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DISSIPATIVE OPERATORS AND
SERIES INEQUALITIES

HERBERT A. GINDLER AND JEROME A. GOLDSTEIN

Of concern is the best constant K in the inequality

\\Ax\\ 2 K\\A a;||||a;|| where A generates a strongly continuous

contraction semigroup in a Hirbert space. Criteria are obtained

for approximate extremal vectors x when K = 2 ( J 5 2 always

holds). By specializing A + I to be a shift operator on a

sequence space, very simple proofs of Copson's recent results on

series inequalities follow. Inequalities of the above type are

also studied on IF spaces, and earlier results of the authors

and of Ho I brook are improved.

1. Introduction

There is a large literature on norm inequalities involving dissipative

operators on Banach spaces. This literature can be traced back to

inequalities of Landau, Hardy and Littlewood which take the form

(1.1) ([ \f'(x)\Pdx) £ K{\ \f"(x)\Pdx\ ([ \f(x)\Pdx)

where J is [0, °°) or (-°°, °°) and 1 £ p £ °° (with the usual

interpretation for p = °° ). Recently Copson [2] established some
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inequalit ies for inf in i te series based on an analogy with the case p = 2
in ( l . l ) . One of our purposes is to show that Copson's results follow
easily from certain operator theoretic versions of ( l . l ) .

Our attempt to generalize [2] led quite naturally to questions
concerning the existence of extremals and approximate extremals in the
operator theoretic versions of the case p = 2 of ( l . l ) . This led to
resul ts which can be considered as extensions of and were motivated by the
works of Kato [6] and of Kwong and Zettl [7] , [«] .

In the final section we establish some inequalities involving

dissipative operators on U spaces. These include series inequalities

(in I norms] and other inequalities as well. These results are
obtained using techniques we introduced in [3] . One of the theorems in
th i s section was motivated by the work of Hoi brook [4] ,

2. Approximate extremals in Hilbert space

Let A be a linear operator on its domain V(A) c X to X , where X

is a real or complex Banach space. As in [3] let

C(X; A) = inf{fe : \\Ax\\2 2 fc|U2a:||||x|| for a l l x € V[A2)} .

PROPOSITION 2.1 . Let L t I be a contraction on X (that is,

\\L\\ 5 1 J, and let A = L - I . Then A is m-dissipative and

1 S C(X; A) 5 k . Moreover, if X is a Hilbert space, then C(X; A) 5 2 ,

and C(X; A) = 1 if A is normal.

Proof. If L i s a contraction and t > 0 , then

etA\\ = e - * | | e « | | < , -\\et

tA i

whence the semigroup [e : t 2 0} generated by A i s contractive, and

so A i s m-dissipative [JO]. The inequality C(X; A) 5 1* for

m-dissipative operators A was proved by Kail man and Rota [5] . Kato [6]

showed that C(X; A) < 2 holds if X is a Hilbert space. If A (or L )

i s normal, then

||An||2 = (Ax, Ax> = <A*Ax, x) < ||i4*Ac||||x|| = ||i42x||||x||

because \\A*y\\ = \\Ay\\ by normality. Thus C(X; A) < 1 . This was noted
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earlier in [3] , [9] . I t only remains to show that C(X; A) > 1 in a l l
cases. Since L t I i s equivalent to A f 0 , choose unit vectors a; € X

with lim ||As || = ||4|| . From
n

p | | 2 = l i m \\Ax ||2 < C(X; X) l i m |U 2 o ; II 5 C ( X ; 4 ) I M I | 2

i t follows that C(X; 4) > 1 . D

Of course, C(X; 4) = 0 if and only if A = 0 if and only if
L = I , which is t r i v i a l .

Now le t A be any operator with C(X; 4) f in i te . An extremal for 4

is a unit vector x in V[A ) such that A x i- 0 and

An approximate extremal sequence for ^ is i sequence \x } of unit

vectors in V[A ) such that X x + 0 and

lim \\Ax ||^ n

-1
= C(X; A) .

THEOREM 2.2. Let A be an m-dtssipative operator on a Hilbert

space H . Then:

(i) C(H; A) < 2 ;

('iiJ C(H; A) = 2 and there i s an extremal for A if and only

if there is a unit vector x in V(A) and a positive

constant X such that

(2.1) A2x + XAx + \2x = 0

and

(2.2) ReOl2*, a;) = 0

where < •, •> denotes the inner product on H and Re
denotes the real part of a complex number;

(Hi) if there is a sequence of unit vectors {x ) in V[A )
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and a positive constant X such that

(2 .3) Ax —H 0 , A x + XAx + X x •*• 0 ,

and Re(i4 x , x > •* 0\ n nl as n •*•<*> s

then C(H; A) = 2 and {x } is an approximate extremal

sequence for A ;

(iv) conversely, if A and A~ are bounded and if

C(H; A) = 2 , then there is a sequence of unit vectors

{xn\ in V[A2) and a \ > 0 satisfying (2.3).

Proof. Parts (i) and (ii) are due to Kato [6], while (Hi) and (iv)

are new. Our proof of (Hi), which is based on the work of Kwong and ZettI

[7], will prove (i) and (ii) as well. To begin with, let p > 0 and

define

P = A2 + vA + u2l .

For x € V[A ) define a = a(u, x) by

a = 2 Re(A{Ax+vx), \i(.Ax+vx) > .

Clearly a 5 0 since A is dissipative. Also, an examination of

<P x, P x) expanded by linearity yields the identity

(2.U) a = IIP^H2 - \\A2x\\2 - vk\\xf * V
2\\Axf .

2
If A x = 0 then Ax = 0 by dissipativi ty. If Ax f 0 we set

\i = {||/l2a;||/11*11}* in (2.1*). We deduce, after dividing by u2 ,

(2.5) l|Ar||2 - allxllp^ir1 + HP^flHUlAir1 = 2||A||||ar|| .

Since a S 0 , (2.5) implies that C(H; A) £ 2 . Moreover, C(H; A) = 2

and a unit vector x i s an extremal for A i f and only if a = 0 and

P x = 0 in (2.5). But P x = 0 i s equivalent to (2.1) and a = 0

reduces to (2.2) . Thus (i) and (ii) are proved.

Using (2.5) again, C(H; A) - 2 if and only if there is a sequence
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{x } of unit vectors in V[A ) such that A x^ t 0 and

(2.6) lim (||P x ||2-a " = 0

where u = U x and a = a[\s , x ) . (This makes
n || n\\ n * n n'

\\Ax \\2IA2XJi * 2 .) Unfortunately this condition, which is -both

necessary and sufficient for {x } to be an approximate extremal sequence

for A , is rather cumbersome. Thus we turn to the simpler condition of

(Hi) .

The hypothesis of (Hi) implies, by (2.5),

Uxf + (llP^H^aJpxJI"
1 = 2\A\\

where a = a ( X , x ) s O . By taking a subsequence if necessary we may

assume \\A x is bounded away from zero. By hypothesis, lim P,x = 0
II »ll n^ A n

and

a = 2 Be((A2+U)x , \Ux +AX ))

= 2 Re(-X2x , -A2x ) + o(l) since P,x •* 0
\ n n/ A n

= 2X2

as n •+ °° by (2.3). This completes the proof of part (Hi).

For the proof of (iv) consider the necessary and sufficient condition

(2.6) for C(H; A) = 2 . Since A and A'1 are both bounded, by taking a

subsequence if necessary we may assume that lim A x = X where X is

II 2 II*
positive. We now verify (2.3). We have V ~ \\A x \\ "* A and»

hypothesis,
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0 = l im P x = lim \P,x + (y -\)AX + U2-X2 he \\

= lim P,xX n
J1-W0

since the term in square brackets converges to zero. To complete the proof

of (iv) note first that a •+ 0 . Next, since y -+ A and Pyx •*• 0 ,

yi n An

a^n' Xr) = a ^ '

= 2

I t follows that Reul x , x J -*• 0 as w

REMARK 2.3. Theorem 2.2 (i«-> can be generalized as follows. Note

that if A is m-dissipative and if e, 6 are positive numbers, then the

operators A . = A(I-cA) + 61 are bounded, have bounded inverses, are

m-dissipative, and converge to A in the following senses as e, 6 •*• 0 :

A£&x •* Ax for a; € 0(4) ,

[U-A^'^x •* (XI-4)"1x for x ? H and X > 0 ,

exp(t/3e(5)x •* exp(W)x for x i H , t > 0 .

Thus if C(H; 4 ») = 2 for sufficiently small E and 6 , we can apply

(iv) to A , and then use a Cantor diagonalization argument to conclude

that (2.3) is a necessary condition for A .

REMARK 2.4. For A = L - I with L a contraction, the extremal

conditions (2.1) and (2.2) become

(2.7) L2x + (\-2)Lx + (X2-X+l)x = 0 ,

Re<(2L-L2)x, x> = 1 .

Similar expressions hold in the approximate extremal case.

REMARK 2.5. By Proposition 2.1 and i t s proof, for A nonzero,

m-dissipative and normal on H , C(H; A) = 1 and there is an extremal for

A i f and only if there is a unit vector x and a positive number X such
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that A*Ax = Ax ; that is, A has an extremal if and only if A*A has a

nonzero eigenvalue. When A = L - I where L is unitary, the equation

A*Ax = Ax becomes, using L* = L ,

L2x + (\-2)Lx + x = (L-aD(L-BJ)x = 0 .

Thus A has an extremal if and only if L has an eigenvalue other than

one.

REMARK 2.6. Consider the extremal equation (2.1) to be solved for

A > 0 and x € V[A ) when H is complex. Factor this equation as

U-aI)U-&Dx = 0 .

If (X-BJ)x = 0 , then Ax = &x , whence

\\Axf = |e| 2W| 2 = IM2x||||x|| .

This cannot give C(H; A) > 1 . It follows that if x is an extremal for

A with C(H; A) = 2 we must have y = Ax - fte t 0 and Ay = ay . A

similar remark holds for approximate extremal sequences.

3. Series inequalities

Let IK denote the (real or complex) scalar field. Let a = -°° or

a = 0 and set

for 1 S p < » with the usual modification for p = °° . These are, of

course, the standard Lebesgue sequence spaces.

THEOREM 3.1 (Copson [2] - note the error in the conclusion of this

theorem on page 109). £e£ {x.} ._ be a sequence of real or complex

°° 2
numbers such that £ |x.| is convergent. Then, for Ax. = x. - x.

? J J+l 7

Ij=.co 3
ie convergent and
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(3.1)

Equality holds in (3.1) if and

inequality (3.1) is best possible.

THEOREM 3.2 (Copson

A2x.
3\ I I*.I

£/ x. = 0 /or a£Z

. Let {*•}"_,, be a sequence of real or
3 3~v

aomplex numbers such that £ |x . | is convergent. Then
3=0 3=0

A2x.
3

convergent and

(3.2)
=0 3=0

A2x.
3

2

.7=0

where Ax . = x . - x . as before. Equality occurs in (3.2) if and only if
3 3 1 J

x. = 0 /or all 3 . Finally the constant h in (3.2) is best possible.
3

Proofs. These results follow readily from the results of the previous

section. To prove Theorem 3.1 let H = IS-™) . Let L be the bilateral

shift defined by Lx = y where y = {y .} ._ and y . = x. for all j .
0 3 ~ * 3 i?+-»-

Then L is unitary and L + I . By Proposition 2.1, C(H; L-I) = 1 .

Since Ax = {Ax.}._ , (3.1) follows. Since L has no eigenvalues, A
3 3

has no extremals by Remark 2.5- Theorem 3.1 is now proved.

For the proof of Theorem 3.2, let H = IA0) and define the

unilateral shift L by Lx = y where y = {y .} .__ and y . = x. for
3 3~ *•' 3 3

all j 2 0 . Then L is a contraction on H , whence for A = L - I ,

C{H; A) < 2 by Proposition 2.1, proving (3.2). It remains to show that

C(H; A) = 2 and that A has no extremals.

For the moment assume that C{H; A) = 2 . Then, by Remark 2.5, there

are no extremals for A since L has no eigenvalues.

To show that C{H; A) = 2 and that an approximate extremal sequence

exists, we use Theorem 2.2 (Hi). The extremal equation (2.7) (and the

associated approximate extremal equation) is a second order difference

equation whose general solution can easily be found explicitly. Doing so
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leads us to look for an approximate extremal sequence [x f of the form

xn =

x = p£ sin(a.pn+B.) , j > 0 .

Elementary, but rather tedious calculations, which we omit, show that if we

k • 1
take p = 1 - £ , a. = 3 j(l-e) , 6- = -IT/3 , and 0 < e < 1 , and if

•* 0 3

we write the resulting x as x , then the sequence

approximate extremal sequence for A . The calculation is the one hinted

at by Copson [2], and this is the one part of Copson's paper that we have

been unable to simplify. The proof of Theorem j.2 is now complete. •

4. Inequalities for m-dissipative operators

For A an m-dissipative operator on a Banach space X let

C(A, x) =

for x € V[A2) with A x t 0 , so that C(A, x) is the smallest constant

k which makes the inequality

IUx||2 < *||A2ar|| IMI

valid. (Consequently C(X; A) = sup C(A, x) .) In this section we shall
x

establish some results about C{A, x) , especially when X is an iP

space. These results complement and improve some of our earlier results

[3] and some of those in [4]. Examples include the case when

X = Z"(o) and A is the difference operator as in the proof of Theorem

3.2.

For our first result we use Hoi brook's measure a(X) of how

"Euclidean" a Banach space X is [4]. Set

(U.I) a (X) = sup

It is easy to see that 1 5 a(X) < 2 and that X is a Hilbert space if

and only if a(X) = 1 . One interprets a(X) as a measure of how close X
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i s t o a Hi lber t space. Using Clarkson's i n e q u a l i t i e s [ / ] , Holbrook [4]

showed t ha t

(U.2) a(X) < 2 U-2/p|

i f X is a subspace of an If space.

THEOREM 4 . 1 . For X > 0 let B, = (\I+A)(\I-A)~l be the Cayley
A

transform of an m-dissipative operator A on X . Let

M = sup{||Bx|| : X > 0} . Then for all x € V[A2) ,

(U.3) \\Ax\\2 5a(X)[l-nf)\\A2x\\\\x\\ .

Proof. For x € V[A2) and X > 0 we have the identity

2\Ax = (A2x+\2x) + Bx(-4
2x-X2x) ,

from which i t follows that

{k.h) 2\\\Ax\\ < \\A2x+\2x\\ + ||Bxl||U2x-X2x|| .

The Cauchy inequality Y a.b.A 33
2

UX2||/lx||2 S

S2a(X)(l+||Bx||2)(||42x||2+xN|x||2)

by (U.I). If -42x * 0 , sett ing X2 = ||/52x||Hxlf1 yields

( U . 5 ) IMx||2 < a(X

and (U.3) fol lows. •

REMARK 4.2. When X is a Hilbert space the above result reduces to

Kato's theorem [6] because a(X) = M = 1 in this case. Also, (U.5) (which

gives an estimate on C(A, x) ) generalizes Theorem 2.2 in [3] because, in

the notation of [3], 1 + llB^H2 < 2M[x; \J and (U.2) holds. Moreover,

(U.5) generalizes Theorem 9 of [4] since one can readily check that, in the

notation of [4], HB^H < 2>(X) .
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THEOREM 4.3. Let A be m-dissipative on X , a subspace of an If

space, and let q be the conjugate exponent, p + q = 1 . Let

x € V[A2) with a2x # 0 and let X = X̂  = (||42a:|i/||a:||)^ . If 2 5 p < » ,

(it.6) \\Ax\\2 < ( I + I I B ^ ) 2 V2*lllkll ,

while if 1 < p 5 2 ,

f*.7) llArir 2

Proof. Apply Holder ' s inequa l i ty

to {h.k) t o obtain

l'?) ' (

t y one of Clarkson's i n e q u a l i t i e s [ ' , p . hOO]. Take X = [\\A x||/||x||) ,

plug i n , manipulate and square; then C*.6) comes out . To prove {h.j), one

proceeds in a s imi la r manner; only t h i s time the re levant Clarkson

inequal i ty [ / , p . 1*00] i s

l|a*i/llp + \\x-y\\? S

for x, y 6 LP and 1 < p 5 2 . D

REMARK 4.4. If A is m-dissipative on a subspace X of iP then

a variant of the proof of Theorem l+.l shows that

\\Ax\\2 S 22-2lp{c^c^2\\A2x\\\\x\\

for x £ V(A ) with A2x t 0 . Here
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and X = (||ii2a:||/||a:||)* . In the "Copson case" of A = I - I with L a

contraction, one easily shows that e < 1 and a £ 2 . In some cases

these estimates can be improved for certain values of X . For instance,

o2 = H/KXI-/1)"1!! < \\A\\/\ -* 0 as X - » . Also, ^ = \\X[{\+l)I-L)~X\\ - 0

as X •*• 0 if one is in the resolvent set of L , that is if L - I has a

bounded inverse. If L is dissipative, then

ox = HxtU+Di-L)-1!! s x/(x+i) ;

and from [I+By) + [J-B\) ~ 2I t h e inequalities

a1 < e2 + 1 , c2 < ox + 1

follow.

As in [3], we write T € MQ if T = {T(t) : t > 0} defines a (C )

contraction semigroup on (the simple functions of) L (fi, £, y) for each

p , 1 < p < °° . Let -4 (or A ) denote the generator of T acting on

Lp , and let

Mp = sup{| |Bx | | : X > 0}

where B, is the Cayley transform of A . SetA p

M, = l i m i n f M , M = l i m s u p M .
1 p <° P

THEOREM 4 . 5 . Let A generate T 6 Mfl and l e t « , A^ be as above.

Then

(U.8) C(L?; X) < a 1 - 2 ^ ^ -

i f 2 < p < » , wfciZe i f K p < 2 ,

(U.9) C(lP; A) S 2 2 / P - 1 [ l + « { / P - 2 ) < 2 2 / P - 1 ( l + 3 U / p - 2 )

Proof. This is proved just like Theorem 2.U in [3] except that

Theorem k.l above is used in place of Theorem 2.2 of [3]. D

REMARK 4.6. Note that, in the above theorem, c[lP; A) < h whenever
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Ct.lO) 1.1*85 Z.P* K P K P* ~ 3.O6U

where p* is the unique solution of the transcendental equation

log2r = log3((l6r-l)/9) , r = 2
2~2/p* ,

and a similar result holds for pt . (The numbers p* and p* were

computed approximately on an HP-25 pocket calculator.) Of course,

p*1 + p*"1 = 1 . Compare (lt.8)-(U.10) with the poorer estimates (2.11),

(2.12) of [3].

Theorem U.5 can be sharpened as follows. Let C(A, x) be as in the

first paragraph of this section.

THEOREM 4.7. Let the hypotheses of Theorem k.5 hold, and let

1 < p < 00 , ie-t; p = 1 or p = •» according as p - 2 or p > 2 . Let

x € flw 4 : p between 2 and p\ and let

\\\\A x\\2/\\x\\\ : p between 2 and p\ .•\ = inf'

Then

C[Ap, xJ^I

where e = 1 if \ > 1 while s = ((3-X)/(l+X))2 if 0 < X < 1 .

Replacing s by M~ , or A^ gives the estimates (U.8) and (U.9).

The theorem is proved by the proof technique of Theorem h.5; we omit the

details.
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