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ON UNIFORMLY CONTRACTIVE SYSTEMS AND
QUADRATIC EQUATIONS IN BANACH SPACE

DAVID K. RUCH

The solution of quadratic equations using the contraction mapping principle is con-
sidered. A uniqueness result extending that given by Argyros is proved. Uniformly
contractive systems theory is used to find approximate solutions and convergence
criteria are given. In particular, only pointwise convergence of approximating
operators is required to guarantee convergence of the approximate solutions. A
theorem and algorithm for a continuation method are presented, and illustrated
on Chandrasekhar's equation.

1. INTRODUCTION

We are interested in solving the quadratic equation:

(1.1) x =y + B(x,x)

for x £ X, where X is a Banach space, y £ X is fixed, and B : X x X —> X is a
bounded bilinear operator. Equations of this form appear frequently in applications,
such as scattering theory [6], elasticity theory [1] and the study of radiative transfer
[5, 2]. They are of particular interest in systems theory, where so-called "multi-power"
equations can be analyzed using properties of multilinear operators [8, 12].

Methods for solving equation (1.1) include series solutions (see [9, 3] and iterative
schemes. McFarland [7] obtained convergence criteria for the iterative scheme

(1-2) xn+1 = (I - BxJ-1 y.

In [12], the author and Van Fleet used a similar routine to solve a broader class
of equations. We also introduced uniformly contractive systems as a framework for
guaranteeing that certain approximate solutions in finite-dimensional subspaces would
converge to the solution of (1.1).

Another iterative scheme for solving (1.1) is

(1.3) xn+1 = B{xn,xn)+y.
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442 D.K. Ruch [2]

Convergence, existence, and uniqueness results for this approach have been obtained
elsewhere (for example, [1, 2]) using the contraction mapping principle. We extend a
uniqueness result given in [2], but are mainly interested in a variation on the scheme

(1.3) that will produce good approximate solutions and avoid iterating in infinite di-
mensional space. A standard approach for this is to use successive subspaces {Vn}

and approximate the solution to the problem in finite dimensional settings. Uniformly
contractive systems will be used to show that these finite dimensional approximations
do indeed converge to the true solution of (1.1). To formulate the finite dimensional
approximating scheme, we shall assume that Banach space X satisfies the following
condition.

(V) Suppose that X has a sequence of proper subspaces {Vn} and linear projec-
tions Pn : X —> Vn for which

]imPnx = x

for each x £ X.

We make the following observations.

• \i — sup Il-Pnll < oo since X is complete.
• The subspaces need not be nested, so finite element methods may be

applied.
• Any space X with a Schauder basis satisfies condition (V).

The spaces Vn — Pn(X) are usually taken to be finite dimensional, and the equation

(1.1) is replaced by

(1.4) x = PnB {x,x) + Pny

which is solved in Vn using the iterative method

(1.5)

Uniformly contractive systems will be used in Section 2 to show that zn —> z,,

where z, solves (1.1) and the zn solve (1.4). These results require the map B only to
be bounded and bilinear so the finite rank operators PnB need only converge pointwise
to B. If B is compact, a routine that avoids solving for any of the zn will be shown
to converge to z, .

Recall that a bilinear operator B : X x X —> X is compact if for any bounded set
S C X, the set B(S,S) is relatively compact. We shall need the following result in
Section 2.

PROPOSITION 1 . 1 . Suppose that X satisfies condition (V). II B is compact,

then

]im\\PnB-B\\=0.
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[3] Uniformly contractive systems 443

PROOF: It is clear that Pn converges uniformly to the identity map / on relatively
compact sets. Since B is a compact map, for any bounded set 5 C X, the set B (5)
is relatively compact. Hence

(1.6) \\{PnB - B) (5)|| = ||(PB - /)5(5) | | -> 0.

D
For more details on compact bilinear maps and their applications, see [11] and [4].

We conclude the paper with a section on approximating solutions using a con-
tinuation method similar to that given by Argyros [2]. This method is illustrated on
Chandrasekhar's equation

(1.7) H(s) = l + XH{s) f
Jo

and increases the range of positive values of A for which (1.7) can be solved from
0.424059 given in [2] to 0.473571.

2. SOLUTIONS TO QUADRATIC EQUATIONS

We begin by denning and giving relevant theorems for a uniformly contractive
system (UCS). The notion of a UCS was developed and used in [12] to provide a
general framework for obtaining iterative solutions to a class of multipower equations.
We shall use the concept of the UCS in conjunction with the scheme (1.5) discussed in
the introduction to construct approximate solutions to equation (1.1). Theorems 2.2,
2.3 and 2.4 stated below are proved in [12].

DEFINITION 2.1: Let X be a Banach space, {Vn} a sequence of subspaces of X
such that

(2.1) lim dist(Vn,x) = 0

for each x £ X. Let U be a closed set in X and define the sets Un = Vn H U and
the operators Qn : X —» Vn • We say that {Un, Qn} is a uniformly contractive system
(UCS) if conditions (1) and (2) below hold.

1. There exists a c £ f l , 0 < c < l , and an N 6 N such that if n ^ N and
x,y 6 U, then Qn(U) C Un and \\Qn(x) - Qn(y)\\ ^c\\x-y\\.

2. For any x,y G U and e > 0, there exists an N G N such that if k ^ j ^ N

then \\Qk(x) - Q,-(y)|| ^c\\x-y\\+e.

Note that a space X satisfying condition (V) will satisfy (2.1).
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THEOREM 2 . 2 . Let {Un, Qn} satisfy (1) above. Then condition (2) is equivalent
to the existence of a contraction map Q : U —> U, defined by Q(x) = lim Qn{x), such

n—•oo

that
\\Q(*)-Q{v)\\<c\\x-y\\

for x,y e U.

We observe that the equations Qn(x) = x all have unique fixed points zn € U

by the contraction mapping principle. The next theorem shows that these fixed points
converge to z,, the unique fixed point of the map Q on U.

THEOREM 2 . 3 . Let {Un,Qn} be a. UCS. Then

(2.2) lim zn = z.,
n—>oo

where

(2.3) Q(z.) = z..

Observe that the operators Qn need not converge uniformly for Theorem 2.3 to
hold. If there is uniform convergence, we have the following.

THEOREM 2 . 4 . Let {Un,Qn} be a UCS such that U is bounded and {Qn}

converges to Q uniformly on U. Let N € N be given as per condition (1) of Definition

2.1. Beginning with any k ̂  N and initial guess Xk G £/*, the iterative scheme

(2.4) xn+k+1 = Qn(xn+k)

will converge to the fixed point of Q in U:

(2.5) lim xn+k = z, = Q(z.).
n—»oo

Note that no solution in any individual Vn space need be found for this iterative
routine to converge.

In order to apply these UCS results to solve the quadratic equation (1.1) in a space
X satisfying condition (V), we define Q : X —> X by

(2.6) Q(x)=B(x,x)+y

andQn:X^Vn by

(2.7) Qn(x) = PnB(x,x) + Pny.

We now give sufficient conditions on B under which the hypotheses for Theorem 2.4
hold.
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PROPOSITION 2 . 5 . Suppose that X satisfies condition (V). If B : X x X —> X

is compact then {Qn} converges uniformly to Q on any bounded set.

PROOF: Apply Proposition 1.1. D

Recall that the Frechet derivative B' of a bilinear operator B is defined by

D' / \ t \ D ( \ I D / ~ \
D \X ) 1111 ^ D I X. U) ~t~ -CJ I U . I J .

Note that the maps B' and B' (x) are both linear. We shall make use of the following
identities in the sequel.

[ Z . o I 1J l U a U — D ITJ.x/l — Jj
\ / V 5 / \ ' /

In the case where v = 0, this simpifies to

(2.9) B(u,u) = B'(^)(u).

In order to prove our uniqueness claim below we require the following theorem, which

is a variation on a result due to Rail [10].

THEOREM 2 . 6 . Any solution z e C = {x : \\B'(x)\\ < 1} to equation (1.1) is

unique in C.

PROOF: If Zi,Z2 G C are solutions to (1.1), then Z\ — Z2 = B(zi,zi) — B(z2,zz).

By the identity (2.8) we have

(2.10) H z i - z z H :

Note that C is convex by the linearity of B', so {z\ + Z2)/2 G C. By hypothesis,

inequality (2.10) can only be true if z\ = z-i. U

We can now prove the main result of this section.

THEOREM 2 . 7 . Suppose that X satisfies condition (V). Let B : X x X -* X

be bounded and bilinear, with y,z G X. Define Q : X —* X by

Q(x) = B(x,x)+y.

Suppose that

i-HI*1*!!.
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Then

(1) Q(x) has a unique fixed point z, in the set C — {x : fi \\B'x\\ < 1}.
(2) This fixed point z, lies in S(z,b), where

(2.12) b = a — * a? —

(3) Tie equations Qn(x) = x have solutions zn for sufficiently large n, and
these solutions converge to the fixed point za of Q(x). These solutions
are unique in C, and lie in S(z,bn), where

bn = a- A a? —
y2\\Q(z)-z\\

(4) If B is compact, then the iterative scheme given in Theorem 2.4 converges
to the solution z, of (1.1).

PROOF: Choose N € N so that

for all n ^ N. Choose r G [b,a). For x,w G lS(z,r) let 6 = (x +io)/2 - z. We have

IIP- {*) - Qn («)|| = | |B; (^Y^J (* -
$r\\B'(z + 6)\\.\\(x

(2.13)

Put

(2.14) c

Now c < 1 by the definition of r and a, so Qn is a contraction on S(z,r) for n ^ N.
To see that Qn (S(z,r)) C 5(-z,r), let x e ^(z,r) and set

Then

(x) - z\\ ^ \\Qn (x) - Qn (z)\\ + \\Qn (z) - Pnz\\ + \\Pnz - z\\

-*)

(2.15)
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Thus | | g B ( a i ) - * | | ^ r if

(2.16) ^M2
r

This quadratic inequality in r is satisfied for r £ [bn,a), so Qn (S (z,r)) C S(z,r).
Applying the contraction mapping principal, Qn has a unique fixed point zn in S (z,a),
and in fact zn £ S (z, bn).

Note that all the contractions Qn have the same contraction factor c defined in
(2.14). Since Qn converges pointwise to Q by condition (V), Q is clearly a contraction
and Q(S(z,r)) C ~S{z,r). If we put Un = Vn D 5 (z, r ) , then by Theorem 2.2 {Un,Qn}
is a UCS. Theorem 2.3 yields conclusion (3). Since each zn £ S(z,bn) and limbn = 6,
conclusion (2) is proved. If B is compact then Qn converges uniformly to Q, so
applying Theorem 2.4 yields conclusion (4).

To prove (1), we note that the contraction mapping theorem guarantees uniqueness
in S(z,a). Next consider x £ S(z,a) and write x — z + 8 for some 8 with ||<5|| < o.
By the linearity of B' we have

(2.17) ||£'z|| ^ ||B'z|| + \\B'8\\ < \\B'z\\ + \\B'\\ a = 1/p < 1.

This guarantees that

(2.18) 5 (2 ,o )cC = {a ! : | |B l x | |< l} .

The set C contains a solution to (1.1), so by Theorem 2.6 we have uniqueness in C. D

REMARK. If we set Vn = X, Pn = I for all n so y, = 1, the proof is unchanged for
parts (1) and (2). Thus parts (1) and (2) of the theorem hold for any Banach space X
with fi — 1.

We state Theorem 1 of [2] for comparative purposes.

THEOREM 2 . 8 . (Argyros) Let B be a bounded bilinear operator on X x X and
suppose y and z belong to X. Define T : X —» X by

T{x) = y + B{x,x).

Set

a =

and assume b is nonnegative and a ^ 0. Then
(i) T has a unique fixed point in U(z,d) = {x £ X : \\x — z\\ < a};
(ii) this fixed point actually lies in U(z,b).
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REMARKS. We note that since U (z,a) C C = {x : \\B'x\\ < 1}, Theorem 2.7 yields
greater uniqueness information than Theorem 2.8. Also note that since ||-B'z|| ^ 2 ||i?|| •
||z||, Theorem 2.7 gives greater flexibility than Theorem 2.8 in searching for approximate
solutions z for which the hypotheses hold. This advantage will be used in Section 3.

It should also be noted in Theorem 2.7 that the operators PnB need only converge
pointwise to B for part (3) to hold—B need not be compact. We state Theorem 7 of
[2] for comparison purposes.

THEOREM 2 . 9 . (Argyros) Consider the quadratic equations

(2.19) z = y + Fn{x,x)

where Fn : X x X —> X, n = l ,2 , . . . are bounded symmetric bilinear operators. If

(i) the sequence {Fn} converges to B uniformly as n —> oo,
(ii) for each n there exists zn, satisfying (2.19) and sup||zn|| < (2||S||)~1,

then the sequence {zn} converges to a solution z of (1.1).

We also observe the following necessary condition on solutions of (1.1).

COROLLARY 2 . 1 0 . If the equation

(2.20) x=B(x,x)+y

has a solution z, with

\\B'z.\\ < 1,

then there is an open ball S about z, such that for any initial estimate xo £ 5 , tie
iterative scheme (1.3) converges to the solution z,.

PROOF: In the proof of Theorem 2.7, let each Vn = XeoPn = I,y, = \, and
choose z = z,. Then (2.11) is satisfied, and by the contraction mapping theorem the
iterative routine (1.3) will converge. D

The following will be useful in the next section.

PROPOSITION 2 . 1 1 . Let B : X x X -> X be bounded and bUinear, y £ X.
If

\\B'y\\ < \

then

x =y + B(x,x)

has a. unique solution in C = {x G X : ||S'x|| < 1}.
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PROOF: Let D = {x: \\B'x\\ ^ 6}, where 6 = \\B'y\\ + 1/2 < 1. We shall show

that Q(x) = B (x,x) + y has a fixed point in D. Let u,v £ D. Then

\\Q(u)-Q(v)\\ = \\B(u,u)-B(v,v)\\ = ||l?' (^±^j (u-v)

^±\\B'u + B'v\\.\\u-v\\^6\\u-v\\,

so Q is a contraction on D. Now if x 6 D, then

B' (Q (*)) = B' (B (x, x)) + B'y = B ' ( ^ ) + B'y

by identity (2.9). Hence

so Q (D) C D. Since D is closed, Q has a fixed point in D by the contraction mapping
principle. The uniqueness follows from Theorem 2.6. D

REMARK. A similar result (Corollary 2) is proved in [2], with the hypothesis "||i?'2/|| <
1/2" replaced by " | | S | | • \\y\\ < 1/4". The latter is a stronger assumption since | |B ' | | ^

3. A CONTINUATION ALGORITHM

It is often the case that we seek a solution to

(3.1) x=y + \ B { x , x ) , A > 0

for large A, but finding an approximate solution z £ X for which Theorem 2.7 applies
may be difficult or impractical. One way to handle this problem is the continuation
technique, whereby (3.1) is solved for small enough X so that an initial guess z can be
easily found for which Theorem 2.7 applies. An approximate solution zn is found in
some Vn space, and A is increased with zn used as an initial guess for the new equation
(3.1) with larger A. This process is repeated until the desired large A is reached and
a satisfactory approximation obtained. In this section we present an algorithm and a
theorem that make this precise for our problem of solving quadratic equations in a space
that satisfies condition (V). In particular, we give conditions under which the desired
large A can be reached in a finite number of repetitions of the continuation process.
This scheme is then illustrated on Chandrasekhar's equation, extending the range of A
values from 0.424059 given in [2] to 0.473571.
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CONTINUATION ALGORITHM.

1. Choose Ao small enough so that (3.1) is guaranteed to have a solution ZQ for

which //Ao ||i?'2o|| < 1 • We note that this is always possible (for example, Ao = 0).

2. Choose n sufficiently large so that

has a solution zn in Vn that satisfies

(3.2) 1 -/ iA0 ||£'*B|| >

where the "error" for zn is

E0>n = A0£(zn, £„) + y - zn.

That such an n exists follows from Theorem 2.7 (3), for

lim zn = ZQ and lim Eg n = 0.
n—»oo n—>oo '

3. Solve

(3.3) 1 - MAX WB'znW = nV^i \\B'\\y/(Xi - Ao) \\B(zn, zn)\\ + \\E0,n\\

for Ai.

CLAIM. For each A satisfying Ao ^ A < Ai, equation (3.1) has a solution z\ for which

S'^IKl.
PROOF: It is clear that replacing Ai by A in (3.3) will yield

1 - MA \\B'Zn\\ > Mv/2A~p7yv/(A - Ao) 11^(^,^)11 + \\E0,n\\-

Define Qx by Qx (x) = \B (x,x) + y. Then

||QA(*») - * » K (A - AO) \\B(zn, zn)\\ + \\E0,n\\,

so

( 3 4 )

The Claim then follows from Theorem 2.7. D

4. If Ai is not large enough, return to step (1) with Ao replaced by Ai — e for
small e > 0.
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REMARKS. Observe that inequality (3.2) is satisfied if it holds when upper bounds for

H-B'znll and ||Z?'|| are used in place of ||-B'zn|| and \\B'\\, respectively.

Information on the location and uniqueness of each "intermediate" solution zn in

this algorithm can be obtained from Theorem 2.7.

There is some question about whether this algorithm will eventually reach the de-

sired large A value. The next result gives conditions that guarantee this convergence—in

a finite number of steps.

THEOREM 3 . 1 . Suppose that XE > 0 and equation (3.1) has a solution z\ with
fi\\B'z\\\ < 1 for all X, 0 ^ A ^ XE- Then after a finite number of iterations, the
algorithm given above will obtain a Ai for which XE ^ Ai.

PROOF: For each X, 0 ^ X ^ XE , the inequality (3.4) and a continuity argument
on A guarantee some 5™ > 0 for which t £ (A — 6™, X + 6™) => x — y + tB(x, x) has a
solution zt with fi \\B'zt\\ < 1. The open sets (A - 6™, X + 6") form an open cover of
the compact set [0, XE] , so there exists some 6 such that 0 < S < 6" for all A G [0, XE] •

Therefore each iteration of the algorithm increases A by at least 8. D

The final result of the algorithm given is an estimate zn £ Vn. This is less than
satisfactory, since the true solution to (3.1) must be of the form y + f, where / 6
Range(B). To get an approximation of this form, one approach is to find

While calculating y + B(zn,zn) is more expensive than an iteration in Vn, the following
result shows that ~z must be an improvement on zn. Numerical experiments suggest
that one such calculation is worth the price in many situations.

PROPOSITION 3 . 2 . Let B, F : X x X -> X be bounded and bilinear. Suppose

that the equations

(3.5) x = y + F{x,x)

and

x = y + B(x,x)

have solutions zn and z,, respectively, with

\\B'zn\\, | | B ' « . | | < 1 .

Tien
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PROOF: We calculate:

z.-5\\ = \\B(z.tz.)-B(zn,zn)\\ =

^ \\B'(zn)\\ + \\B'(z.)\\
- zn

D
We now illustrate the continuation algorithm to approximate solutions z\ to the

Chandrasekhar equation (1.7).

EXAMPLE. Equation (1.7) is usually solved in C[0,l] for physical reasons [5, 2]. We
shall first seek solutions in L2[0,1], taking advantage of certain properties of this space,
and then show that such solutions he in C[0,l]. For these reasons, let X = L2[0,l]
and let Vn be the span of the first n Legendre polynomials P<>,... Pn-i • Observe that
fj. = 1 in a Hilbert space. Define B : X x X —» X by

B{f,g)(s) =

We seek the maximal A value for which our algorithm applies. A first estimate of y — 1
is natural. From Proposition 2.11, any Ao < 1/(2 ||B'j/||) will satisfy step 1 of the
algorithm. We bound ||i?'y|| as follows. For / 6 X, \\f\\ ^ 1, we have

\\B'y(f)\\ ^ I f -^7/(0*1 + /(-) /' - b H I •
| Jo s i * II J0 a + * II

By Cauchy-Schwartz, we obtain

,|2

and

Therefore

i:a^)'
/(*) / ' -^T-di < Il/H • sup f -L-

d t d s ^ l -

di ^ In 2.

\\B'y\\

so we set Ao = 0.40 < 1/(2 ||5'j/||). Similar arguments yield
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A choice of n = 1 is not large enough to satisfy step 2 of the continuation algorithm,
so we begin with n = 2 for our initial Vn space. The following table gives the results
of the algorithm. At each step, the iterative routine (1.5) was carried out in V^ space
until consecutive iterates differed by less than 10~12 in the L2 norm. Each column
represents one iteration of the algorithm. For each n value, the A values increase until
reaching a limiting value. At this point, we increase n as directed by step 2 of the
algorithm and continue.

n

Ao
Ai
Ai \\B'zn

We now show that the solutions guaranteed are not only in X = L2 [0,1], but are
in fact continuous.

LEMMA 3 . 4 . If f is a L2 [0,1] solution to the Chandrasekhar equation (1.7),

then f e C [0,1].

PROOF: Suppose that / solves (1.7), and define Ff by

2
.4000
.4102
.7123

2 ••
.4102 • •

.4198 • •

.7531 • •

2
• .4371
• .4371
• .8342

6 ••

.4371 • •

.4428 • •

.8521 • •

6
• .4708
• .4708
• .9645

9 ••

.4708 • •

.4712 • •

.9651 • •

9
• .473571
• .473571
• .979623

Obviously Ff (0) = 0, and lim Ff (s) = 0 since

Hence Ff is continuous at 0. Now Ff is clearly continuous for s > 0, so Ff (s) is
continuous on [0,1]. By hypothesis f (s) = I + f (s) Ff (s), so Ff (a) ^ 1 for s € [0,1],
and thus

We conclude that / G C [0,1]. D

REMARKS. The Legendre polynomials were used solely for simplicity; wavelet bases

have been shown to be superior in many aspects [12]. Certainly, a Banach space with

a multiresolution analysis satisfies condition (V).

All computations for the example were done using Maple V on a 486 PC. No

Pentium chips were involved in this work.
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With n — 9, we obtain A ~ 0.473571. By increasing n this A value can be
increased. It has been shown elsewhere [5] that the maximum value for A is 0.5—no
solution exists for larger A values. The next result shows that this maximum value
cannot be achieved by our algorithm.

THEOREM 3 . 5 . Let BL(X x X,X) denote the bounded bilinear operators on

X x X into X, and suppose that y € X. Then the set O of all B G BL{X X X,X)

such that

(3.6) B(x,x) + y = x

has a solution z with \\B'z\\ < 1 is open (in the operator topology) in BL(X x X, X).

PROOF: Suppose that F € O has solution z with ||.F'z|| < 1- It is easy to verify
that | |£ - F| | < e => \\B' - J"|| < 2e when B G BL(X x X,X). Thus we can choose
e > 0 sufficiently small so that

2 \\B(z,z)+y- z\\ _ J2 \\B(z,z) -F(z,z)
\\B'\\

holds. Then by Theorem 2.7, equation (3.6) has a solution s with ||i?'5|| < 1. We
conclude that there is an open ball of radius e about F that is contained in set O. D

Now if Chandrasekhar's equation (1.7) with A = 0.5 had a solution z with
||0.5i?'z|| < 1, then by Theorem 3.5 equation (1.7) would have a solution for some
A > 0.5, which is false as noted in the remarks before Theorem 3.5.
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