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Particle orientation distribution in a rotating,
dilute suspension of rod-shaped particles
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We consider a theoretical model for the settling of rod-shaped particles of a dilute, initially
homogeneous, suspension in rapid rotation. The particle Reynolds number and the particle
Taylor number of the detailed flow around the particles are assumed small, representing
a relevant limit for an industrial centrifugal separation process. By applying a statistical
approach using the Fokker–Planck equation, and neglecting particle–particle interactions,
we obtain an explicit, analytical solution for the time dependent, spatially uniform particle
orientation distribution function. Not only does the volume fraction in the bulk of the
suspension decrease with time due to the divergent centrifugal field, as similarly described
in the literature for suspensions of spherical particles, the orientation of the rod particles
also changes with time from an initially uniform distribution to one where the particles
tend to align with a plane perpendicular to the axis of rotation. The corresponding particle
trajectories, as also influenced by first-order effects from the Coriolis acceleration and
gyroscopic effects, are obtained numerically for different initial particle orientation angles.

Key words: particle/fluid flow, suspensions, rotating flows

1. Introduction

The interest in particle orientation in fluids has partly its origin in various material
processing techniques involving suspensions. Not only is the rheological behaviour of
a non-dilute suspension of elongated particles influenced by the particles orientation
distribution (see e.g. Dinh & Armstrong 1984), the final properties of the material itself
are also dependent on it. We could mention the paper manufacturing process of forming
paper sheets from suspensions of cellulose fibre pulp, as reviewed by Lundell, Söderberg
& Alfredsson (2011), and injection moulding of fibre reinforced plastics, reviewed by
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Altan (1990), which are both industrial techniques that have initiated basic research
initiatives in the field. An extensive review of the knowledge in the area of fibre orientation
in fluids is given by Tucker (2022), which covers both measurements and prediction.
Recently, also the creation of new materials from resolved cellulose nanofibrils has
required control of the alignment of the suspended particles in critical parts of the
assembly process, as studied by Gowda et al. (2022). The control of the fibre orientation
is, in the cases mentioned, obtained via the flow itself, where an alignment of particles,
for example, takes place in an extensional flow. In our case here, of a rotating suspension,
a controlled alignment of particles can take place without any background flow of the
fluid other than the rapid, solid body rotation. Provided that the particles have a different
density than the fluid, as in a centrifugal separation process, elongated particles will then
both settle in the centrifugal field and, as we shall see, align.

Although centrifugal separation of particulate matter from a liquid suspension is a
quite frequently studied phenomenon, both experimentally and theoretically, few studies
consider suspensions of elongated, slender particles such as prolate spheroids, fibres or
rod-shaped particles from a basic perspective. Its gravitational counterpart of settling
slender particles, in contrast, has indeed attracted more attention. Possibly, it is assumed
that sedimentation of a slender particle can be extended to the rotating case just by
replacing the gravity field with its centrifugal counterpart. In part, this assumption is
correct, but then one has not accounted for the divergent nature of the centrifugal field,
nor the additional inertial effects, such as for instance the Coriolis acceleration, associated
with the particles motion and rotation relative to the rapidly rotating fluid. In the field
of biochemistry, biophysics and physical chemistry, analysis and fractionation of different
cellular components, macromolecular entities and nanotubes can preferably be performed
by ultracentrifugation with rotation rates of the order 20 000 r.p.m. or more, see e.g.
Arosio et al. (2014), Arosio et al. (2016) and Kato et al. (2019). The suspending fluid
density is often matched close to that of the particle to achieve a controlled process. The
experimental results are usually correlated with the Stokes settling velocity by identifying
an equivalent Stokes diameter of the rod particle, DStokes = d

√
ln 2l/d, where l/d is the

aspect ratio of the particle, l is the length and d the diameter of the rod, but without
accounting for the orientation of the particle. However, Wang et al. (2016), studying
differential centrifugation, mention the utility of accounting for particle orientation in the
drag using a simplified model proposed by Holzer & Sommerfeld (2008).

In centrifugal as well as in gravitational settling, the so-called hindered settling
phenomenon, which appears at elevated concentrations, has been studied extensively in
the literature. The flux density of settling particles is then smaller than estimated from
the settling velocity of an isolated particle and the local particle volume fraction. This is
because of the hindering effect of nearby particles of the suspension. This one-dimensional
problem of kinematic wave theory for settling suspensions was originally formulated by
Kynch (1952) in gravitational settling, and has also been extended to centrifugal settling.
Lately, Anestis & Müllner (2021) extended the one-dimensional theory to consistently
account also for flow interactions with the sidewalls of a tube centrifuge. Usually, the
one-dimensional theory considers only the thickening kinematic waves that emerge from
the layer at the bottom of the container, or in the rotating case from the wall of the container
furthest away from the rotation axis. However, in a tube centrifuge the container sidewalls
are not parallel to the centrifugal field, whereby thickening may appear also there. For
more details on the development of kinematic wave theory in centrifugal settling the
reader is referred to the review available in the article by Anestis & Müllner (2021).
More complicated geometries of industrial conical disc centrifuges or compartments in
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Particle orientation in a rotating fluid

Apparent forces on particles

Weak secondary relative flow

ot the suspension

R

Ω

Figure 1. Sketch of centrifugal settling in rotating circular cylinder filled with a uniform particle suspension.
In the paper we assume Ω2R � g, where R is the container radius, Ω its angular velocity and g gravity.

sectioned centrifuges have also been considered, as reviewed by e.g. Schaflinger (1990)
and Ungarish (1993).

At low enough initial volume fraction the kinematic wave theory allows a large part of
the suspension to be at a constant volume fraction in a gravitational settling and uniform
in a centrifugal settling, subsequently replaced by an expanding region of cleared fluid
above the suspension. This settling process is usually classified as type Ia (Anestis &
Müllner 2021). Thickening then only appears in the close neighbourhood of the walls
where the particles finally settle. In centrifugal settling the most basic case considers a
container of cylindrical shape initially completely filled with a rotating suspension, as
studied by Greenspanh (1988). If the rotational axis is located inside the cylinder there is no
formation of cleared fluid and an initially uniform suspension stays uniform away from the
thickening region and the volume fraction develops only with time in an exponential decay
as a result of the divergent centrifugal field. The radial transport of momentum induces
simultaneously a retrograde rotation of the suspension relative to the rotating container,
manifested as a uniform, negative vorticity of the particle fluid mixture. This vorticity of
the mixture relative to the rotating system is typically small compared with the absolute
vorticity since the relative density difference between particles and fluid, generating the
radial momentum transport, usually is quite small. Nevertheless, this secondary flow also
feeds back on the separation rate, which is slightly reduced as the suspension does not
quite rotate at the same speed as the container. This scenario is also present in containers
of finite height and in sectioned cylinders, see Dahlkild & Greenspan (1989), although
the generated vorticity is damped by the spin-up generated by Ekman layer suction. The
counterpart of this canonical case in centrifugal settling for an initially uniform rotating
suspension of rod-shaped particles is the subject of the present paper, see figure 1.

First, we recapitulate briefly what is known in the case of gravitational settling of
elongated particles. The settling velocity under gravity of an isolated spheroid particle
under Stokes flow conditions is given by Happel & Brenner (1965), and can be written as
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the sum of one term along gravity superposed with a second term along the direction of
the main axis of the particle. The magnitude of the second term depends on the orientation
of the particles relative to gravity. Thus, if the main axis of the particle is not aligned with
gravity, nor perpendicular to it, the particle has a settling component also perpendicular to
gravity. This has a major effect on the stability of an initially uniform suspension settling
under gravity. As reviewed by Guazzelli & Hinch (2011), vertical streamers with densified
and rarefied regions of rod particles emerge due to their collective sideway settling. The
required orientation distribution of the particles is generated by the flow field associated
with the density perturbations in which the particles are suspended. The particles tend to
be aligned along the local principal direction of deformation. This instability mechanism
was described and quantified theoretically by Koch & Shaqfeh (1989) and later extended
by Dahlkild (2011). That existence of a corresponding instability in rapidly rotating
suspensions of spheroids or rods is yet to be demonstrated, both experimentally and
theoretically.

A first requirement for a theoretical analysis of the linear stability is a basic solution,
which until now has been lacking in the literature for the rotating case. The present paper
aims to fill this gap. Note also that in gravitational settling in a still fluid a single rod
particle will keep its initial orientation under the Stokes flow assumption. However, if
fluid inertia of the detailed flow around the particle is accounted for, its orientation may
change. An asymptotic expansion of force and torque for long slender particles moving in
a still fluid including fluid inertia is given by Khayat & Cox (1989) by which the particle
subsequently orients horizontally during settling. (The counterpart for the motion of a
slender particle in a shear flow is given by Subramanyan & Koch (2005).) The correction
to force and torque due to inertia is here (in both cases) of relative order Rep/ ln(2γ ),
where Rep is a particle Reynolds number and γ � 1 is the aspect ratio of the rod particle.
Experimental results by Lopez & Guazzelli (2017) and Roy et al. (2019) indeed validate
these model corrections due to fluid inertia for gravitational settling.

Recently, these models have attracted some interest for rod-shaped particles settling
due to gravity in turbulent flow, with application to e.g. ice crystals in clouds as studied
by Gustavsson et al. (2019), Sheik et al. (2020) and Gustavsson et al. (2021). In these
works, the relative density difference between particles and the surrounding air is large,
whereby the effective local buoyancy from the surrounding fluid, Vpρf (Du/Dt − g), is
neglected, where Vp is the particle volume, ρf the fluid density and u the velocity of the
fluid. Nevertheless, incorporation of fluid inertia for the detailed flow around the particles,
as suggested by the models mentioned, plays a critical role in these studies, where the
magnitude of the inertia may determine whether the particle predominantly settles with its
broad or narrow end first.

Viscoelastic suspending fluids (Dabade, Marath & Subramanian 2015) and, numerically,
fluids with density gradients (More et al. 2021) and flexible fibres (Banaei et al. 2020) have
also been considered including fluid inertia. In the present work, as the relative density
difference between particle and fluid is assumed small, both Rep and 1/ ln(2γ ) are small.
Therefore, we shall neglect fluid inertia for the detailed motion around the particle and
apply the Stokes flow limit. However, in our case of centrifugal settling, the rod particle
changes its orientation relative to the rotating fluid during settling even to this lowest order.

A review of the fluid dynamics from prescribed motions of particles in rotating fluids,
parallel or perpendicular to the rotation axis, and the associated hydrodynamic force on the
particle is given by Bush, Stone & Tanzosh (1994). The relative importance of additional
inertial forces as compared with viscous forces in a rapidly rotating fluid is measured
by the Taylor number, ΩL2/ν, where Ω is the angular velocity of the fluid, L a typical
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Particle orientation in a rotating fluid

length scale of the particle and ν the kinematic viscosity of the fluid. Historically, much
attention of particles in rotating fluids has been focused on the limit of large Taylor number.
However, for spheres, the results cover the whole spectrum, which may give at least a
qualitative indication of the departure from the Stokes limit also in the case of elongated
particles. Thus, for a sphere moving axially in a rotating fluid the relative drag increase at
small Taylor number as compared with the Stokes solution for a sphere is 4

7

√
Ωa2/ν, see

Childress (1964), where a is the radius of the sphere. For a sphere moving perpendicular
to the rotation axis, Herron, Davis & Bretherton (1975) find that the relative increase of
the drag (including a non-zero side force) is (5

7 î + 3
5 k̂ × î)

√
Ωa2/ν, where î is the unit

vector opposing the velocity vector of the particle and k̂ is the unit vector of the angular
velocity for the fluid rotation. Regarding the motion of single elongated particles in rotating
systems, Stewartson (1954) considers the stability of a spheroid placed symmetrically
on the axis of a rotating fluid. It is found that, if the particle is lighter than the fluid,
translational disturbances are stable, whereas rotational disturbances are stable only if the
particle is prolate. If the particle is heavier than the fluid, rotational disturbances are stable
if the particle is oblate. One may note here that the motion is assumed to be completely
dominated by inertial forces in the rotating fluid, i.e. the Taylor number ΩL2/ν � 1. Thus
the flow is characterised by the formation of so-called Taylor–Proudman columns, see
e.g. Greenspan (1990), page 9. The corrections of the drag for small, but non-zero Taylor
numbers in the case of spheroids or rod particles are still unknown and are not addressed
in the present paper either. Rather, we shall, as a first approximation, assume the Stokes
limit for the drag to be valid for small Taylor numbers.

As addressed in the beginning of this section, the inertial forces associated with the
divergent centripetal acceleration and particle motion relative to the rotating system turns
out to introduce new effects with no counterpart in pure gravitational settling. Firstly, due
to the change of direction of the angular momentum of a rod particle rotating with the
fluid when aligned neither with the plane perpendicular to the axis of rotation nor with the
axis of rotation, a non-zero torque is required to sustain such a motion. As the centrifugal
pressure field of the slightly lighter fluid cannot provide the necessary torque to assist
the rate of change of angular momentum of the rod particle, the rod will slowly change
its orientation with respect to the rotating system. The viscous resistance of this motion
then makes up for the angular momentum imbalance. This is a gyroscopic effect with no
counterpart in gravitational settling and will have a critical effect on the settling speed
of the particle as its orientation is changing. (For gravitational settling in a still fluid, as
noted above, a rod particle will change its orientation only as a result of deviations from the
Stokesian limit considered here.) This is illustrated in terms of the effect of the apparent
centrifugal force distribution on a particle in figure 2.

Another important effect of the divergent nature of the apparent centrifugal field is that
the suspension during settling, on average, is continuously diluted before reaching the
thickening region. This inherent difference from gravitational settling is present also for
a suspension of rod particles. Secondly, as the Coriolis acceleration of the particle centre
of mass relative motion is accounted for, the sideways settling speed, as discussed for
gravitational settling earlier in this section, is modified. A rod particle, although initially
aligned with the centrifugal field, e.g. will have a settling component also in the azimuthal
direction, opposite to the sense of rotation of the container. This turns out to have a
detrimental effect on the overall separation speed. Also, the apparent force distribution
from the part of the Coriolis acceleration which is due to the change of orientation
of the particle, which acts on the filaments along a particle, generates a secondary
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Apparent torque

Apparent torque

r

No apparent torqueΩ

Ω

Ω

(a) (c)

(b)

Figure 2. Sketch of apparent force distributions and torques on rod-shaped particle from centrifugal force in
different cases. (a) Particle aligned in the vertical plane with polar angle of approximately π/4 and positioned
away from the rotation axis. (b) Particle aligned in the vertical plane with polar angle of approximately π/4 and
positioned at the rotation axis. (c) Particle aligned with the horizontal plane seen from above and positioned
away from the rotation axis and at an arbitrary orientation angle. Dotted arrows represent the components of
the apparent centrifugal force distribution acting perpendicular to the line along the particle.

Figure 3. Configuration of rod particles of polar angle π/6 and different azimuthal angles at intervals of
π/6. Arrows and attached lines at the endpoints indicate subsequent change of orientation in centrifugal
settling, independent of the position in the container. Physically, the change of polar angle can be derived
(essentially) from the apparent torque associated with the non-uniform centrifugal force field distributed on the
interconnected filaments along the rod. The azimuthal angle of the rod changes due to the apparent torque from
the Coriolis force distributed on the filaments along the rod, associated with the rate of change of orientation.

apparent torque. Referring to figure 3, the Coriolis acceleration of particle filaments due to
increasing polar angle, θ̇ > 0, will act to turn the particle in the azimuthal plane opposite
to the sense of rotation of the container. The apparent torque generated is balanced by
viscous resistance also in this case. Taking all these effects into account, we shall find the
transient evolution of the suspension as regards to both the particles collective spatial and
orientation distributions.
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2. Formulation

2.1. Centrifugal separation in a rotating frame of reference
We consider a rapidly rotating suspension of rigid cylindrical rod particles of length l in
an incompressible fluid in the limit of small relative density difference and large aspect
ratio

ε = ρp − ρf

ρf
� 1, γ = l

d
� 1, (2.1a,b)

where ρp is the density of the rod particles, d their diameter and ρf is the density of the
suspending fluid. The volume fraction of rod particles α � 1 is assumed small enough
so that particle–particle interactions can be neglected. Since the rods are assumed to be
slender, a more precise restriction is that αγ 2 � 1. Thus, the rod particles are assumed
to translate and rotate as individual particles relative to the suspending fluid rotating as
a whole at angular velocity Ω . In general, the suspending fluid itself may also depart
slightly from an overall solid body rotation either by external forcing or generated as a
result of the separation process in the centrifugal field, see e.g. Dahlkild & Greenspan
(1989). Although this secondary fluid motion relative to the rotating frame is not an
essential part of the present analysis it was included in the systematic development of the
governing equations. Based on the translation and rotation of individual rod particles, we
then consider the collective development of the statistical distribution of rod particles in
physical and orientation space of a suspension initially homogeneously distributed therein.

The system rotation is rapid enough such that gravity can be neglected, i.e. the Froude
number Fr = ΩR2/g � 1, where R � l is a typical distance from the axis of rotation in
the vessel containing the suspension. Also, due to the rapid rotation, any flow structures
on the size of the container are dominated by the Coriolis acceleration, as we assume the
Ekman number, E = νf /ΩR2 � 1, and the Rossby number, Ro = U/(ΩR) � 1, to be
small.

2.2. Force and torque on a rod particle
Small scale flows induced by the relative motion and rotation of the rod particles are
dominated by viscous forces if the particle Taylor number and particle Reynolds number
are small, Ωd2/νf < 1, Re = vRd/νf < 1, where vR is a typical magnitude of the particles
velocity relative to the fluid. Thus, we adopt the theoretical results for force and torque on
a slender particle in the Stokes regime and neglect inertial and Coriolis effects for this
local flow around the rod particle.

In this limit, we can express the force on a small vectorial length element p ds of a rod
particle at x due to its motion relative to the fluid as if the flow takes place in a non-rotating
frame of reference. This force on a rod particle filament is given by (Cox 1970)

dF = − 4πμ

ln 2γ

(
vR(x, s) − 1

2
p p · vR(x, s) + O

(
1

ln 2γ

))
ds. (2.2)

Here,
vR(x, s) = v(x + ps) − u(x + ps), (2.3)

is the difference between the velocity of the rod particle, v, and the velocity of the
undisturbed fluid, u, at a position, x + ps, measured along the major axis of the slender
particle, −l/2 < s < l/2. The unit vector p coincides with the major axis of the rod
particle. Higher-order terms in 1/ ln 2γ � 1, as indicated in (2.2), are neglected.
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As reported by Shin & Koch (2005), the leading-order term in 1/ ln 2γ gives reasonable
predictions for rod particles with γ > 20. The relative velocity of the rod, vR(s), is further
split into the centre of mass relative velocity and a solid body rotation

vR(x, s) = 1
l

∫ l/2

−l/2
vR(x, s) ds︸ ︷︷ ︸

vR(x)

+ṗRs, (2.4)

where ṗR = ṗ − ṗfluid. Note that, in the description of motion, we disregard the component
of the rotation vector of the particle along its major axis because of its large aspect ratio.
Thus, the rotation vector of the particle is just ξ = p × ṗ. In the simplest case ṗfluid = 0
in the rotating frame of reference. However, more generally, were the fluid not in solid
body rotation with the container, we have for a linear approximation of the flow field of
the undisturbed fluid relative to the centre of mass, x, of the particle

ṗfluid,i =
(

∂ui

∂xj
(x) − pipk

∂uk

∂xj
(x)

)
pj, (2.5)

where the last term accounts for the fact that the flow parallel to p does not contribute
to the particle relative velocity due to rotation, i.e. ṗfluid · p = 0. We now obtain the total
force on the rod particle. From (2.2) and (2.4) we get

F =
∫ l/2

−l/2
dF = − 4πμ

ln 2γ

∫ l/2

−l/2

(
vR(x, s) − 1

2
p p · vR(x, s)

)
ds

= − 4πμ

ln 2γ
l
(

vR(x) − 1
2

p p · vR(x)

)
, (2.6)

which is equivalent to lowest order with the result by Cox (1970) for a rod particle in a still
fluid. We may term this force the viscous drag on the particle, although the direction of
the force is not always opposite to the direction of motion.

Similarly, the torque with respect to the centre of mass of a small vectorial length
element, p ds, of a rod particle due to its motion relative to the fluid (as if the flow took
place in a non-rotating frame of reference) is then

dM = sp × dF ≈ − 4πμ

ln 2γ
sp × vR(x, s) = − 4πμ

ln 2γ
(sp × vR(x) + s2p × ṗR). (2.7)

From (2.7) and (2.4) we then get the total torque on the rod due to the motion relative to
the fluid

M =
∫ l/2

−l/2
dM = − 4πμ

ln 2γ
p × ṗR

∫ l/2

−l/2
s2 ds = − 4πμ

ln 2γ
p × ṗR

l3

12
= − 4πμ

ln 2γ

l3

12
ξR.

(2.8)

2.3. Equations of translation and rotation
Given the force and torque on the rod particle from the Stokesian limit, (2.6) and (2.8),
we formulate the equations of motion and rotation for the rod particle in the rotating
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frame of reference. Conservation of momentum then requires for a rod of volume Vp

ρpVp

(
dv

dt
+ 2Ω × v + Ω × (Ω × x)

)

= F + ρf (1 + εα)Vp

(
Du
Dt

+ 2Ω × u + Ω × (Ω × x)

)
, (2.9)

where the last bracket represents the net surface forces from the undisturbed fluid flow
acting on the small volume occupied by the particle. The density, ρf (1 + εα), is the
effective density of the fluid particle mixture in which the rod is suspended, and u
is the mass averaged mixture velocity, i.e. (1 + εα)u = α(1 + ε)v + (1 − α)vfluid. (The
difference between u and vfluid is small since the volume fraction and relative density
difference are both small.) The last term of (2.9) would be the only force on the rod if it
was neutrally buoyant, ρp = ρf , ε = 0, and just moved with the fluid, i.e. v = u = vfluid
and F = 0. With JG being the inertia tensor of the rod particle relative to its centre of
mass and ξ its rotation vector relative to the rotating frame of reference, conservation of
angular momentum yields

JG
dξ

dt
+ JG(Ω × ξ) + (Ω + ξ) × JG(Ω + ξ)

= M + (1 + εα)

(
J f

G
Dω

Dt
+ J f

G(Ω × ω) + (Ω + ω) × J f
G(Ω + ω)

)
. (2.10)

Here, ω = p × ṗfluid, appearing on the right-hand side of (2.10), is the rotation vector due
to the change of orientation of an infinitely thin line element of the undisturbed fluid
instantaneously coinciding with the major axis of the rod particle. Note that, in general,
ω /= 1

2∇ × u. J f
G is the inertia tensor of the particle volume Vp replacing the rod with

fluid. Thus, all terms but the first on the right-hand side of (2.10) represent the torque from
the net surface forces of the undisturbed flow acting on the small volume occupied by
the particle. In the case of a neutrally buoyant particle, JG = J f

G, and the solution to this
equation reduces to ξ = ω, or equivalently ṗ = ṗfluid, whereby M = 0. In the subsequent
analysis we consider small departures from neutral buoyancy of the particles, and thereby
small departures from this trivial solution.

To finalise an explicit formulation we substitute the total force and torque on the rod
particle due to the relative motion, (2.6) and (2.8), into (2.9) and (2.10). As we consider
small departures from solid body rotation, i.e. a small Rossby number, Ro = U/(ΩR) �
1, we drop the nonlinear terms of the velocities in (2.9) and rearrange in terms of vR =
v − u and u to obtain the dimensionless equation

(1 + ε)β

(
∂vR

∂t
+ 2k̂ × vR(x)

)
= −

(
vR(x) − 1

2
p p · vR(x)

)

−εβ(1 − α)

(
∂u
∂t

+ 2k̂ × u + k̂ × (k̂ × x)

)
, (2.11)

where

β = Ωd2

16ν
ln 2γ, (2.12)

is a modified particle Taylor number. The velocities are scaled with ΩR, without change
of notation, time is scaled with 1/Ω and k̂ is the unit vector of Ω . The left-hand side of
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A.A. Dahlkild

Parameters Ω (s−1) ν (m2 s−1) R (m) d (mm) l/d ε β Rep/ ln(2l/d)

Cellulose fibre 1 × 102 10−6 0.1 0.02 100 0.16 0.013 0.5ε

Other fibril 2 × 103 10−6 0.1 0.002 100 < 0.1 0.0026 0.2ε

Table 1. Examples of parameter values in applications for a small centrifuge with a particle–water
suspension. Here, ε = (ρp − ρf )/ρf , β = Ωd2 ln(2l/d)/16ν, Rep = εβΩRd/ν.

(2.11) is the acceleration of the particle due the motion of its centre of mass relative to the
fluid. The first term on the right-hand side represents the viscous drag on the particle due
to its relative motion, and the second term is due to the apparent negative buoyancy force
of the centrifugal force field as slightly modified by the acceleration of the fluid motion
relative to the rotating frame of reference. Also, in (2.10), we neglect quadratic terms of ξ
and ω to get the corresponding non-dimensional equation

(1 + ε)β

(
ĴG

∂ξR

∂t
+ ĴG(k̂ × ξR) + k̂ × ĴGξR + ξR × ĴGk̂

)
= −ξR

−εβ(1 − α)

(
ĴG

∂ω

∂t
+ ĴG(k̂ × ω) + k̂ × ĴGω + ω × ĴGk̂ + k̂ × ĴGk̂

)
, (2.13)

where

ĴG = JG

ρpVp
l2

12

= J f
G

ρf Vp
l2

12

(2.14)

is the non-dimensionalised inertia tensor and ξR = ξ − ω.
Examples of physical parameters for possible applications and the corresponding values

of non-dimensional numbers introduced are given in table 1.

2.4. The orientation distribution function
In this section we formulate the method used to investigate the collective behaviour of the
suspension from a statistical point of view using the orientation distribution function. Let
α0 be the overall volume fraction of rod particles, averaged over the total spatial domain
and all possible orientation vectors p. Following Dahlkild (2011), the local volume fraction
of rod particles at position x with orientation vector p within the space angle dΩ(p) can
be expressed as

α0

4π
Ψ (x, p, t) dΩ(p), (2.15)

where the orientation distribution function Ψ (x, p, t) can be interpreted as the normalised
density of particles in physical and orientation space. As also given by e.g. Dahlkild (2011),
the governing equation for Ψ is the Fokker–Planck equation

∂

∂t
Ψ (x, p, t) + ∇ · [v(x, p, t)Ψ (x, p, t)

]+ ∇p · [ṗ(x, p, t)Ψ (x, p, t)
] = 0, (2.16)

where we neglect translational and rotational diffusion from particle interactions. The
motion of the rod particles in physical and orientation space is here measured relative to
the rotating frame of reference fixed in the container. For practical reasons we prefer to use
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Particle orientation in a rotating fluid

x̂

ŷ

ẑ

êϕ

k̂

r

θ

p

êr

êθ

êφ

Ω

φ

φ

Figure 4. Definition of coordinate system.

a cylindrical coordinate system, (êr, êϕ, k̂), in physical space, as illustrated in figure 4, and
a spherical coordinate system on the unit sphere, (êθ , êφ), in orientation space. Thus, φ is
measured relative to the direction of r given by the angle ϕ of the cylindrical coordinates.
The absolute orientation angle in the plane perpendicular to the system rotation axis is
then Φ = ϕ + φ. However, ṗ is measured relative to fixed axes such that

ṗ = ϕ̇k̂ × p+ ◦
p, (2.17)

where
◦
p is the rate of change of p relative to the system (êr, êϕ, k̂), which rotates with

angular vector ϕ̇k̂ following the motion of the particles centre of mass. Equivalently,
we can write Φ̇ = ϕ̇ + φ̇. When applying the coordinate system (êθ , êφ) in orientation
space and expressing the divergence operator ∇p in terms of the corresponding
coordinates (θ, φ) we replace ṗ with

◦
p= ṗ − ϕ̇k̂ × p, or equivalently φ̇ = Φ̇ − ϕ̇, in the

Fokker–Planck equation to get a consistent description.
The non-dimensional version of the Fokker–Planck equation, without change of

notation, expressed explicitly in the chosen curvilinear coordinate systems then reads

∂

∂t
Ψ (x, p, t) + 1

r
∂

∂r

[
rvr(x, p, t)Ψ (x, p, t)

]+ ∂

r∂ϕ

[
vϕ(x, p, t)Ψ (x, p, t)

]
+ 1

sin θ

∂

∂θ
[sin θ

◦
p · êθ Ψ (x, p, t)] + 1

sin θ

∂

∂φ
[
◦
p · êφ Ψ (x, p, t)] = 0. (2.18)

Initially, at t = 0, the suspension is assumed homogeneous in both physical and orientation
space, such as can ideally be expected in a well-mixed suspension, i.e. Ψ (t = 0) = 1.
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A.A. Dahlkild

3. Analysis

3.1. The relative velocity
We then analyse (2.11) in the limit of ε � 1. We see that the first term on the right-hand
side must be of order εβ, and we introduce v̂R = vR/εβ. It turns out that u = O(εα) in a
rotating suspension, see Dahlkild & Greenspan (1989), so to zeroth order in ε we get from
(2.11) that

εβ2 ∂ v̂R

∂ t̂
+ β2k̂ × v̂R(x) + v̂R(x) − 1

2
p p · v̂R(x) = −k̂ × (k̂ × x). (3.1)

Here, we also introduce a slow time variable t̂ = εβt since 1/(Ωεβ) is the time scale for
the separation process. Since ε � 1, we can neglect the time derivative to lowest order if
we disregard the rapid initial process of accelerating the particle from a relative velocity
of zero. However, we keep the Coriolis acceleration of the relative velocity to account for
first-order effects in β. We then get the algebraic equation

2βk̂ × v̂R(x) + v̂R(x) − 1
2

p p · v̂R(x) = r, (3.2)

where r is the vectorial distance from the rotation axis according to figure 4. A solution to
(3.2) is found in the form

v̂R(r, p) = A(θ, φ) (r + p r · p) + B(θ, φ)(k̂ × r + p (k̂ × r) · p), (3.3)

where

A(θ, φ) = 1 + 2βprpϕ

1 + 4β2(1 + p2
r + p2

ϕ)
, B(θ, φ) = −2β(1 + p2

r )

1 + 4β2(1 + p2
r + p2

ϕ)
, (3.4a,b)

and
pr = p · er = sin θ cos φ, pϕ = p · eϕ = sin θ sin φ. (3.5a,b)

If β → 0, then A → 1 and B → 0 whereby v̂R(r, p) = r + p r · p, which is equivalent to
the result for gravitational settling, replacing gravity with the apparent local centrifugal
body force. Thus, the derived result for β /= 0 gives a first-order correction for settling of
a slender rod particle in a rotating system due to the presence of the Coriolis acceleration.

3.2. The relative rotation
Using similar arguments as led us to (2.11), we introduced ξ̂R = ξR/εβ and approximated
(2.13) to first order in ε according to

β(ĴG(k̂ × ξ̂R) + k̂ × ĴG ξ̂R + ξ̂R × ĴGk̂) = −ξ̂R − k̂ × ĴGk̂. (3.6)

In the frame of reference of the particle, (x̂, ŷ, ẑ), we have

k̂ =
⎛
⎝− sin θ

0
cos θ

⎞
⎠ , ĴG =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ , (3.7a,b)

where we have neglected the moment of inertia around the major axis, ẑ, of the rod particle.
By direct calculation we then find from (3.6) and (3.7a,b) that

ξ̂R = sin θ cos θ

1 + 4β2 cos2 θ

⎛
⎝2β cos θ

1
0

⎞
⎠ . (3.8)
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Particle orientation in a rotating fluid

This result is particular to a rod particle in a rotating frame of reference with no counterpart
in gravitational settling. Alternatively, one can express the rotation of the rod by the rate
of change of direction of the unit vector

ˆ̇pR = ξ̂R × p = sin θ cos θ

1 + 4β2 cos2 θ

⎛
⎝ 1

−2β cos θ

0

⎞
⎠ , (3.9)

where ˆ̇ denotes that the time derivative is with respect to the rescaled, slow time variable
t̂ = εβt. Note that ξ̂R measures the rotation vector relative to a fluid line element of the
undisturbed fluid instantaneously aligned with the rod particle, which in (3.8) is projected
on the axes of the frame of reference fixed to the particle. In the simplest case the motion
of the undisturbed fluid relative to the rotating frame of reference of the container can
be neglected, and (3.8) is then just the rotation of the rod particle relative to the rotating
frame. We observe from (3.8) that ξ̂R = 0 for θ = 0 and θ = π/2, i.e. if the rod was either
parallel with or perpendicular to the rotation axis of the container the relative rotation
of the particle is zero. The case θ = π/2 is given particular interest since although the
orientation of the particle does not change, the direction of the centrifugal body force
changes following the particle. This is because the settling speed may have a component
perpendicular to the centrifugal body force, meaning that even if p is constant, following a
particle, the direction of r is not. By following a particle we find out its path in orientation
space, Φ(t̂), θ(t̂), by identifying ˆ̇θ êx + sin θ ˆ̇Φ êy = ˆ̇pR, which with (3.9) yields

dθ

dt̂
= sin θ cos θ

1 + 4β2 cos2 θ
, (3.10)

dΦ

dt̂
= −2β cos2 θ

1 + 4β2 cos2 θ
. (3.11)

We then eliminate t̂ to obtain

Φ(t̂) − Φ0 = −2β

∫ θ

θ0

dθ ′

tan θ ′ = −β ln

(
sin2 θ(t̂)

sin2 θ0

)
, (3.12)

which relates any value of the polar angle, 0 < θ(t̂) ≤ π/2, along its path with the
corresponding change in orientation relative to the container projected in a plane
perpendicular to the rotation axis. The polar angle approaches π/2 at a rate given by
(3.10). Considering the inverse relation t̂(θ) for the path, (3.10) gives

t̂(θ) =
∫ θ

θ0

[
2

sin 2θ ′ + 4β2

tan θ ′

]
dθ ′ = 1

2
ln

tan2 θ

tan2 θ0
+ 1

2
ln

(
sin2 θ

sin2 θ0

)4β2

, (3.13)

which relates any value of the polar angle, 0 < θ(t̂) ≤ π/2, along its path with the
corresponding time t̂. Here, (3.12) and (3.13) represent a complete description of the
orientation of a settling fibre particle with initial orientation angles θ0, Φ0. One may note
that particles change their orientation independent of spatial location.
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A.A. Dahlkild

3.3. Particle paths
We now formulate the explicit equations and analysis of the particle paths in cylindrical
coordinates x = rer(ϕ) + zk̂. From (3.3), (3.4a,b) and (3.5a,b) we find

d ln r
dt̂

= 1 + sin2 θ cos2 φ

1 + 4β2(1 + sin2 θ)
, (3.14)

dϕ

dt̂
= sin2 θ sin φ cos φ − 2β(1 + sin2 θ)

1 + 4β2(1 + sin2 θ)
, (3.15)

dz
dt̂

= r sin θ cos θ(cos φ − 2β sin φ)

1 + 4β2(1 + sin2 θ)
. (3.16)

Here, θ(t̂) is given by the inverse relation (3.13) and φ(t̂) = Φ(θ(t̂)) − ϕ(t̂) where
Φ(θ(t̂)) is given by (3.12). The system of ordinary differential equations, (3.10), (3.11),
(3.14)–(3.16) was solved in MATLAB using standard routines (ode45) for ordinary
differential equations with the initial conditions

θ(t̂ = 0) = θ0, Φ(t̂ = 0) = Φ0, r(t̂ = 0)/r0 = 1, ϕ(t̂ = 0) = 0, z(t̂ = 0)/r0 = 0.

(3.17a–e)

For the case β = 0 an analytical solution for the path is available, of which the analysis is
given in Appendix A and the explicit expressions are presented in table 2. The numerical
solution for β = 0 could in general not be told apart graphically from the analytical
solution available.

3.4. The development of Ψ

Using the analysis so far we can now be more explicit in the formulation of the
Fokker–Planck equation (2.18). Since v = u + vR, ϕ̇ = (1/r)v · êϕ = (1/r)(u + vR) · êϕ

and ṗ = ṗfluid + ṗR = (ω + ξR) × p, we get

◦
p= ṗ − ϕ̇k̂ × p =

(
ω − uϕ

r
k̂ + ξR − vR,ϕ

r
k̂
)

× p. (3.18)

It turns out (see the next subsection) that the secondary fluid motion generated by a
homogeneous suspension in an infinitely long circular cylindrical geometry is a weak
retrograde solid body rotation relative to the rapidly rotating container with a uniform
vorticity of magnitude εαΩ . For a solid body rotation, all fluid line elements, independent
of position, rotate at the same rate such that ṗfluid = ω × p = (uϕ/r)k̂ × p whereby (3.18)
reduces to

◦
p=

(
ξR − vR,ϕ

r
k̂
)

× p. (3.19)

Alternatively, if the secondary motion is not a solid body rotation, such as in a non-circular
geometry, (3.19) holds approximately if the relative magnitude εα is much smaller than
that of the relative velocity of the particles εβ, i.e. α � β. We then rescale (2.18) according
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A.A. Dahlkild

to new variables

t̂ = εβt, û = u
εβ

, v̂R = vR

εβ
, (3.20a–c)

to obtain
DΨ

Dt̂
+ Ψ

[
∇ · û + ∇ · v̂R + ∇p · ◦̂

p
]

= 0, (3.21)

where the total time derivative in physical and orientation space is

DΨ

Dt̂
= ∂Ψ

∂ t̂
+ (û + v̂R) · ∇Ψ + ◦̂

p · ∇pΨ. (3.22)

One may note here that, from the definition of vR = v − u and conservation of volume,
it follows that ∇ · (u − εαvR) = 0. The first term in the bracket of (3.21) is therefore
neglected to lowest order in ε. Then it is shown (see Appendix B) that the remaining parts
of the bracket in (3.21) can be written

[∇ · v̂R + ∇p · ◦̂
p] = 2 + sin2 θ

1 + 4β2(1 + sin2 θ)
+ 1

sin θ

d
dθ

(sin θ ˆ̇θ), (3.23)

where ˆ̇θ is a function of θ given by (3.10). Thus, the sum of the divergences is independent
of the spatial position r as well as of the azimuthal orientation angle φ. Therefore, for an
initially uniform distribution, i.e. Ψ (t̂ = 0, r, ϕ, θ, φ) = 1, there is no source in (3.21) to
render Ψ dependent on r and φ. The time dependent solution then depends only on t̂ and
θ , with ∇Ψ = 0 and ∂Ψ/∂φ = 0. From (3.21), (3.22), (3.23) and (3.10) we get

dΨ (t̂, θ(t̂))
dt̂

= ∂Ψ

∂ t̂
+ dθ

dt̂
∂Ψ

∂θ

= −Ψ

[
2 + sin2 θ

1 + 4β2(1 + sin2 θ)
+ 1

sin θ

d
dθ

(sin θ ˆ̇θ)

]
, (3.24)

ˆ̇θ = dθ

dt̂
= sin θ cos θ

1 + 4β2 cos2 θ
. (3.25)

Equations (3.24) and (3.25) are now in characteristic form where the path, θ(t̂), is given by
the inverse of (3.13). The solution for Ψ can then be obtained from an ordinary differential
equation along this path. The analysis is given in detail in Appendix C and the analytical
expression in characteristic form found is given in table 2. From these expressions it is a
straightforward procedure to obtain Ψ (t̂, θ) for any given pair of t̂, θ by first finding the
corresponding value of θ0 from (3.13) by numerical iteration, and using this result in (C5)
with Ψ0 = 1.

For β → 0 the solution can be reduced to an explicit expression for Ψ (t̂, θ) by direct
elimination of the initial angle, θ0, from the characteristic solution (C5)

Ψ (t̂, θ) = e−4t̂ 1 + tan2 θ

1 + e−2t̂ tan2 θ
. (3.26)

This represents the basic solution for the orientation distribution as β → 0, i.e. when the
centrifugal acceleration is the only inertial force accounted for. The total volume fraction
of rod particles, independent of orientation direction, is obtained by integration of (2.15)
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Particle orientation in a rotating fluid

over the unit sphere using (3.26). For the normalised volume fraction we obtain in the case
β = 0 the explicit expression

α(t̂)
α0

= 1
4π

∫ 2π

0

∫ π

0
Ψ (t̂, θ) sin θ dθ dφ = e−2t̂

2

∫ π

0

1 + tan2 θ

e2t̂ + tan2 θ
sin θ dθ = arctan

√
e2t̂ − 1

e2t̂
√

e2t̂ − 1
.

(3.27)

For large times, t̂ � 1, (3.27) approaches α(t̂)/α0 = (π/2)e−3t̂, whereas the maximum of
(3.26), at θ = π/2, approaches e−2t̂.

3.5. The secondary motion of the mixture
Following Greenspanh (1988) for the generation of vorticity in a uniform suspension of
particles, initially at rest relative to a rapidly rotating cylindrical container, one finds that
the potential vorticity of the mixture remains constant in time and space, i.e.

d
dt

(
ζz(t) + 2Ω

ρf (1 + εα(t))

)
= 0, (3.28)

where ζz = (∇ × u) · k̂ is the vertical vorticity component of the fluid particle mixture.
Thus

ζz(t) + 2Ω

1 + εα(t)
= 2Ω

1 + εα0
, (3.29)

whereby

ζz(t) = −2Ωε
(α0 − α(t))

1 + εα0
. (3.30)

For the uniform vorticity in a circular cylinder (u · êϕ)/r = ϕ̇fluid(t) = ζz(t)/2. Scaling
with the separation time, 1/(Ωεβ), and assuming εα0 � 1, (3.30) then yields

ˆ̇ϕfluid(t) = ζ̂z(t)
2

= −α0

β
(1 − α(t)

α0
), (3.31)

or equivalently

ˆ̇pfluid = −α0

β

(
1 − α(t)

α0

)
k̂ × p. (3.32)

Apparently, this secondary motion of the fluid mixture in a circular cylinder is a time
dependent, retrograde, solid body rotation. The negative angular velocity ˆ̇ϕfluid adds to the
particle path’s azimuthal velocity in (3.15). This effect is investigated for one of the cases
of particle paths in the next section. (We may also note that the Rossby number of this
secondary motion is Ro = U/(ΩR) = εα0 � 1.)

4. Results

We first discuss the change of orientation of single rod particles at different initial
orientations and at different values of the particle Taylor number as obtained from the
analytical solutions in (3.12) and (3.13). The upper parts of figure 5 and figure 6 show the
development of the polar angle θ vs non-dimensional time t̂ for the initial polar angles
π/8 and π/4, respectively. As expected, the apparent centrifugal force field turns the fibre
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Figure 5. Orientation angles, θ/π: —, and (Φ − Φ0)/|�Φ|: - - -, vs time for initial polar angle θ0 = π/8

and β = 0, 0.4, 0.8. Inset: corresponding paths of the orientation vector, p, on the unit sphere.

towards increasing polar angles. It is noted that the rate of change of the polar angle is
independent of the azimuthal angle, as is also clear from (3.10). The value of the polar
angle asymptotically approaches π/2, i.e. independent of initial orientation (except for
θ0 = 0) the rod particle aligns with the plane perpendicular to the rotation axis. For
increasing values of the particle Taylor number β this asymptotic approach is delayed
in non-dimensional time units, and particularly so for smaller initial polar angles. The
relative magnitude of the gyroscopic to the viscous torques, associated with the rotation
of the particle relative to the container, is measured by β, as apparent in (3.6). One can
also understand this gyroscopic effect as a manifestation of the torque obtained from
the apparent Coriolis force distribution on infinitesimal filaments along the rod particle
associated with the change of orientation of the rod particle. Thus, the gyroscopic effects
for non-zero β (non-zero Coriolis acceleration) make the rod particle turn also in the
azimuthal plane, and at the cost of slower alignment with the horizontal plane.

Figure 7 shows the total turning of the rod particle relative to the container in the
azimuthal plane vs the initial polar angle θ0 and for different values of the particle Taylor
number. For β → 0, i.e. as the apparent torque from the relative rotation is completely
neglected, the rod particle keeps its initial orientation relative to the container as projected
in the azimuthal plane. As the particle Taylor number is increased the rod particle turns
relative to the container in the direction opposite to the main direction of rotation. The
total turning angle �Φ is approached asymptotically as the fibre simultaneously aligns
with the azimuthal plane. As can be seen in figure 7, �Φ is larger in magnitude for cases
with smaller initial polar angle. This is because the time period required to align with the
azimuthal plane, and thereby the associated period of turning in the azimuthal plane, is
longer. This is also apparent in the insets of figure 5 and figure 6, which illustrate the paths
of the orientation vector, p, on the unit sphere for different values of β at the given initial
angle θ0. The lower parts of figures 5 and 6 show the change of the azimuthal angle vs
the non-dimensional time t̂ normalised with the magnitude of the total azimuthal turning
angle |�Φ| = β ln(1/ sin2 θ0). Note that the normalisation includes a factor β so that the
graphs indicated the relative effect on the asymptotic approach to the final azimuthal angle
for any value of β. In parallel with the delayed approach of alignment with the azimuthal

954 A49-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1021


Particle orientation in a rotating fluid

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
–1.0

–0.5

0

0.5
β = 0

β

β
 =

 0

β = 0

θ/π β

β

p0

(Φ
 –

 Φ
0
)/
|�

Φ
|

t̂

Figure 6. Orientation angles, θ/π: —, and (Φ − Φ0)/|�Φ|: - - -, vs time for initial polar angle θ0 = π/4
and β = 0, 0.4, 0.8. Inset: corresponding paths of the orientation vector, p, on the unit sphere.
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Figure 7. Maximum change of orientation angle �Φ = −β ln(1/ sin2 θ0) vs θ0 for β = 0, 0.1, 0.2, 0.4, 0.8.

plane of the rod particle in non-dimensional time units, increasing values of the particle
Taylor number delay also the approach to the final azimuthal angle.

Figure 8 shows particle paths and selected particle projections (not to scale in any of
the figures) in the azimuthal plane at particle Taylor number β → 0 for different initial
orientations. The initial orientations considered are also displayed in figure 3, from a
viewpoint along the x-axis looking towards the origin. In figure 8 the fibre initial position
appears as an asterisk when viewed from a distant position. For this case the azimuthal
angle relative to the container Φ is constant, but as the particles sediment also in the
angular direction, ϕ, the azimuthal orientation of the particles, φ, relative to the position
vector r change and finally the particles end up at φ = 0 aligned with the path line,
settling only in the radial direction. Exceptions from this behaviour can be observed for
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Figure 8. Particle paths in the azimuthal plane for initial polar angle θ0 = π/6, and different azimuthal angles
Φ for β = 0. Corresponding projections (not to scale in any figure) of the fibre in the horizontal plane at

t̂ = 0, 0.8, 1.4, 2.0, 2.6, 3.3. Inset: flow lines of the particle orientation velocity vector,
◦
p, on the upper part of

the unit sphere relative the direction of the position vector, er(t̂), of a moving particle.
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Figure 9. Vertical position z/r0 of particle paths vs r/r0 for initial polar angle θ0 = π/6, and different initial
azimuthal angles Φ0, for β = 0 (a), and β = 0.01 (b).

Φ = ±π/2, when the particles keep their orientations perpendicular to the altogether
radial path lines. Figure 9(a) shows the corresponding vertical position vs the radial
distance r. For orientation vectors p perpendicular to the direction of sedimentation at
Φ = ±π/2 there are, as expected, no vertical deflections of the path lines for the chosen
initial polar angle θ0 = π/6. However, for all other values of Φ the particles follow path
lines with a vertical deflection nonlinearly associated with the orientation of p. For a
small, but non-zero particle Taylor number, as in figure 9(b), the vertical deflections of
the paths at Φ0 = ±π/2 are non-zero too, since the settling velocity, as explained below,
now has a component also in the negative ϕ-direction, tangential to the projection of p in
the azimuthal plane.
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Figure 10. Particle paths in the azimuthal plane for initial polar angle θ0 = π/6, and different initial
azimuthal angles Φ0 for β = 0.05. Corresponding projections of the fibre in the horizontal plane at t̂ =
0, 0.8, 1.4, 2.0, 2.6. Inset: flow lines of the particle orientation velocity vector,

◦
p, on the upper part of the

unit sphere relative the direction of the position vector, er(t̂), of a moving particle.

In figure 10 we show the paths obtained for a small, non-zero particle Taylor number β =
0.05. The Taylor number, β, is also a measure of the apparent Coriolis force to the viscous
drag associated with the centre of mass motion of the particle relative to the container, as
apparent in (3.2). The symmetry of the paths with respect to the initial azimuthal angle is
now broken. The purely radial paths obtained at β = 0 for initial azimuthal angles Φ0 =
0, ±π/2 are replaced by paths deflected towards negative ϕ due to the effect of the Coriolis
acceleration. Paths for other values of Φ0 are deflected analogously in comparison with the
paths in figure 8. We observe from (3.15) that the rate of change of direction of r, i.e. ˆ̇ϕ,
for a particle along its path asymptotically can approach zero when θ → π/2 as long as
β ≤ 1/8 = 0.125. The corresponding asymptotic value of the azimuthal orientation angle
relative to r is then φ∞ = 1

2 arcsin 8β, or alternatively φ∞ = 1
2 arcsin 8β + π depending

on the initial orientation Φ0. In figure 10 only the particle with initial orientation angle
Φ0 = π/2 approaches the latter state, which appears identical to the particle with Φ0 =
−(π/2) in the projected plane. Thus, particles also in this case of the particle Taylor
number approach radial path lines but with the orientation vector p misaligned with r,
which compensates the retrograde angular drift due to the Coriolis acceleration. The
angular directions of these asymptotic path lines, as compared with the initial position
r0, are given by ϕ∞ = Φ0 − β ln(1/sin2 θ0) − φ∞. There is also the possibility that ˆ̇ϕ
asymptotically approaches zero as φ → φ′∞ = ±(π/2) − 1

2 arcsin 8β, but there is only
one flow line on the upper unit sphere leading to each of these asymptotic states. The
position of the stagnation points at θ = π/2, φ = 1

2 arcsin 8β and φ = π/2 − 1
2 arcsin 8β

are also visible from the flow lines of figures 8 and 10 (insets). Note that the flow field on
the unit sphere is not solenoidal, as also concluded explicitly in Appendix B.
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Figure 11. Particle paths in the azimuthal plane for initial polar angle θ0 = π/6, and different initial
azimuthal angles Φ0 for β = 0.125. Corresponding projections of the fibre in the horizontal plane at t̂ =
0, 0.8, 1.4, 2.0, 2.6, 3.3. Inset: flow lines of the particle orientation velocity vector,

◦
p, on the upper part of

the unit sphere relative the direction of the position vector, er(t̂), of a moving particle.

The limiting case at which radial asymptotic path lines are observed, i.e. for β = 0.125,
is shown in figure 11. The azimuthal orientation angles relative to r of the asymptotic
states are then φ∞ = π/4 for a majority of the path lines shown. Although for initial
azimuthal angles Φ0 = π/2 and Φ0 = π/3 the upper end of the rod particles are finally
oriented in the opposite direction φ∞ = π/4 + π. For all paths the approach to the final
azimuthal orientation relative to the container, Φ∞ = Φ0 − β ln(1/sin2 θ0), is a relatively
rapid process, as also illustrated in figures 5 and 6. However, the rapidity of the approach to
the final radial path lines is quite different depending on the initial azimuthal orientation.
This is particularly illustrated by the path line for Φ0 = π/3 for which the final azimuthal
direction is approximately ϕ∞ ≈ −π. To reach this state, at φ∞ = π/4 + π, θ∞ = π/2,
the rapid alignment with, and turning in the azimuthal plane at the beginning of the path,
is followed by a large deflection of the path in the retrograde azimuthal direction. In this
later part of the path the particle’s orientation relative to the container is essentially the
same, and the azimuthal drift continues until the final orientation relative to r is reached.
Thus, in the figure shown, only the very first phase of this process is illustrated for the
path with Φ0 = π/3. In the inset of figure 11 one may identify three flow lines on the unit
sphere illustrating this type of approach to the final orientation state relative to r. As can
be seen the four stagnation points of the flow lines on the unit sphere (at θ = π/2) for
smaller particle Taylor number have here merged into two for this particular value of β.

If the particle Taylor number is larger than β = 0.125 the paths continuously deflect in
the retrograde azimuthal direction in a spiralling fashion. To visualise this figure 12, at
β = 0.25, covers larger distances from the initial position of the fibre paths. All of the
orientation flow lines of

◦
p (inset) here approach the limit of a circle in the azimuthal plane.
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Figure 12. Particle paths in the azimuthal plane for initial polar angle θ0 = π/6, and different initial
azimuthal angles Φ0 for β = 0.25. Corresponding projections of the fibre in the horizontal plane at t̂ =
0, 0.8, 1.5, 2.1, 2.7, 3.3, 4.0. Inset: flow lines of the particle orientation velocity vector,

◦
p, on the upper part

of the unit sphere relative the direction of the position vector, er(t̂), of a moving particle.

5

4

3

2

1

0

–1

–2

–3

–4
0 5 10 15 20 25

r/r0
30 35 40 45 50

5

4

3

2

1

0

–1

–2

–3

–4

–5
0 10 20 30 40 50

r/r0
60 70 80 90 100

–π/6

π/6

π/3

–π/3
π/6

π/3

π/2

–π/3

–π/2
–π/2

–π/6

Φ0 = 0

Φ0 = 0

Φ0 = π/2

z/
r 0

(a) (b)

Figure 13. Vertical position z/r0 of particle paths vs r/r0 for initial polar angle θ0 = π/6, and different initial
azimuthal angles Φ0, for β = 0.125 (a), and β = 0.25 (b).

As can be seen in figure 13(b) for the vertical positions along the paths, at least four
of the paths for β = 0.25 represent particles which turn their lower ends in the settling
direction, resulting in a negative drift velocity in the vertical direction. For β = 0.125 in
figure 13(a) only two of the displayed paths represent similar trends. We note that the
vertical drifts appear larger at smaller values of the particle Taylor number.

To complete the picture we also present particle paths that include the weak secondary
fluid motion in a circular cylinder, the effect of which is most easily illustrated as
modifications to the particle paths for the case presented in figure 8 for the limit β → 0.
By including a secondary fluid motion of relative magnitude α0/β = 0.1 in figure 14, the

954 A49-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1021


A.A. Dahlkild

0 5 10 15 20 25

–10

–5

0

5

10

15

Φ0 = π/3

Φ0 = π/6

Φ0 = 0

Φ0 = ±π/2

Φ0 = –π/6Φ0 = –π/3

α0/β = 0.1

y/
r 0

x/r0
Figure 14. Particle paths including the time dependent, secondary motion of the suspension at relative

magnitude α0/β = 0.1 for the case in figure 8.

symmetry of the paths in figure 8 is now broken due to the superposed retrograde rotation
of the paths. In particular one notes that the paths for Φ0 = 0 and Φ0 = ±π/2 no longer
coincide. The instantaneous azimuthal orientation angle, φ, relative to the position vector
of the particle is not changed as the secondary motion is accounted for.

From here on we turn the discussion to the results for the development of the orientation
distribution function, for which an analytical solution is available for any value of the
particle Taylor number β. The orientation distribution function obtained reflects the
statistical appearance of particle positions and orientations that develop for an initially
uniform suspension in physical and orientation space. The position of the particles
continues to be uniformly distributed (away from the thickening region close to the
boundary of the cylinder) for all times, whereas their orientation, as we have seen, aligns
with the horizontal plane at polar angle θ = π/2. Figure 15 displays the limit β → 0 at
different non-dimensional times. It illustrates the alignment of the rod particles with the
horizontal plane, i.e. towards θ = π/2, due to the non-balanced rate of change of angular
momentum of the rod particles in the non-rotating frame of reference. The overall level
of Ψ also decreases due to the divergent nature of the particle velocity relative to the
container. It might be surprising that the orientation distribution function is independent
of φ despite the fact that we already concluded that particles asymptotically end up aligned
with radial path lines, at φ = 0, for this limit of the particle Taylor number. However,
particles aligned with the path lines settle faster in the divergent velocity field than particles
in other classes, which apparently compensates for the accumulation of particles in this
class due to alignment. The case of a finite particle Taylor number, β = 0.25, is shown in
figure 16. The decay rate of Ψ in the non-dimensional time unit here appears lower, and
the peak more narrow, as compared with the case of lower particle Taylor number.

The development of the normalised volume fraction of particles, as integrated from
all possible orientation angles, is shown in figure 17 for different values of the particle
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Figure 15. Orientation distribution, Ψ (t̂, θ), vs θ for β = 0 at different non-dimensional times t̂.
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Figure 16. Orientation distribution, Ψ (t̂, θ), vs θ for β = 0.25 at different non-dimensional times t̂.

Taylor number. Similar to reported results for spherical particles, see e.g. Dahlkild &
Greenspan (1989), there is an exponential decay due to the divergent relative velocity
field of the particles. For increasing particle Taylor number the decay rates are smaller as
measured in non-dimensional time units characteristic to the overall separation process.
Note, however, that measured on the physical time scale, t′, the results might be different
since the characteristic non-dimensional time unit, t̂ = εβΩt′, is compressed by scaling
with the particle Taylor number. In figure 18 we display the development of the volume
fraction vs, (Ωt′/2π)ε = t̂/(2πβ), i.e. vs the number of revolutions of the container times
the small relative density difference. What is clear then from this graph is that, for small β,
the rate of separation is indeed quite slow compared with larger values of β. In addition,
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it also becomes clear that there exists an optimal value of the particle Taylor number,
β ≈ 0.4, for which separation to a certain level requires the smallest number of revolutions.
From a physical point of view, the explanation is that the effect of the apparent Coriolis
force due to the relative motion (and rotation), which relative magnitude compared with
the viscous force is measured by β, makes the particles go partly perpendicular rather than
parallel to the centrifugal force. Thus, a small value of β diminishes this effect. However, a
smaller value of β, representing dominating viscous forces, also gives a longer separation
time ∼ 1/(Ωεβ). Thus, an intermediate value of β for optimal efficiency is expected. In
fact, from (3.3) we can make a more precise estimate of the relative radial settling speed.
For a fibre oriented along r, e.g., we have φ = 0, θ = π/2, which with (3.4a,b) gives
a dimensional relative radial velocity ∼ 2ΩRεβ/(1 + 8β2). The corresponding estimate
of the separation time is then proportional to (1 + 8β2)/β, which has a minimum at
βopt = 1/2

√
2 ≈ 0.35, quite close to the estimate given above.
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Figure 19. Normalised global orientation distribution vs θ at different non-dimensional times t̂; β = 0: —,
and β = 0,25: - - -.

Finally, we investigate the normalised probability density of finding particles at a certain
polar angle θ . Thus, at t̂ = 0, as Ψ = 1, in figure 19, the probability density is just sin θ ,
reflecting the circumferential length of an infinitesimal area 2π sin θ dθ on the unit sphere
in orientation space enclosing the polar axis. As time proceeds the area under all graphs
of figure 19 is the same, showing the accumulation of particles with orientation close to
θ = π/2. At the same non-dimensional times t̂ the height and narrowness of the peaks are
accentuated for increasing particle Taylor number.

5. Conclusion

We considered the centrifugal separation of rod particles in the Stokes flow regime. In
addition to the centrifugal acceleration, first-order effects of the Coriolis acceleration on
the relative translation and gyroscopic effects on the relative rotation of the rod particles
were accounted for and measured in terms of a non-zero modified particle Taylor number.
In the limit of small (zero) particle Taylor number, the particles aligned with the plane
perpendicular to the axis of rotation without changing their azimuthal orientation relative
to the container. For non-zero particle Taylor number, the particles also turned in the
azimuthal plane to a degree independent of the initial azimuthal orientation. We also found
that, if the particle Taylor number was less or equal to 1/8, the resulting path lines of
settling fibres in the plane perpendicular to the rotation axis asymptotically approached
radial lines, whereas, for larger values of the particle Taylor number, particles continued
to drift in the retrograde angular direction relative to the rotating container while still
approaching a fixed asymptotic azimuthal orientation.

Regarding the development of the orientation distribution function, we presented an
analytical solution in the case of an initially homogeneous, well-mixed suspension of
particles in physical and orientation space, which showed that the distribution of the
particles orientation remained independent of the azimuthal orientation angle. However,
there was an accumulation of particles oriented parallel to the horizontal plane which was
emphasised as the particle Taylor number increased.
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The result for the orientation distribution function is far from intuitively trivial if we,
e.g. address the behaviour of the asymptotic path lines of the fibres for large times. For the
smaller values of the particle Taylor number studied, the particles approached radial path
lines with orientation almost aligned with r. Thus, for large times one might expect a peak
in the orientation distribution function for a small azimuthal angle relative to r. As our
results show, this is not the case. Apparently fibres with initial orientations that are first
to reach alignment with r can settle more rapidly than fibres with other initial orientations
which have not reached alignment with r. This compensates for the apparent cumulative
addition to the fraction of fibres aligned with r, as the fractions of already aligned fibres
decrease more rapidly in the centrifugal field than those not aligned.

The volume fraction of particles, disregarding their orientation, decreased exponentially
with time due to the divergent velocity field relative to the rotating fluid. We also found
an optimal value of the particle Taylor number, βopt = 0.4, with respect to the number of
revolutions of the container required to reach a certain degree of separation. Note, however,
that effects of the Coriolis acceleration were not accounted for in the detailed flow around
the particle related to the local frictional force and torque acting on the particle. Therefore,
for larger values of the particle Taylor number, the calculation of these forces and torques
would need to be reconsidered. This is probably the most important inertial effect that
is not covered by the Stokes limit considered here, meaning that the extended models
including inertial forces of the detailed flow around the rod particle developed for the case
of gravitational settling are not sufficient for centrifugal settling.

Another critical aspect is the stability of the present solution with respect to density
perturbations, as already considered in the literature for the case of gravitational settling of
an initially uniform suspension of rod-like particles, both experimentally and theoretically.
The effect of the retrograde secondary motion of the particle liquid mixture as a whole,
as addressed here for the case of a circular cylinder, will require an extended analysis
for a non-circular container, since then the additional rotation rate of the fibres in the
azimuthal plane from the bulk motion is not uniform, neither in physical nor in orientation
space. The analysis of the present paper could probably be extended also to more general,
less slender particle shapes, e.g. spheroids, although with increased algebraic complexity.
Alternatively, future numerical approaches to particles in rotating flows could possibly
benefit from our results, as providing a basis for benchmark tests.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Anders A. Dahlkild https://orcid.org/0000-0002-2906-9306.

Appendix A. Particle paths for β = 0

Here, we present the analysis for the particle path in the limit β → 0 for which an
analytical solution is available. In this limit (3.12) gives that Φ = Φ0, i.e. the rod does not
rotate projected in the plane perpendicular to the rotation axis. Without loss of generality
we suppose ϕ(t̂ = 0) = 0, and therefore φ0 = φ(t̂ = 0) = Φ0, whereby ϕ = φ0 − φ.

Elimination of t̂ between (3.10) and (3.15) for β = 0 then yields
dφ

dθ
= − tan θ sin φ cos φ. (A1)

Applying the fact that (A1) is a separable equation we get

tan2 φ

tan2 φ0
= cos2 θ

cos2 θ0
, (A2)
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which relates φ to the polar angle θ , given by (3.13), along the path. Now from (3.14), and
using (3.10) and (3.15), respectively, to eliminate dt̂ in the two terms below, we write

d ln r = dt̂ + sin2 θ cos2 φ dt̂ = dθ

sin θ cos θ
− dφ

tan φ
. (A3)

Integration and then making use of (A2) yields

r
r0

=
(

tan2 θ

tan2 θ0

sin2 φ0

sin2 φ

)1/2

=

(
tan2 φ0

tan2 φ
− cos2 θ0

)1/2

sin θ0

sin φ0

sin φ
. (A4)

Thus, since ϕ = φ0 − φ (A4) is an explicit relation between r and ϕ along the path starting
at r = r0, ϕ0 = 0 with given initial orientation θ0, Φ0 = φ0.

For the axial position along the path at β = 0 (3.15) and (3.16) give us with (A4)

dz
dφ

= −r
tan θ sin φ

= −r0 sin φ0

tan θ0

1

sin2 φ
. (A5)

Then
z − z0

r0
= cos φ0

tan θ0

(
tan φ0

tan φ
− 1

)
. (A6)

By applying (3.13) at β = 0 the particle path, represented by (A2), (A4) and (A6), can
also be expressed explicitly as function of time, t̂, as summarised in table 2.

Appendix B. Derivation of (3.23)

In this appendix we shall detail how the bracket in (3.21) is simplified into (3.23). The
terms of the bracket in (3.21) can be made explicit by direct calculation of the two last
terms. The first term we simply neglect since ∇ · û = ∇ · (εαv̂R) � 1, as εα � 1. For
the divergence of the relative velocity we have

∇ · v̂R = 1
r

∂

∂r
(v̂R · r) + 1

r
∂

∂ϕ
(v̂R · êϕ), (B1)

where the last term is zero because of symmetry. From (3.3) we get

v̂R · r = Ar2(1 + p2
r ) + Br2prpϕ, (B2)

and then
1
r

∂

∂r
(v̂R · r) = 2A(1 + p2

r ) + 2Bprpϕ. (B3)

Using (3.4a,b) and (3.5a,b), (B3) can be reduced to

1
r

∂

∂r
(v̂R · r) = 2

1 + sin2 θ cos2 φ

1 + 4β2(1 + sin2 θ)
. (B4)

For the divergence in orientation space we have

∇p · ◦̂
p = 1

sin θ

∂

∂θ

[
sin θ

◦̂
p · êθ

]
+ 1

sin θ

∂

∂φ

[
◦̂
p · êφ

]
. (B5)
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We obtain an explicit expression of
◦̂
p via (3.19) in scaled form

◦̂
p = (ξ̂R − v̂R,ϕ

r
k̂) × p. (B6)

The first term of (B6) is just (3.9). The second term after simplification gives us

− 1
r
(v̂R · êϕ)k̂ × p = −

(
Apϕpr + B(1 + p2

ϕ)
)

k̂ × p

= [− sin2 θ sin φ cos φ + 2β(1 + sin2 θ)]

1 + 4β2(1 + sin2 θ)

⎛
⎝ 0

sin θ

0

⎞
⎠ . (B7)

We can then conclude that

◦̂
p · êφ = ◦̂

p · êy = −2β sin θ cos2 θ

1 + 4β2 cos2 θ
+ [− sin2 θ sin φ cos φ + 2β(1 + sin2 θ)]

1 + 4β2(1 + sin2 θ)
sin θ.

(B8)
After differentiation and rearranging, the two terms of the divergence in orientation space
are then

1
sin θ

∂

∂θ

(
sin θ

◦̂
p · êθ

)
= 1

sin θ

d
dθ

(
sin θ

dθ

dt̂

)
, (B9)

1
sin θ

∂

∂φ

(
◦̂
p · êφ

)
= − sin2 θ cos 2φ

1 + 4β2(1 + sin2 θ)
, (B10)

where in (B9) the time derivative of the polar angle is a function of θ given by (3.10).
Summing (B4), (B9) and (B10) we can conclude after algebraic simplification[

∇ · v̂R + ∇p · ◦̂
p
]

= 2 + sin2 θ

1 + 4β2(1 + sin2 θ)
+ 1

sin θ

d
dθ

(
sin θ

dθ

dt̂

)
, (B11)

which is in fact independent of φ.

Appendix C. Analysis of characteristic form for orientation distribution Ψ

A quadrature form of the solution could be obtained by using an alternative way of
expressing (3.24). By dividing with Ψ and rearranging we get

d
dt̂

ln(Ψ sin θ ˆ̇θ) = − (2 + sin2 θ)

1 + 4β2(1 + sin2 θ)
. (C1)

In this form of the conservation equation for the orientation distribution function, Ψ , the
right-hand side is associated with the divergence of the velocity in physical space and the
azimuthal velocity component in orientation space. This divergence acts as a sink for the
relative rate of change of the flux density, Ψ sin θ ˆ̇θ , in the polar direction of orientation
space as one follows any rod particle in its motion and change of orientation. We then
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eliminate t̂ in (C1) by division with (3.25) to get

d
dθ

ln
(
Ψ sin θ ˆ̇θ

)
= d

dθ
(cos θ)

(
1 + 4β2 cos2 θ

sin2 θ cos θ

)
(2 + sin2 θ)

1 + 4β2(1 + sin2 θ)
. (C2)

The right-hand side can be further simplified by partial decomposition which gives

d
dθ

ln
(
Ψ sin θ ˆ̇θ

)
= d

dθ
(cos θ)

[
3

(1 + 8β2) cos θ
+ 2 cos θ

1 − cos2 θ

+
(

1 − 4β2

1 + 8β2

)
4β2 2 cos θ

1 + 8β2 − 4β2 cos2 θ

]
. (C3)

Integrating (C3) along the path from an initial angle θ0 to the current angle θ(t̂) we obtain,
after rearranging,

ln

(
Ψ

Ψ0

sin θ(t̂)
sin θ0

ˆ̇θ(t̂)
ˆ̇θ(t̂ = 0)

)
=

3
2

1 + 8β2 ln
(

cos2 θ

cos2 θ0

)
− ln

(
sin2 θ

sin2 θ0

)

− ln

(
1 + 4β2(1 + sin2 θ(t̂))

1 + 4β2(1 + sin2 θ0)

)(1−4β2)/(1+8β2)

. (C4)

From (C4) and (3.25) and using the identity (cos θ)−2 = 1 + tan2 θ we finally get

Ψ (t̂)
Ψ0

= tan4 θ0

tan4 θ(t̂)
(1 + tan2 θ(t̂) + 4β2)

(1 + tan2 θ0 + 4β2)

(
1 + 4β2(1 + sin2 θ0)

1 + 4β2(1 + sin2 θ(t̂))

)(1−4β2)/(1+8β2)

×
(

cos2 θ0

cos2 θ(t̂)

)12β2/(1+8β2)

, (C5)

where θ(t̂) is given by (3.13). It is then a straightforward procedure to obtain Ψ (t̂, θ) for any
given pair of t̂, θ by first finding the corresponding value of θ0 from (3.13) by numerical
iteration, and using this result in (C5) with Ψ0 = 1.
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