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SMALL FRACTIONAL PARTS OF QUADRATIC FORMS

by R. C. BAKER and G. HARMAN*
(Received 11th February 1981)

1. Introduction

Let ||x|| denote the distance of x from the nearest integer. In 1948 H. Heilbronn
proved [5] that for e>0 and N >c¢,(¢) the inequality

min [Jan?| <N (/204
1<ns<N

holds for any real a. This result has since been generalised in many different directions,
and we consider here extensions of the type: For >0, N >c,(¢,s) and a quadratic form
Q(x,,..., X;) there exist integers n,,...,n, not all zero with |n1 yrres |ns|§N and with

”Q(nx,...,ns)||<N‘CS(S)+e. "
Danicic obtained a result of this type [2] with c;(s)=s/(s+1). Cook was able to get (1)

with c3(s)=1 for an additive form in two variables [1]. More recently, Schinzel,
Schlickewei and Schmidt have shown [7] that c,(s) may be taken as the maximum of

1 4 -1
214+
over odd h in 1 £h<(s+5)/3. Taking h asymptotically equal to s/3 gives
c3(s)=2—(18/s)+ O(1/s?).
This result improves on Danicic’s for s=7 and, as is well known, the “limiting”

exponent —2 is best possible. The new idea in [7] is the use of an auxiliary result on
quadratic congruences. For a different approach to the limiting result c;(s)—2, see [9].

In the present note we refine the method of [7] to prove

Theorem. Let 523 and let Q(x,,...,x,) be a real quadratic form. Then there is a
constant c4(s) such that for every integer N =2 there are integers n,, ..., n, with

0<max(|n],...,|n) <N, (2)

*Written while the second author held a University of London postgraduate studentship.
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having
101, ... n)]| <cals)N/log N) 5. 3)
Here
2s/(s+5) for odd s,
cs(s)= {
2s(s— 1)/(s* +45—4) for even s. @)

Our exponent is the same as Danicic’s for s=3, apart from the substitution of a

power of log N for N°. For s=4, our exponent is better than that of [2] or [7], and (4)
gives

¢s(s)=2—(10/s)+ 0(1/s?).

The second author has refined the method further for diagonal quadratic forms; for
example, one can take c¢5(5)=9/8 and ¢s(11)=3/2 in this special case.

The key to the improvement on [7] is Lemma 1, below. This is a straightforward
extension of the congruence result of [7], but enables us to introduce successive minima

explicitly. This is more economical; the procedure is analogous to that of Davenport
and Ridout [4].

2. Quadratic congruences

Lemma 1. Let Q(x)=0(xy,...,X,) be a quadratic form in an odd number h of variables
with integer coefficients. Let m be a natural number. Let K, ..., K, be positive reals with

K,..K,=mt+v2, (5)

Then there are integers xi,...,x, not all zero, with

O(xy,-..,x)=0 (mod m), 6)
and having
k|<K.  G=1,...,h). )
The case K, =...=K,=m"/2*1/21 js Theorem 1 of [7].

Proof. We first observe that the result is trivial if K;2m for some i; hence we
suppose that

K;<m  (i=1,...,h) (8)
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Clearly we may assume that m> 1, and that m is square free. For any m may be written
in the form

m=rla
where a is square free. If K, ... K,=m®* "2 then (K,/r)...(K,/r)=a®**"2 A solution
(1s--->yn) of Q(y)=0 (mod a), with |y <K/r, yields a solution x;=ry; of (5) satisfying

().
Let d=(h—1)/2. According to [7], for every prime p dividing m there are integer
vectors r{P, ..., r¥’ which are linearly independent modulo p, and for which

O, rP+...+sxP)=0  (modp)

whenever s,,...,5, are integers. By the Chinese remainder theorem there are integer
vectors ry, ..., r, having

r,=rl? (mod p)
for each prime p dividing m. Write r;=(r;y, ..., ")
By Minkowski’s linear forms theorem, and taking account of (5), there are integers

S1s--+384 Z1,--+,2; DOt all zero, with

Is|<m,  (i=1,...,d) )

d
kzl Skrkj+ij§Kj (i=1,...,h). (10)

Put x=s,r, +... +5s,r,+mz, where z=(z,, ..., z,). Then clearly (6) holds, and (7) follows
from (10). Since K;<m we easily see that (sy,...,s,)#0, say s, #0. Since m is square free,
there is a prime factor p of m with s, #O (mod p). Because r,,...,r, are linearly
independent (mod p), we have x£0 (mod p). Thus x #0.

3. A lemma on exponential sums

The following lemma was pointed out to us by H. L. Montgomery. Compared with
the familiar Lemma 12 of [8], Chapter I, it saves a great deal of work, and a small
power of log N, farther on.

Lemma 2. Let L,M be natural numbers and let a,,a,,..., %, be real numbers such
that ||o,||= L (n=1,..., M). Then we have

M

2 el

n=1

Me

> MJ/6.

!

I

1
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Proof. Let J=(L"',1-L') with indicator function X,x). According to
Montgomery [6], p. 559, there is a function be I[}(R) such that

b(x)Z X ,(x), b0)=|J|+L" (11)
b()=0 for |f|=L. (12)
By an easy calculation, the function

B(x)=Y b(x+n)

is in L}(0, 1) with Fourier series Y, <1 b(k)e(kx), hence

B(x)=| IZ b(k)e(kx). (13)

Note that for integral k#0, (13) implies
1 1
|6(k)| §b[ |B(x)— 1] dx §(j; {(B(x)—1)+2(1 — X ;(x))} dx
=5(0)+1-2JJ|=3L"1. (14)

Combining (11), (13) and (14) with the hypothesis ||o,,{| > L™ !, we obtain

Ms 3 Ba)SMBO+ 3 o] 3 ethn)
n=1 o<k sL n=1

i e(ko.,)

n=1

<MbO)+6L! f

k=1

Since 1—5(0)=L"", the desired inequality follows.

4. Proof of the theorem

The proof will be by contradiction. Suppose that there are no integers n,...,n
satisfying (2) and (3). Let

S)=

~||M2

o ; (IQ(n,, ..., n)).

Let
L=[2c4(s)""(N/log N)*¥]

https://doi.org/10.1017/50013091500016758 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500016758

SMALL FRACTIONAL PARTS OF QUADRATIC FORMS 273

where c4(s) is sufficiently large, then from Lemma 2 with M =N° we have

L

l; |S®| = N¥/6.

Let [ be a natural number, 1 </ <L, having

|S(D| = N¥/6L. (15)

We define linear forms L,, ..., L, with symmetric coefficient matrix via the identity
O(xy,.-s X)=x L (x)+ ... +x,LyX).

Let M,,..., M, be the first s successive minima of the convex body described by

|21L,(x)—xs+,-|<N"} G=1,....)

x| <N

with respect to the integer lattice in 2s-dimensional space. It is established in the proof
of Lemma 5 of [3] that

|S(l)|2 Sce(s) (M, ... M)~ 'N(log N)".
In view of (15), then,
(M, ...M)~'=c,(s)L"2N*(log N)~*.. (16)

We now consider the cases of odd and even s separately.

Case 1. Odd s. By the definition of successive minima, we can find s linearly
independent integer vectors r, in 2s-dimensional space with

RILAC)~Tjs | <N"M, (17
|rju|<NMu (18)
fOl'j=1,---,sa ﬂ":l,---as- Here r;z(rlu""’th.u) and ru=(rlu""’rsu)'
Let us write
KF=C7(S)_ 1/sE/s(2,)(s+ l)/ZSM"_ ‘(log N)N— 1, (19)
then
K,...K,2Q@le+2 (20
EMS E
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from (16). We also write

—2IZr Lir) wv=1,...,s),

so that
16| <sM,M, 21)
from (17) and (18). Let b,, be integers with
10.ll=100—bul  (wv=1,...,9). (22)
By Lemma 1 and (20) there are integers x,,..., x, not all zero, with
Ixyngu (u=1,...,9) (23)

and
> Y bux,x,=0  (mod?2I). (29
pu=1v=t

Put n,=>%_,r,x,fori=1,...,s. Then

inp

QOny,...,ny XS: zs:(zs: L‘.(r w)xx

p=1v=1 1

_ s s
=(2) ! Z Z Hﬂvxuxv

pu=1v=1

—()- z Z B,y +(2) ! Z Y O b,

u=1v=1

25)

The first sum on the right-hand side of (25) is an integer, in view of (24). Thus

o, .. mlls@ 5 5 ol

5_ (C-,(S)) - 2/sL4/s(21)(s + 1)/s (lOg N)ZN -2
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from (21) and (23). For sufficiently large c,(s), we have
lo(y, ..., ny)|| <253(c,(s) "2 L/*(N/log N) 2
<L L

Moreover, we have

s
n|= “; riXx,|<sM,NK,

<scq(s) 12N Vs jog N

<2scq(s) " ML I/25log N < N.
By hypothesis, then, we must have

(ng,...,n)=0,

so that ) _, x,r,=0 and consequently
21 x,L{r)=0 (i=1,...,9). (26)
u=

Combining (26) with (17) we obtain

S 5
”Z:l Xl j+s,u <N7! ,4;1 Mﬂ"‘u‘

<N-! 21 MK, <1
e

as we already saw above. Hence

is true not only for j=1,...,s but for j=s+1,...,2s also. This contradicts the linear
independence of r},...,r.
Thus the theorem is proved in Case 1.

Case II. Even s. From (16) and M, £... £ M, we obtain

(M, ... M,_ )" Zcqy(s)e™ D726~ V(N log Ny ™+ 27)
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Let r,, r,, 0,,, b,, be as in Case I. By repeating the argument of Case I, with s—1

instead of s, we obtain integers x,,..., x,_, such that

sil sil b,xx,=0  (mod2l)
W=1v=h
and
x| < H, = ca(s) 252D~ VM log N)N .
After all,

H,. H,_,=2Q)e-2+12

s—1=
provided that cg(s) is sufficiently large. Let
s—1
(Mg on)=3 X1,
p=1
Continuing as before, we obtain for ||Q(n,, ..., n,)|| the upper bound
2\1spss-1

3 2
S—( max HﬂMﬂ> Sco(s) [+ + s~ DYlog N)2N ~2

<L, (28)

and

gesey

nsl) <s max HMN

maX(Inl 15usSs—1

S cpo(s) 2 6126- W oo N < N, 29)

for a suitable choice of c,(s). The argument used in Case I can be repeated to obtain

which is a contradiction. This proves the theorem in Case II.
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