
ON NULL-RECURRENT MARKOV CHAINS 

JOHN LAMPERTI 

1. Introduction. Throughout this paper, the symbol P = [Ptj] will 
represent the transition probability matrix of an irreducible, null-recurrent 
Markov process in discrete time. Explanation of this terminology and basic 
facts about such chains may be found in (6, ch. 15). It is known (3) that 
for each such matrix P there is a unique (except for a positive scalar multiple) 
positive vector Q = {qt} such that QP = Q, or 

(1) 1i = L S**V. 
t 

this vector is often called the "invariant measure" of the Markov chain. 
The first problem to be considered in this paper is that of determining for 

which vectors f/(0) = {/iï(0)} the vectors £/(n) converge, or are summable, to 
the invariant measure <2, where U(n) = U(0)Pn has components 

(2) Mj = 2 ^ Mi Pij = 2^ Mi Pij-
i i 

In § 2, this problem is attacked for general P. The main result is a negative 
one, and shows how to form C/(0) for which U(n) will not be (termwise) Abel 
summable. As this negative result shows, the operators formed from P do 
not obey the mean ergodic theorem. (It is interesting to contrast this situation 
with the case when P is the stochastic matrix of an ergodic Markov chain (6).) 
However, in § 3 more inclusive positive results are found for two special 
classes of matrices P. 

The invariant measure may be used to form a stationary process as follows : 
let Ni° be independent Poisson random variables with respective means qu 

and suppose that at time 0, Â ^0 particles* are placed in state i of the Markov 
chain. Suppose that each particle thereafter moves according to the law of 
the chain independently of the others, and let N/1 be the number of particles 
in state i at time n. Then for each n, the random variables N* are independent, 
Poisson, and have means qt. These facts are due to Derman (4, Theorem 2). 
It is then natural to ask if there are not non-stationary processes associated 
with P which converge to this stationary process as a limit, and in fact 
Derman has already done so in (4). The vectors An with components N " 
form a Markov process which has an "invariant measure"; and the general 

Received January 19, 1959. This work was supported by the U.S. Office of Naval Research. 
*We shall speak of "moving particles" throughout without further apology. More exact 

statements may easily be supplied (as been done in (4)) at some cost in intuitive appeal. 
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theory of such processes together with other arguments, yields a variety of 
results. Here we will take a slightly different point of view. 

Actually, the first problem described above is closely connected with the 
second in the following way: let Nt° be independent, non-negative integer-
valued random variables with means /i*(0), and as in the construction of 
Derman's stationary process put Nt° particles into state i at time 0 and let 
the particles move independently. Then it is not hard to see that iV/\ the 
number of particles in state i at time n, has mean Mi(w)- Therefore the term-
wise convergence of £/(n) is a necessary condition for the existence of Poisson 
limiting distributions for the Nt

n. In § 4, we give a sufficient condition that 
these limiting distributions exist and are Poisson; the condition roughly is 
that £/(n) converge term wise and the variances of the Nt° are not too large. 
This theorem is closely related to Theorem 6 of (4), and the proof is similar; 
however, our result, with the aid of the material of §§ 2 and 3, does apply 
to certain cases where the hypotheses of (4) are not satisfied. This sort of 
theorem has also been discussed by several other authors for the case of 
spatially homogeneous (sums of random variables) processes. 

In § 5 a different sort of convergence is considered. Instead of putting all 
the particles into the various states of the Markov chain at time 0, they can 
be introduced continually into some fixed state and allowed to diffuse away 
from it. It is shown that this can always be done in such a way as to obtain 
convergence to Derman's stationary process. This sort of process was suggested 
to the author by F. Spitzer. 

Finally, we observe that many of our results have analogues in the case 
of continuous time-parameter Markov chains. With the aid of recent work 
on such chains, mainly that of K. L. Chung, it appears that proofs quite 
similar to those in the discrete case can be given. These ideas will not be 
carried out in this paper. 

2. The convergence of Uw. The multiplications Ui6)Pn will be well 
defined provided that 

(3) IMH <Mq{l 

and this condition will be assumed hereafter. It is also assumed that the 
Mf(0) are real. 

THEOREM 1. Suppose that for each i the sequence f*i(n) is Abel summable; call 
the limits Mi- Then there is a constant a such that /x* = aqt for all i. 

Proof. Without loss of generality we can assume that MÏ(0) > 0. For in any 
case, there is an M such that 

vT = „<°> + Mqt > 0, 

and Viin) is summable to nt + Mqt\ if these numbers are multiples of the qt 

by a constant, so are the ^-. 
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Now proceeding formally we have 

2 Ufa = S Pa lim { (1 - *) Z ^ À = «m (1 - x) 2 P , , E M?'*" 
i i x->l— \ n J x-^1— i n 

= lim (1 - x) £ xM 2 „?>?„ = lim ± — ^ 2 / 4 B + V + 1 = M,--
£->l— n i x->l— % n 

Actually the exchanges of limits are justified; the first one since 

0 < (1 - x) £ M*10*" < Mqt for all x Ç (0, 1), 

so that the sum over i is uniformly convergent, and the second since the 
terms summed are non-negative. Hence, nt are a solution of (1), and \ii > 0 
since we assumed /Zi(0) > 0 for all i. The uniqueness of such solutions com
pletes the proof. 

We shall use (m) to denote the Banach space of bounded sequences of real 
numbers (sup norm) and (c) for the subspace of convergent sequences. This 
notation and other facts about Banach spaces used below may be found in (1). 

THEOREM 2. Let {xt} £ (c), and let /x/0) = xtqi. Then for all i, 

(4) lim /4W) = qtlun {XJ}. 
n 

Proof. We can assume that xt —> 0, since if the limit is a we consider 
IJLiW — aqt instead of /Zi(0). If e > 0, by the hypothesis we can put 

(0) (0) , (0) 

where |^ (0 ) | < \qi*. and only a finite number of co/0) are different from 0. Now 
for each j 

(n) _ V ,, (0)P (w)_^n 
i 

since P*/w) —> 0 for each i , j (6). Also, it is easy to see from (1) that 

(»)i V » (0)P (n) | < ±*a 

Hence for large n, \ntw\ < eqt and so fjLt
(n) —> 0 for every i. This and the 

remark above prove (4). 
The theorem just proved seems far from what one might hope for, but it 

does provide a class of sequences which, in any order, when multiplied by 
the invariant measure yield a vector Uw for which U(n) is convergent. 
Actually, the convergent sequences are the only ones with this property: 

THEOREM 3. For each P and each sequence {x2} Ç (ni) but which is not con
vergent, there is a permutation w of the positive integers such that if U(0) is formed 
using the rearrangement of {Xf}, that is, 

(0) 

then for some i, fi>i^ fails to be Abel summable. 
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The proof rests on two lemmas, which may be of independent interest. The 
first is a much less precise version of the theorem. 

LEMMA 1. For each P, there exists a sequence {xt} £ (m) such that if' fjLt
{0) = xtqi 

then for some i, fjLi(n) is not Abel summable. 

Proof. Let l(q) be the Banach space of sequences {ji} such that 

Ibll = E \yt\qt< »• 
i 

With respect to the inner product 

(?» x) = 23 y#i&ij 
i 

(m) is the conjugate space of l(q). We can use the matrix P to define an 
operator T of norm one on l(q): 

\Ty}i= 23 Pay*-
j 

It is easily verified that the operator J1* on (m) defined by 

{T*x},- = ~- 23 x&iPij 
9.3 i 

is the adjoint of T. 
Let dk stand for the sequence whose &th term is one and the rest zero. Then 

for |z| < 1, 

((1 - z) £ *nTnb\ bl) = qi(l -z)Z P%zn 

V n / n 

which has limit 0 as s —> 1 —. This means that for fixed j if the vectors 
(1 — z) ^nz

nTn8j have a weak limit as z —•> 1 —, that limit must be zero. But 
for any z < 1, 

( ( l - s ) Ç *»7V,l)=s,. 

Therefore (1 — 2) ^nz
nTnhj does not converge weakly to zero, and hence 

has no weak limit. But the space l(q) is weakly complete; we conclude that 
there exists a linear functional (that is, a sequence {xt} Ç (m)) such that 

((i - *) 23 *WÏV, *) = (i - z) 23 *V, r*»*) 

= ( l - z ) I / E *4*P« = (1 - «) Z 2KM̂B) 

does not have a limit as z —» 1 —. This is the assertion of the lemma. 

Remark. We have actually proved that for each j , there is an x Ç (w) 
such that if /Xj(0) = xtqu then the /x/w) are not summable. It is not hard to 
add that there is an x with non-negative components such that for no j does 
/jLj(n) form an Abel summable sequence; this is not needed in the proof of 
Theorem 3. 
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LEMMA 2. In the class of closed subspaces of (m) which are invariant under 
all reorderings, (c) is maximal. 

Proof* Let (d) be a closed subspace of (m) containing (c) and such that 
{xi} Ç (d) implies {xri} Ç (d) for any permutation -K of the integers. Suppose 
that (d) contains a sequence consisting only of l 's and O's and with an infinite 
number of each. Then (d) contains all sequences containing only l's and O's. 

A sequence will be called "simple" if it contains only finitely many different 
numbers. Under our assumptions, all simple sequences belong to (d), since 
such a sequence is a finite linear combination of sequences consisting of l 's 
and O's. But any bounded sequence can be uniformly approximated by 
simple ones, so (d) must equal (m). 

Now suppose instead that (d) contains some sequence which is not con
vergent, say {ji). Then there must be two convergent subsequences, say 
{jnii)} and {ym{i)}y with limits a and /3 respectively, a ^ $ 9^ 0. By adding 
two suitable convergent sequences and multiplying by a constant, we can see 
that {zi\ Ç (d), where 

2n«) = 1, Zmd) = 0, and Zj = — — 
a — p 

for other values of j . (d) then also contains [wi] where 

wn(2i) = 1, wn(2i-i) = 0 = wm(i), and Wj = Zj 

otherwise, since this sequence was obtained from {zt} by a rearrangement. 
Subtracting, we obtain a non-convergent sequence of l 's and O's only which 
belongs to (d)} and by the argument above we conclude that (d) = (m), 
which completes the proof. 

Proof of Theorem 3. The quantities Hi{n) are now defined by (2) using the 
matrix P under consideration. Let (e) be the class of all sequences {xt} Ç (m) 
such that if /Zi(0) = xviqi} then /z/n) is Abel-summable for each j and for each 
permutation w of the integers. By definition, (e) is invariant under reorder
ings; by Theorem 2 (e) D (c). It is not hard to see that (c) is a closed 
subspace of (w), but from Lemma 1 we know that (e) 9e (m). Therefore 
by Lemma 2, (e) = (c), which proves the theorem. 

3. Special classes of P. In the previous section, dealing with arbitrary P 
having no intrinsic ordering of the states, we considered sequences giving 
rise in any ordering to convergent M/W)- Here we shall look at certain Markov 
chains in which there is a natural order for the states. First consider a Markov 
process consisting of sums of independent, identically-distributed random 
variables Xn taking integer values, and let P be the matrix of transition 
probabilities. Then q3- = 1 for all j is a solution of (1) ; the sequences /*/0) 

satisfying (3) are just those in (m). Let 

*A discussion with Halsey Royden was very helpful in proving this lemma. 
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PJ = Pr(X„ = j) and *(*) = £ einxpn. 
n==—oo 

(In this section, the letter i will not be used for an index.) 

THEOREM 4. If 

(5) ^ = ̂  + JT/^FC*), 
w&ere *>/0) —> 0 as j —> ±: oo aŵ Z F(x) w 0/ bounded variation, then txk

(n) is 
Cesàro summable for each k. If gcd{j : pj = 0} = 1 , the sequences ixk

{n) are 
convergent. 

Proof. In view of Theorem 2, we can assume the v/0) are zero. Then by (5), 

M£B) = £ M W = f Z P%eiixdF(x). 
j *J—ir j 

But 

Pg ) = Pr(X1 + . . . + Z n = É - i ) , 

so that 

Pjke = <t> (X). 
3 

Hence 

(6) ^ = JV*<r»<^(*). 
If gcd{j : pj = 0} = 1, x = 0 is the only point in [— x, w] at which |0(#)| = 1, 
and so fxk

(n) converges to the jump of F(x) at 0. If the gcd = d, say, then 
|0(#)| = 1 only when eix is a dth root of unity, and Cesàro convergence 
follows from (6). 

Another type of Markov chain with intrinsic ordering of the states is a 
random walk. Karlin and McGregor have shown (7) that for every random 
walk on the non-negative integers there is a non-decreasing function \p(x) 
such that 

(7) PÏÏ = q*J_iX
nQj(x)Qk(x)dt(x)J 

where as usual q0- are a solution of (1) and the Qj(x) are the orthogonal 
polynomials of the measure d\f/(x), normalized so that Qj(l) = 1. 

THEOREM 5. / / , in the case of a null-recurrent random walk, 

(8) *? = qAy, +$_QA*)dF(x)\ 

where F(x) is of bounded variation and yj —> 0, then ju/2w) converges for each j . 
The limits of M/W) exist if and only if F(x) is continuous at — 1; in any case 
the Cesàro limits exist. 
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Proof. As before, it is enough in view of Theorem 2 to consider the case 
when yj = 0 for all j . Using (7) we have 

(9) 4K> = lim Z uTr'P'S = lim qk f xnQk(x) £ ^ V Q , (*)<**(*). 

Putting w = 0 and taking note of (8) gives for each k 

qk Qk(x)dF(x) = lim qk Qk(x)dFr(x), 
« / - l r-»l— v —l 

where dFr(x) = ^j^jWriQj(x)d\p(x); this implies that for every polynomial 

f(*), 

lim i f(x)dFr(x) = f f(x)dF(x). 
r-»l— v —l •/—l 

Hence (9) can be rewritten as 

»? = q* J_xnQ*(x)dF(x) 

from which the conclusions of the theorem are obvious. 

4. Convergence to Derman's stationary process. In this section we 
assume that at time 0, there are Nj° particles in state j of the Markov chain, 
where the random variables Nj° are independent and 

/40) = E{N;),m, = E[N;(N; - \)\. 

The particles then evolve independently of each other according to the law 
of the chain, and the number in state j at time n is called N/1. It is easy to 
see from (2) that E(Nf) = /J/W) . It is also not hard to verify (Derman's 
computations in (4) do it) that if the N/ are all Poisson distributed, so are 
the N/1. In this case the question of the existence of limiting distributions 
as w-^oo reduces to the existence of limits of the sequences /x/w). 

We shall investigate a more general situation: 

THEOREM 6. Suppose that for some k, the moments of the random variables 
Nj° satisfy 

(10) lim max pfp^ = 0 and lim £ ) ro,(P$?)2 = 0. 
n -*» j n ->oo j 

Suppose also that /j,k = lim /zfc
(w) exists. Then as n —> °°, the distribution of Nk

n 

approaches a Poisson distribution with mean nk. 

Remark. For each k such that 

(11) lim max g ^ = 0, 
n^co j 

condition (10) holds provided the simpler conditions 

(12) \v{P\<Mqj and \m$\ < Mq) for all j 
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are satisfied. For most interesting types of Markov chains, (11) holds for 
all k. However, an example of a chain with a state not satisfying (11) can 
be constructed along the lines of Example 4 of (4). 

Proof of Theorem 6. The proof is based on the use of generating functions. 
Let 

and notice that 

f(
k
n\x) = E[xN\ 

m=n mk1 
where NJk

n is the number of particles which are in state j at time 0 and in 
state k at time n. For given n and k the N jk

n are independent, and N jk
n 

is the sum of Nj° independent random variables equal to 1 or 0 with prob
abilities Pjk

(n) and 1 — Pkj
{n). Combining these facts gives 

(13) ft\x)= IlfTd-PÏÏ+P**)-

Now under our assumptions, 

(14) / n i - P%\I - x)] = i - M W ( I - x) + \ejmj[PTAi - x)V 
where 0 < Qj < 1. Substituting (14) in (13), taking the logarithm, and using 
the estimate 

1 > log u > u — 1 
u 

for 0 < u < 1 yields 

log/n*) E (x - i)tfp. jk 

(15) 
7 -*-

(*_- WP% + hOfinAPWO. - x)] 

< \ E 6jmj[P%\l - x)]2 + 

(n)/ 

nfPfil -x) + \hm\Pf(\ - x)]2 

For n large, the first bounding term is arbitrarily small because of the second 
part of (10). The denominators of the second term are uniformly bounded 
away from 0 for large n, again by (10), and, further, it follows that the sum 
of the numerators in the second term approaches 0 as n increases. All these 
estimates hold uniformly in x for 0 < x < 1. Since it was also assumed that 

M* («) Hk, an additional estimate in (15) yields the conclusion that 

l imkrfV) = (x- 1)M* 

uniformly for 0 < x < 1, and the theorem follows. 

Remark. Theorems of a similar sort have been proved for spatially-homo
geneous processes by Maruyama (8) and (more generally) by Dobrusin (5). A 
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theorem (similar to Maruyama's) for the case of discrete time and states is 
found in (9); a very similar result can be deduced from Theorems 2 and 6 
of the present paper. Using in addition Theorem 3 allows a generalization, 
which overlaps with some of the results of (5).* 

5. Another type of process. In this section we suppose that a special 
state of P , say 0, has been selected and that Xn particles are put in state 0 
at each time n. As before, the Xn are independent, and each particle, once 
introduced, independently moves subject to the law of the Markov chain. 
Again let N* denote the number of particles in state i at time n\ let 
E(Xn) = an. It is not hard to see that 

(16) Em) = /zf = £ a ^ o T 0 . 
z=o 

First we shall study convergence properties of the / * j W , and then give a 
theorem analogous to that of the last section on the convergence of the 
distributions of Nt

n. 

THEOREM 7. If for some value of k, the sequence /jLk
in) is Abel summable to 

sum nk, then M*(W) is summable for all i to /x*, say, and there is a constant a such 
that fi i = aqi for all i. 

Proof. Let Ut(x) = X>t ( /°* n , A(x) = I > n x * , and Ptj(x) = XnPij(n)xn. 
From (16), 

(17) Ui(x) = A(x)Poi(x). 

From this and the hypothesis of Abel summability of /jLk
(n) we obtain 

A(x) ~ T
 M" , , 
(1 - x)P0k(x) 

as x —> 1 —. Therefore for any i, 

(1 - x) P0k(x) 

But it follows from Doeblin's ratio theorem (2) that 

XJ>i-Pok(x) qk 

Therefore {/Xi(n)} is Abel summable to qi^k/qk, which proves the theorem. 

THEOREM 8. For each P, there exists a monotone sequence of positive numbers 
an such that {uk

{n)} converges for every k. 

*This result obtained by combining our theorems 3 and 6, specialized to the case of the 
coin-tossing process, may be compared with the example at the end of §1 of (4). It can be seen 
that Derman's results do not contain ours, or vice versa. 
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Proof. Let us define the an by supposing that 

1 
A(x) = 

(1 -x )Poo(x) ' 

It is easy to verify that an I 0; in fact 

a<n — /oo -r Joo - + - . . . , 

where /# ( n ) are the first passage probabilities for P. In view of (17), this 
definition of A (x) implies that Mo(n) = 1 for all n. Now if * ^ 0, let 0Po*(n) 

be the probability of a transition from state 0 to state k in n steps during 
which state 0 is not revisited (2). It follows that if k 9e 0, 

P0k(x) = PQo(aOoi*o*(*), 

where oPok(x) is the generating function of the oPok(n)- Hence 

/ \ Pok(%) 1 r> / \ 
M*(x) = (i - *)/>«,(*) - r = ^ ^ ° * ( x ) -

But 2nojPoA;(n) < °° (2), which implies that lim nk
(n) = fxk exists. 

Finally we study the distribution of Nk
n; define 

ml = E{Xl{Xl- 1)). 

THEOREM 9. Let {an} be a sequence with the property specified in Theorem 8, 
and suppose that mn < Man

2. Then for each fe, Nk
n is asymptotically Poisson 

distributed; the asymptotic means are proportional to the qk. 

Proof. Let gi(x) be the generating function of Xh and again \etfk
in)(x) be 

that of Nk
n. Then 

/^n)(*) = I Î «iU - (i - *)pfzr% 
1=0 

We perform upon this generating function very much the same sort of 
estimate which was used in the proof of Theorem 6. The result is that 

lim log fj?\x) = (x r- 1) lim E alP
i
0

n
k-

l) = (x - 1)M* 

uniformly for x Ç (0, 1) ; the theorem follows. 
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