1: Suppose x'xTZyy'. Then x'x £ Ry D Lx, and hence xy £ Rx D Ly (see [2,

Theorem 2.17]), xyVx, that is xy£D{.
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Case 2: If x'xCyy', a proof analogous to case 1 will suffice.
Case 3: Assume x'x ^ yy'. In this case, since y'x' 6 V(xy),

(xy)H(xy)(y'x') = x(x'x)(yy')x' = x{x'x)x' = xx'TZx. Thus xyTlx
and xy £ Di.

Case 4: x'x > yy'. Then xyCx'xy — x'xyy'y = yy'y = y, whence xy £ Dj CD.

Hence D is closed under multiplication, and clearly each element of D has an
inverse in D. D

In what follows, B will denote the bicyclic semigroup, T an orthodox semigroup,
and $ a lattice isomorphism from CO(B) to CO(T) Since EB is isomorphic to Cu,
any subset of EB is a regular (inverse) subsemigroup of B. Clearly, then, any subset
of ET is an orthodox subsemigroup of T. Assume B = (b, 6"1), where bb~1 > b~*b.

LEMMA 12. If CO{B) = CO(T) under the lattice isomorphism $ , tien T is
bisimple.

PROOF: Suppose T is not bisimple. Take any X>-class D of T, and set C —
T\D ^ 0. From Lemma 11 we know that C is an orthodox subsemigroup of T. Clearly
C V D -T, and C AD CCnD -Q. Thus the inverse proper subsemigroups C*"1

and D&'1 of B satisfy C*"1 V D*" 1 = B, and C*"1 D D*" 1 = 0, a contradiction,
by Lemma 10. D

The following result of Jones characterises the full inverse subsemigroups of B
(those containing all the idempotents of B).

LEMMA 13 . (Jones [11, Corollary 1.5]). Every non-idempotent full inverse sub-
semigroup of B has the form {E, b~mbm+n) for some unique integers m ^ 0, n ^ 1.

THEOREM 14. IfT is any orthodox semigroup such that CO(B) S CO(T), then
T is an inverse semigroup.

PROOF: Suppose that T is not inverse. Then there are idempotents e, / £ ET
such that ef ^ fe. By Lemma 8, eTZf or eCf; say eTZf. We claim that there is
an idempotent g of ET which is comparable to / , and g ^ f. Suppose not. Then
for every g £ ET, fR-9 or f Cg by Lemma 8, and similarly elZg or eCg. Since we
assumed ellf, the only possibility is fiZg. Thus ET is a right-zero semigroup.

Notice that the subgroups in a lattice of orthodox subsemigroups are precisely those
elements containing exactly one idempotent. That B is combinatorial therefore implies
that T is combinatorial, and hence T is isomorphic to ET • Since B is not a semilattice,
this is a contradiction, and there is an idempotent g £ ET which is comparable to / .
By Lemma 9, ET is almost commutative, so that g is comparable to e also. Since T
is bisimple by Lemma 12, there is an element a of T with inverses a', a* 6 V(a) such
that aa' = e, aa* = f, and a'a — a*a — g. Thus by [2, Lemma 1.31] (a, a') and
(a, a*) are bicyclic orthodox subsemigroups of T.
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By a result of Jones [11, Theorem 3.1], the bicyclic semigroup is strongly lattice
determined within inverse semigroups. Since we assumed that B is generated by the
elements 6 and 6 - 1 , then a bicyclic subsemigroup of B is generated by two elements
of the form &-m6m+n and b-m~nbm. It follows that (a, a1)®'1 = (b-mbm+n) and
(a, a*)$ - 1 = (b~kbk+h) for some integers TO, k ^ 0 and n, h ^ 1.

A result of Johnston and Jones [9, Lemma 1.1] states that if a is an element of
a full regular subsemigroup A of a regular semigroup 5 , then Vs(a) C A. Therefore,
(a, a') V ET = (ET, a, V(a)) = (a, a*) V ET. From this we have ((a, a') V ET)®'1 =
(b-mbm+n) V EB = (EB,b-mbm+n), and ((a, a*) V ET)^'1 = {b~kbk+h) V EB, =
(EB, b~kbk+h). Using Lemma 13, b-kbk+h = b~mbm+n, whence (a, a') = (a, a*),
a contradiction. D

As was mentioned in the above proof, B is strongly lattice determined within the
class of inverse semigroups. Jones' result [11, Theorem 3.1] is actually stronger, showing
that the lattice isomorphism $ is induced by a unique isomorphism of B. This yields
the following corollaries.

COROLLARY 1 5 . If $ is a lattice isomorphism of CO{B) onto CO(T), then T
is isomorphic to B under a unique isomorphism induced by $ .

COROLLARY 16 . Suppose that S and T are orthodox semigroups, and CO{S) =
£O(T). Then S is completely semisimple if and only if T is.

PROOF: 5 contains a bicyclic subsemigroup if and only if T does. D

4. SIMPLE ORTHODOX SEMIGROUPS

In this section we show that the class of simple orthodox semigroups which are not
completely simple is lattice closed. In addition we obtain results about lattice isomor-
phisms of some simple inverse semigroups within the class of orthodox semigroups.

Following [9], we shall define a regular semigroup S to be modular [distributive] if
and only if its lattice of full regular subsemigroups is modular [distributive]. Clearly, if
5 and T are orthodox semigroups with $ : CO(S) = CO(T), then $ restricts naturally
to an isomorphism between the lattices of full orthodox subsemigroups of 5 and T.

RESULT 17. [8, Theorem 15]. Take any inverse semigroups S and T. If 5 is a simple
modular inverse semigroup which is not a group, and $ is a lattice isomorphism from
£O(S) onto CO(T), then S is isomorphic to T under a unique mapping induced by

Recall that up to isomorphism the only fundamental simple inverse w-semigroups
are the semigroups Bj. (d — 1, 2, 3, . . . ) . (See [7, V.7].) We can regard Bd as an
inverse subsemigroup of the bicyclic semigroup B — (6, 6"1), with d P-classes -D(o,d),

)i •••> D(d-i,2d-i), where D(iid+i) is the bicyclic subsemigroup (b~xbd+l).
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THEOREM 1 8 . Taie an orthodox semigroup T such that CO(Bd) ^ CO{T).

Then T is inverse.

PROOF: Suppose not. Then there are distinct idempotents g, h of ET such that
either gTlh or gCh, say gilh. Now fa}*"1 = {e} and {/i}*"1 = {/} for some
idempotents e, / £ Bd; however e and / are comparable, say e > f. Since De is a
bicyclic subsemigroup, £>e$ is bicyclic by Corollary 15. Now g £ D e $ so there is an
idempotent k in £>e$ such that k < g, and it follows that there is an a £ T, a' G F(a)
such that aa' = <7 and a'a = k.

By Lemma 8, ET is an almost commutative band, and since k < gTZh in .Ey,
we also have k < h. Now kCaTZgTZh, so we can find a* £ F(a) such that aa* — h

and a*a = k. Clearly, (a, a'} and (a, a*) are bicyclic, so (a, a ' ) $ - 1 = (b-mbm+n) and
(o, a*)*" 1 — (b~pbp+q) for some integers m, n, p and q.

We see that k — a*a — a'a G (a, a') A (a, a*), so ((a, a') A (a, a * ) ) $ - 1 =
(a, o ' ) # - 1 n ( a , a*)*" 1 = (&-m&m+n)n(&-p&p+«) ^ 0 by Corollary 15. But b-mbm+n £

D(itd+i) and 6-P6P+' g £(,-,*+,-) for some i, j . Hence D ( i ) l i + i ) n P ( i i ( i + i ) 3 (6 - m 6 m + n )n

(6-P&P+?) ^ 0, so D(i,d+t) - -D(i,d+i)- N o w / e ^(«,*+0 = DU,d+i) ^ -0* a1111 from

this we conclude that {g, h} = {e, / } $ C D e $ which is bicyclic by Corollary 15, so g
and h are comparable, a contradiction. U

COROLLARY 1 9 . U$ is a iattice isomorphism of CO(Bd) onto CO(T) for an or-
tAocfox semigroup T, then Bd is isomorphic to T under a. unique isomorphism induced

by $ .

PROOF: By a result of Jones [10, Proposition 4.1], Bd is distributive. The corol-
lary then follows from Result 17. D

LEMMA 20. Taie any lattice-isomorphic orthodox semigroups S and T and any

isomorphism $: £0(5) -> CO{T). Let a: Es -* ET be the bijection induced by $.

Take any e, f £ Es • Then

(i) e > fVse if and only if eot > fa VTea, and

(ii) e > / Jse if and only if ea > faJTea.

PROOF: (i) Put g = ea, h — fa, and suppose that e > fDe. Then there is an

element a in 5 and a' £ V(a) with aa' = e and a'a = f. Then g, h £ (a, a')$, which

is bicyclic (by Corollary 15, since (a, a') is bicyclic), and thus gT>T h and g > h, by

the uniqueness of the isomorphism in Corollary 15.

The converse follows, since $ - 1 is a lattice isomorphism of CO(T) onto £O(S),

and induces the map a"1 of ET onto Es •

(ii) Assume e > fjse. A result of Ault [1, Corollary 3.2] implies that if e and /

are idempotents in a regular semigroup 5 with e > fjse, then there exists a simple ui-

subsemigroup A containing e and / . Then A is isomorphic to a Bruck-Reilly extension
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of a finite chain of groups U, and the Bruck-Reilly extension of the chain of idempotents
in U is thus a simple combinatorial w-subsemigroup, that is, is isomorphic to Bd, for
some d.

Thus, ea, fa £ A3?, which is isomorphic to a copy of Bd in T. Since Bd is simple,
A$ C Jea, and then ea > fa by the uniqueness of the isomorphism in Corollary 19. 0

For the remainder of this paper, if S and T are orthodox semigroups with
$ : CO(S) —» CO(T) an isomorphism, we shall denote by a: Es —> ET the bijection
induced by $.

LEMMA 2 1 . Suppose T is any orthodox semigroup and S is any simple inverse
semigroup with $ : CO(S) —> CO(T) an isomorphism. Then T is simple.

PROOF: Take any g, h £ ET and let ga-1 = e and ha*1 = f. Since S is simple
there is an idempotent k of S such that eVsk and k < ef ^ e. By Lemma 20,
p = eaT>Tka and fca < ea. Since S is simple, k, ef, e and / are »75-related, so by
Lemma 20, ka < (ef)a < fa. By [5, Result 5], T is simple. D

LEMMA 22 . Under the hypotheses of Lemma 21, T is inverse.

PROOF: From Lemma 20 if follows that a is an order isomorphism from (Es, ^)
onto (ET, ^ ) - Take any g, h 6 ET, and let e = ga~*, / = ha-1. If g and /i
are comparable, then gh — hg, so assume g and /i are not comparable. Now e and
/ cannot be comparable, so (e, / ) = {e, / , ef}, and thus (e, / ) $ = ((e) V (/))$ =
(e)$V(/)$ = {g)V(h) = (g, h) has three elements, so g and h are not 72.-or £-related.
Since gh, hg G (g, h), checking of several cases shows that gh = hg, and hence T is
inverse. U

If 5 is a simple inverse semigroup which is not completely simple and CO(S) is
isomorphic to CO(T), then from Lemma 20, T is not completely simple. The following
corollary then follows immediately from Result 17 and Lemma 22.

COROLLARY 23 . If S is a simple modular inverse semigroup which is not com-
pletely simple and T is an orthodox semigroup such that $ : CO(S) = CO(T), then S
is isomorphic to T under a unique isomorphism induced by $ .

Before proving our next result, we consider a useful technical lemma. (The author
thanks T.E. Hall for this observation.)

LEMMA 24. A regular semigroup S is simple if and only if any two comparable
idempotents are 0 -related.

PROOF: If suffices to show that if any two comparable idempotents of 5 are J-
related, then any two idempotents of 5 are ^-related. Take any e, / € Es- Now
Jef ^ Jf, and thus by [4, Theorem 1] there is an idempotent g £ Jej such that g ^ / .
By hypothesis Jg = Jf, and hence Jf = Jg = Jef. Similarly, Je = Jef, so Je = Jf as
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desired. D

We can now prove one of the main theorems.

THEOREM 2 5 . Suppose S and T are orthodox semigroups, and $ a lattice iso-

morphism of CO(S) onto CO(T). If S is simple but not completely simple, then T is

simple but not completely simple.

PROOF: Take any g,h £ ET with g > h. Put e — get'1 and / = ha~x. If e
and / are comparable, then by Lemma 20 we are done, so assume e and / are not
comparable. Lemma 8 implies that eTZf or eCf. Since 5 is not completely simple,
then there is an idempotent k of S such that k < f. By Lemma 20 and the simplicity
of 5 , ka < fa = h and therefore ka < g. Now (e, fc)$ = (g, ka) = {g, ka}, so either
eTZk, eCk, or e and k are comparable by Lemma 8. Since k < f € V(e), checking
shows that k ^ V[e), whence (e, k) ^ 1Z\JC Thus e and k are comparable, and by the
simplicity of 5 and Lemma 20 it follows that ka JTea — g. From Jka ^ Jh ^ Jg — Jka
we obtain hJTg. From Lemma 24, T is simple.

To see that T is not completely simple, take idempotents e, f of S with e > / .
Then Lemma 20 gives us ea > fa in T, so T is not completely simple. Q

In contrast to the case of inverse semigroups (see [12, Theorem 2.1]), the assump-
tion that 5 is not completely simple cannot be dropped. This is evident from Example
7. However, with a small additional hypothesis, we do get a corresponding theorem
about completely simple orthodox semigroups.

First we need a result about rectangular bands. We shall call a rectangular band
E non-singular if both H and C are non-trivial on E.

RESULT 26: (Shevrin [14, 15]). If a non-singular rectangular band E is lattice
isomorphic under $ to a band F, then E is isomorphic or antiisomorphic to F under
the mapping induced by $ .

THEOREM 27 . Suppose S and T are orthodox semigroups, and $ : CO(S) =
CO(T). If S is a completely simple semigroup such that Es is non-singular, then T
is completely simple.

PROOF: By Result 26, ET is a rectangular band; hence T is completely simple. U

We shall now derive analogues of Theorems 25 and 27 for 0-simple semigroups. As
was noted in [12], if CO(U) =* CO(V), then CO(U°) =* CO^1). This may happen
in the case of 0-simple semigroups if 5* — S \ {0} is an orthodox subsemigroup of S.
We shall use the notation U < V to mean that U is an orthodox subsemigroup of V.
If L is a lattice and x, y 6 L with x ^ y, we shall use the notation [x, y] to denote
the interval {z 6 L: x ^ z ^ j /} .

THEOREM 28 . Suppose S and T are orthodox semigroups which are lattice iso-
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morphic under $ . Suppose S is 0-simple, and Es \ {0} is not a left zero or right zero
semigroup. Then either T is 0-simple, or S* < S and T - (S**)1 where 5*$ is
simple.

PROOF: Notice that since 0 is comparable to every idempotent in S, 0a = u is
either comparable, 7?.-related, or £-related to every idempotent in T. We claim that
u is comparable to every element of ET- For suppose that u is incomparable to k for
some keET, and let t = ha'1. By Lemma 8, u(Tl U C)k, say u Uk.

If 5 is not completely 0-simple, then there is an idempotent / < tjs f'. Let
h = fa. Since / > 0, then either h is comparable to u or h(TZ\J C)u by Lemma 8.
From Lemma 20 we have h — fa < ta = k JTfa = h. If h > u, then k > h > u,

which contradicts the hypothesis, so h(Tl\J C)u. Since h<k, h <£ V(k) = V(u). Thus
(/i, A;) ^ 72. U C, a contradiction.

Now assume that 5 is completely 0-simple. Then there exists an e € Es \ {0}

such that eT>st and (e, t) £ TZ U C since Es \ {0} is not a right-zero or left-zero

band. Let g — ea. Since e and t are incomparable, g and k are incomparable

and (g, h) (£. Ti. U £ by Lemma 8, and by the same lemma, g is comparable to u or

g(RUC)u. If g(TZUC)u, then uilk and (g, k) $ TZl)C implies gCu. Then V(u) is

a non-singular rectangular band, and by Result 26, V(0) is a non-singular rectangular

band in Es, a contradiction.

The only other possibility is that g is comparable t o u . If et £ Re H Lt, then V(t)

is a non-singular rectangular band, and hence so is V(ta) — V(k) — V(u), which is a

contradiction. Thus H = RcC\Lt is not a group, and H2 = {0}. Let a £ 5 and a' the

inverse of a in Rt(~\Le. Then the subsemigroup (a, a') — {a, a', e, t, 0} G CO(S), and

note that et=te = 0. Let B - (a, a')$ and take any b£ B\ET and V G V(6) n B.

The subsemigroup (b, b') is in CO(T). Since (a, a') covers precisely the orthodox

subsemigroup {e, t, 0} and contains no non-trivial groups, then B covers precisely

{ea, ta, 0a} = {g, k, u}, so (b, b') = B. Also bb' ^ b'b since i? contains no non-

trivial subgroups. Hence {bb', b'b} = {g, u} or {g, k} or {tt, k}. If {bb', b'b} = {g, u},

then B contains the bicychc semigroup, and hence so does (a, a'), a contradiction. If

{bb', b'b} = {g, k}, then gT>TkTLu, and since g is comparable to u, {g, u} is contained

in a bicychc semigroup, and by Corollary 15, so is {e, 0} in 5, again a contradiction.

So {bb', b'b} — {u, k}, say 66' = u and b'b = k, whence we have b7iB k. Hence

b — k, which is not possible. We conclude therefore that tt is comparable to every

idempotent in T.

It now follows that {u} is a j7"T-dass. For if there is another idempotent g, say,

in Ju, then since tt is comparable to g, by Lemma 20 ua" 1 = 0SSga~1 •

Next we shall prove that any two comparable idempotents of T \ {u} are JT-

related. Suppose that g, h 6 ET \ {«}, and g > h. Let e = ga-1, f = ha'1. From
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Lemma 8 we have e is comparable to / or e(H U C)f. If e is comparable to / , then by
Lemma 20, gJTh. So now assume e(R\JC)f, say e 11 f. (The case eCf will follow
in a similar fashion.) We consider two cases.

Case 1: 5 is not completely 0-simple.

Then there is an idempotent k with / > k > 0. By Lemma 20, h > kaJTh, so
g > ka. Hence e and k are comparable or e(1ZU C)k by Lemma 8. Since f > k, the
latter is impossible. Again by Lemma 20, g JT ka and so g JT h.

Case 2: 5 is completely 0-simple.

If e and / are contained in a non-singular rectangular band, then by Result 26,
g and h are contained in a non-singular rectangular band, and hence gj^h. If e
and / are not contained in a non-singular rectangular band, then since Es \ {0} is
not a left group or a right group, there is an idempotent k ^ 0 with k (£ V(e). Let
o G Re H Lk, and let a', a* be inverses of o with a' E Rk H Z / , o* G Rk D Le.

Then a2 = 0, and (a, a') = {a, a', f, k, 0} and (a, a*) = {a, a*, e, k, 0} . Hence
(a, a') covers precisely the orthodox subsemigroup {e, k, 0} , (a, a*) covers precisely
the orthodox subsemigroup {/, A;, 0}, and neither (o, a') nor (a, a*) contains any non-
trivial groups. As earlier in the proof, (a, a ' )$ = (6, 6'), (a, a*)$ = (c, c') for some
b, c G 5 $ , 6' G V{b) and c' G V(c). We see that {66', 6'6} = {g, ka}, {ka, u} or
{g, u}. The last two possibilities can be eliminated since (6, 6') is not bicyclic, so
{66', 6'6} = {g, ka}, and similarly {cc1, c'c} = {h, ka}, and it follows that gVTh.

This completes Case 2.

It now follows that any two comparable non-ii idempotents of T are j/^-related,
and thus either Ju ^ Ja for all a £ T, or Ju $C Ja for all a E T. In the first case, then
there is only one ,7T-class below J u , for if e, / G ET \ {«}, then Ju > Je "^ Jef ^
Jf < Ju, and by [4, Theorem 1], Je — Jc/ = Jf • In this case we claim that u is the
identity for T. Take any x G T and any x' G V[x). Then u ^ xx ' , so uxx' = xx'

and ux = x. Similarly xu — x. Now T \ {u} is an orthodox subsemigroup of T, so
5* < 5 , 5*$ = T \ {u}, and 5*$ is simple by Lemma 24.

Suppose J-a ^ Ja for all a € T. Then w is the zero of T. Take any g, h G J E T \ { « } -

If gh ^ u, then ^ ^ ghgJThgh ^ A, and by the above argument, gJTghg and
hJThgh, whence gSTh. So assume gh = u, and let e = ^ a " 1 and / = Aa"1.
Since (p, h) — {g, h, u}, (e, / ) = {e, / , 0} , and so ef = fe = 0. Since 5 is 0-simple,
there is a non-zero idempotent k in 5 such that eT>sk ^ / , and clearly ek = 0.
Choose a £ Re H Lk and an inverse a' G -R* l~l £ e . Then (a, a') — {a, a', e, k, 0},
and as in previous arguments, (a, o')$ = (6, 6'), where {66', 6'6} C {g, h, u}, and
since (6, 6') is not bicyclic, {66', 6'6} = {g, h}, so that gVTh. Thus there is only one
non-{tt},7T-class, and we conclude that T is 0-simple. D

It is not possible to omit the hypothesis that Es \ {0} is not left zero or right zero,
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as the next example shows.

EXAMPLE 29. Let 5 consist of two 7£-related idempotents, e and / , with zero ad-
joined. Let T be the three-element chain g > h > 0. Then CO(S) and CO{T) are
isomorphic as shown below, S is 0-simple, but T contains three »7T-classes.

S T

{h,0]

(h)(el

UXS)
The next theorem shows that the situation cannot get much worse than this, how-

ever.
THEOREM 3 0 . Suppose S is a right group or left group (possibly with zero ad-

joined), and T is an orthodox semigroup with $ : CO(S) = CO{T). Then T is a chain
of left groups and right groups.

PROOF: Suppose S is a right group or left group (with zero adjoined). By Result
26, T contains no non-singular rectangular bands. No two ,7T-related idempotents are
comparable by Lemma 20, and since any two idempotents of T are either comparable or
72.U£-related by Lemma 8, any two ,7T-related idempotents are therefore all 7£-related
or all £-related. Suppose we take two distinct ,7T-classes, say Jg and Jh. containing
idempotents g and h, respectively. Then g and h are comparable since they are not
1Z U £-related, and thus Jg and Jh. are comparable. Hence, each ,7T-class is a left
group or a right group, and the 3 -classes form a chain. U
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