A GENERALIZED RING OF QUOTIENTS II

G.D. Findlay and J. Lambek

3. Fractional homomorphisms. A partial homomorphism
d) from B into A will be called a fractional homomorphism if
dom¢ & B (A). Every extension of a fractional homomor-
phism is again fractional, and each fractional homomorphism
has a unique irreducible extension.

PROPOSITION 3.1, Two fractional homomorphisms have
a common irreducible extension if and only if they induce the
same homomorphism (necessarily fractional) on the intersection
of their domains.

Proof. This follows from 1.3 (iii).

THEOREM 3.2. The irreducible fractional homomorphisms
from B into A form an additive group Fr(B,A) containing Hom(B, A)
as a subgroup. Hom(A,A) and Hom(B, B) act as rings of left and
right operators respectively.

Proof. Fortf ,\{1 € Fr(B,A) there is a partial homomor-
phism ¢ +{¢ from B into A defined by

(& +%)b = b+ ¢b (be domdadomy ).
Since dom¢~ domy & B (A) by 1.3 (iii), ¢ 4 ¢ is fractional
and so can be extended to a unique element of Fr(B,A) also de-
noted by ¢ + b
It is easy to verify that Fr(B,A) forms an additive group

under 4. For example, to verify the associative law, we observe
that

((+p )+X)b= (¢ + (p +%))b

for allb ¢ dom¢ ~ domyn domX & B (A), and hence whenever
both sides of the equation are defined.

A full homomorphism of B into A is an irreducible partial
homomorphism and is fractional by 1.1 (i). Therefore Hom(B,A)

is a subgroup of Fr(B,A).
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Finally, let 4 ¢ Hom(A,A), B € Hom(B,B)and ¢ &
Fr(B,A). Then oUﬁ and ¢ 8 are partial homomorphisms from
B into A with doma¢ = dom¢ and dom ¢p : B -ldom¢ .
They are fractional since dom¢ & B (A) and [ dom¢ <« B (A)
by 1.2. They are therefore extendible to unique elements of
Fr(B,A) also denoted by «¢ and ¢p . The usual associative and
distributive laws follow.

PROPOSITION 3.3. If C £ B (A) then Fr(C,A) ¥ Fr(B,A).

Proof. Let ¢ & Fr(C,A). Then dom¢ &£ C = B (A).
Hence 4: can be extended to cb‘ e Fr(B,A). Conversely, given
such a ¢!, it induces a unique ¢ with domain dom ¢' A C.

We remark that the isomorphism ¢ ‘> ¢ induces the
natural embedding of Hom(B, A) into Hom(C, A).

PROPOSITION 3.4. If A & A'(A') then Fr(B,A) 2
Fr(B,AY).

Proof. Any ¢ € Fr(B,A) is also a partial homomorphism
from B into A', It is still fractional, since dom ¢ & B(A) im-
plies dom ¢ ¢ B(A') by 2.1 and 2.2. Let ¢' be its irreducible
extension. The mapping ¢ - ¢' is clearly an isomorphism,

To show that it is onto,let ¢ ¢ Fr(B,A'). This induces
a homomorphism ¢ : U} -1a — A by restricting its domain.
Clearly, 4: is an irreducible partial homomorphism from B into
A. Moreover, it is fractional, since dom¢ = &P'IA & domy
£ B (A') by 1.2 and 1.3 (ii) and therefore dom ¢ & B (A) by
1.1 (ii). Thus CP' =y and so the mapping under consideration
is onto,

4. Rational completeness. The module A will be called
rationally complete if every fractional homomorphism from any
module B into A is extendible to a full homomorphism.

Thus A is rationally complete if and only if Fr(B,A) =
Hom(B,A) for all B.

THEOREM 4.1. A is rationally complete if and only if A
has no proper rational extension,

Proof. Assume A is rationally complete and let A' be a
rational extension of A. Then A £ A' (A) by 2.2. Thus the
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identity mapping of A is a fractional homomorphism from A' onto
A and hence can be extended to a full homomorphism of A' onto
A. This is a homomorphism over A and hence an isomorphism
by 2.4. Therefore Ai = A,

Conversely, assume that A has no proper rational exten-
sion. We wish to show that any ¢ & Fr(B,A) is a full homo-
morphism. Its graph G(¢) = i(b,(b b) | bedom¢} is a submo-
dule of the direct sum B + A. The projectionm of B + A onto
B 4+ A -G(¢) = A(d) induces an isomorphism between A and TA,
because AnG(¢) = 0. Thus we may identify A with - A and regard
A(¢) as an extension of A so that q¥b = a (-¢b) = -¢b for any
bedomé. If ¢': B - A($) is defined by ¢ 'b = ~Tb this shows
that ¢ and ¢' coincide on dom¢ € domg' and so ¢ ' extends ¢
We shall show that A(¢ ) is a rational extension of A and there-
fore coincides with A. Hence ¢ (which is given to be an irredu-
cible partial homomorphism into A) coincides with ¢' and so is
a full homomorphism, as was to be proved,

In view of 2.2, we need to show that A(}) is an essential
extension of A and that A & A($) (A).

Let & be a partial homomorphism from A(¢) into A ex-
tending the identity mapping of A. It will follow that A(d) is an
essential extension of A if we show that « is not a proper exten-
sion, that is, dom« < A,

Now <« induces a partial homomorphism from B into A
such that ,

«Tb= & (-¢b) = - ¢Db (b € dom¢ ).

Since ¢ is irreducible, BadomaT & domé¢, by 0.3. Let de
doma, thend =a + b wherea € Aandb e B. Moreover,
wb e dom« since Ae dom«. Therefore b € Baa-ldom«=
Badomam & domé¢, and so rb= —-¢pb e A. Hence domu g
A.

Finally, let ¢ be a partial homomorphism from A(¢) into
A such that As ker¢ . ThenyT induces a partial homomor-
phism from B into A and o (domé¢) = ¢ ( —=¢(dom$) ) = PpA=0.
Therefore im{a = 0 as domé¢ &« B (A). But A(¢) = A + B and
soimp = YA +imyT =0. Thus A & A(cl)) (A).

.THEOREM 4.2. If M is a maximal rational extension of
C, then every rational extension of C is isomorphic over C to
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exactly one submodule of M. If B] and B2 are two such submo-
dules, then B] =» B2 if and only if B] & Ba2.

Proof. Let C & B (B). Since C & dom 6B,M& B,
dom 0B, & B (B) so that dom € p,M & B(M) by 2.1. Thus
“B,M €& Fr(B,M) and so by 4.1 is a full homomorphism.
Since it is also an isomorphism by 2.4, B is isomorphic over C
to its image under OJB,M.

IfCe B, & M(i=1,2)and B] - B2, thend’Bl,BZ is a
full isomorphism. It extends the identity mapping of C which can
be uniquely extended to the identity mapping of M. Therefore

TR, B3is the inclusion mapping of B into By.

In particular, if B] and B2 are isomorphic over C we have
B; = B2. '

COROLLARY 4.3. The maximal rational extension of C
is unique up to isomorphism over C.

As in section 1, let I denote the ring obtained from R by
formally adjoining the ring of integers. There is a natural iso-
morphism (. between C and Hom(I, C) such that

(wc)i = ci (ceC, iel)
H.-lq; = ¢l (¢ ¢ Hom(I,C) ).

We may identify C with Hom(I, C), which in turn may be identi-
fied with a submodule of M = Hom(I,M) = Fr(I,M), where M is
some maximal rational extension of C. By 3.4, Fr(I,M) % Fr(LC)
and it is easily verified that the isomorphism leaves C = Hom(I, C)
elementwise invariant. Hence M is isomorphic over C with
Fr(l,C). We have thus established

PROPOSITION 4.4. Fr(I,C) is a maximal rational exten-
sion of C.

If R contains a unity and we confine ourselves to the cate-
gory of unitary modules, we can replace I by R in the above
argument, Hence a unitary module C has the maximal rational
extension Fr(R, C) relative to the category of unitary modules.
Now for unitary C, Fr(I,C) is also unitary and hence Fr(R, C)
is also the maximal rational extension of C with respect to the
category of all modules.
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Again, let R be an algebra over a field F and suppose we
study the category of all representation modules of R and R-F-
homomorphisms. 4.4 would still hold with respect to this cate-
gory provided I is obtained from R by formally adjoining the
field F in place of the ring of integers.

5. Rings of Quotients. A ring S is called an extension of
a ring R if there is given an isomorphism of R into S. There is
no harm in assuming that S contains R as a subring. S can then
be regarded as a right R-module SR, a left R-module RS and a
two-sided R-module gSg. Following Utumi we call an extension
S of R a ring of right quotients of R if SR is a rational exteusion
of Rp. We denote this situation by the formula R &£ S (SR).

PROPOSITION 5.1. If Sand T are rings of right quotients
of R then any homomorphism over R of S into TR is a ring
homomorphism and conversely.

Proof. Let ¢ be a homomorphism of SR into TR over R
and let s' be an element of S. Define ¢ :SrR —» TR by

ps=(psh(ds)- ¢(s's) (se S).
For any r ¢ R we have ¢1- = r, hence
Lpr:(ti)s‘)r— ¢ (s'r) =0,

But R & S (TR) by 2.1; therefore im{ = 0, so that ¢ is a ring
homomorphism., The converse is obvious,

PROPOSITION 5.2. If AR BR, than Fr(BR,AR) is a
ring containing Hom(BR, AR) as a subring.

Proof. If ¢,y & Fr(B,A) the composite mapping ¢
is a fractional homomorphism from B into A, For dom ¢ &
B (A), hence by 1.2
dom ¢y = ¢ ldomd 2« dom¢ & B(a),
Therefore 434' can be extended to a unique element of Fr(B,A),
also denoted by ¢ ¢ . It is easy to verify that Fr(B, A) forms

a ring with respect to this definition of multiplication, If domq}S
z domn}: = B then dom ¢ ¢ = B hence Hom(B,A) is a subring.
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THEOREM 5.3. Any ring R has a maximal ring of right
quotients Q which is unique up to isomorphism over R. More-
over, Qg is the maximal rational extension of RR and every ring

of right quotients of R is isomorphic over R to a unique subring
of Q.

Proof. Let Q = Fr(Ig,RR). By 5.2 this is a ring extension
of Hom(IR ,RR), which may be identified with R, since the natural
isomorphism between them is a ring isomorphism. [Q can be
regarded as a right R-module because it contains R and also in
view of the definition

(q.7)i = q(ri) (g ¢ Fr(Ig,RR), r ¢ R, ri e dom q),

which is implied by 3.2. It is easily verified that these two ways
of making Q an R-module are in fact the same.] The remainder
of the theorem follows from 4.2 and 5.1.

PROPOSITION 5.4. Given Ag, if R & S (AR), then any
irreducible partial R-homomorphism from any right S-module
into Ag is a partial S-homomorphism,

Proof. Given Bg, let 4) be an irreducible partial homomor-
phism from BR into AR, For any elementd ¢ dom¢ consider
the set Fq= {s ¢ S|ds€ domg¢}. Clearly Fq is an R-submo-
dule of S and contains R. Define ¢ :Fq -> A by

ps= ¢(ds) - (pd)s (s e Fq).

Then R = 0. Now R &S (AR); hence im{y = 0, so that ¢ (ds) =
(¢ d)s (se Fq). Thus ¢ coincides with the homomorphism¢':
dS —> A defined by ¢'(ds) = (¢ d)s on the intersection of their
domains. By 0.3, ¢ extends ¢'and sodS ¢ dom¢, that is
Fq=5. Thus ¢ (ds) = (¢ d)s for all s € S. Since this holds for
any d ¢ dom¢, ¢ is an S-homomorphism.

PROPOSITION 5.5. Given Ag, if R& S (AR) then C &
B (Ag) if and only if C & B (AR), for any Bg and Cg.

Proof. Assume C & B (Ag) and let ¢ be a partial homo-
morphism of By into AR such that C & ker¢. We want to prove
that im¢ = 0. Without loss of generality we may assume that¢
is irreducible. By 5.4 ¢ is a partial S-homomorphism., Now
C & ker¢ and C £ B (Ag) hence imé¢ =0,

The converse is trivial.
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PROPOSITION 5.6. If Qis a maximal ring of right quotients
of R then Q is its own maximal ring of right quotients.

Proof. It suffices to show that any irreducible fractional
homomorphism ¢ from any B into Qq is full. Now @ is an
R-homomorphism and, since dom¢ &« B (Qq), we have dom¢)

£ B (Qg) by 5.5. Thus ¢ is a fractional homomorphism from
BR into QR which may be extended to a full homomorphism ¢>'
since Qg is rationally complete. Finally, by 5.4, ¢‘ is a Q-
homomorphism and ¢’ = ¢ since 95 is irreducible.

PROPOSITION 5.7. If Cg& Bg and R £ S (Cp), then Bg
is an essential extension of Cg if and only if BR is an essential
extension of CR.

Proof. Let Bg be an essential extension of Cg. The iden-
tity mapping ¥ of C is therefore an irreducible S-homomorphism.
By 5.4, its irreducible extension as a partial R-homomorphism
from B into C is also an S-homomorphism and must therefore
be ¥ itself. Hence y is also irreducible as an R-homomor-
phism, and so By is an essential extension of CR.

The converse is obvious.

PROPOSITION 5.8, If S is a ring of right quotients of R
and T is a ring of right quotients of S, then T is a ring of right
quotients of R.

Proof, We are given that R £ S(Sg) and S« T (Tg). By
2.2, Tgis an essential extension of Sgand S& T (Ss). By 5.7,
TR is an essential extension of Sg and, by 5.5, S £ T (SR).
Again by 2.2, S &£T (Tg), and so, by 2.3, R &£ T (TR).

6. Rings with zero left annihilator. We consider a ring
R such that rR = 0 implies r = 0 for all r ¢ R, These are the
rings studied by Utumi L12] .

PROPOSITION 6.1. If R has zero left annihilator then
Fr(RR,RR) is a maximal ring of right quotients of R.

Proof., We first show that R < I (RR), where I is obtained
from R by formal adjunction of integers. Let ¢ be any partial
homomorphism from I into R such that R & ker¢ . Then (im¢)R
S ¢R =0, hence im¢ =0,

Thus R & I (RR) and by 3.3 there is a canonical isomor-
phism between Fr{I,R) and Fr{(R,R) which sends Hom(I,R) into
Hom(R,R). The image of Hom{I,R) consists of the endomorphisms
of RR induced by multiplication, We muay identify this image
with R; then Fr(R,R) becomes a maximal rational extension of R.

PROPOSITION 6.2. The maximal ring of right quotients

‘contains a unity if and only if R has zero left annihilator.

Proof. If R has zero left annihilator its ring of right quo-
tients Fr(R,R) contains the identity automorphism of R which is
a unity. '
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Conversely, assume that R & Q(Qg) and that Q contains an
element qj such that rqg = r for all r ¢ R. If rR = 0 then r in-
duces a partial endomorphism of Qp whose kernel contains R.
Hence rQ = 0 and sor = rqg = 0. ‘

PROPOSITION 6.3. Let O be the maximal ring of right
quotients of a ring R with zero left annihilator and assume A &
Q (QR). Then for each homomorphism ¢ : AR —» Qp there
exists a unique element q such that ¢ a = qa (a e A).

Proof. ¢ , regarded as a partial endomorphism of QR,
is fractional and so can be extended to a full endomorphism¢ !
of QR since QR is rationally complete. Moreover, by 5.4,¢"
is also an endomorphism of Oq- Therefore, setting q = 4) '1,we
find

¢a=¢'a=¢)'(la)=(¢)'l)a=qa (a e A).

PROPOSITION 6.4. Let A be a two-sided ideal in a ring
R with zero left annihilator. Then A &R (RpR) if and only if A
has zero left annihilator in R, that is, rA = 0 implies r = 0 for
allr € R. )

Proof. Assume A & R (RR) and rA = 0. Then r induces
an endomorphism of Rp whose kernel contains A. HencerR=0,
and therefore r = 0.

Conversely, suppose A has zero left annihilator, and let
¢ be a partial endomorphism of RR such that A & ker ¢ .
For any d € domé¢, (¢ d)A = ¢ (dA) < ¢A = 0 sothat ¢ d=0.
Thus A & R (RR).

7. Commutative rings. Prior to studying commutative
rings we establish the following, due originally to Utumi

Oz, (1.3)].

PROPOSITION 7.1. If S is a ring of right quotients of R,
then an element of S lies in the centre of S if and only if it com-
mutes with all elements of R,

Proof. Given an element s' of S assume s'r = rs! for all
r ¢ R. Consider the mapping ¢ defined by

4>s= s's — ss' (s e S).

It is easily verified that ¢ is an endomorphism of SR whose

162

https://doi.org/10.4153/CMB-1958-016-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-016-6

kernel contains R, Therefore im¢ = 0, that is, s's = ss! for
alls ¢ S.

PROPOSITION 7.2. If S is a ring of right quotients of R,
then S is commutative if and only if R is. '

Proof. Assume R is commutative; then by 7.1 every ele-
ment of R lies in the centre of S. Hence, again by 7.1 every
element of S lies in the centre of S.

It is easily seen that any anti-automorphism of a ring R
can be extended to an anti-isomorphism between its maximal
ring of right quotients and its maximal ring of left quotients.

If R is commutative the identity automorphism of R is an anti-
automorphism. It can be extended to an isomorphism between
the two rings of quotients since each is commutative. It follows
from this, if not more directly, that any ring of right quotients
of a commutative ring is also a ring of left quotients. Hence
we may omit any reference to right and left.

PROPOSITION 7.3, If Q is the maximal ring of quotients
of a commutative ring R with zero aanihilator, then any element
of R has an inverse in Q if and only if it has a zero annihilator
in R.

Proof, Let r' be an element of R having zero annihilator
in R and define a homomorphism ¢~ of (r'R)R into QR by
¢(r'r) =r (r & R). This makes sense since r'r = 0 implies
r = 0. Now r'R is a (two-sided) ideal of R with zero annihilator
since rr'R = 0 implies rr' = 0 and hence r = 0, Therefore r'R

£ Q(QR) by6.4. It follows from 6.3 that there exists an ele-
ment q ¢ Q such that c} (r'r) = qr'r for all r ¢ R, That is, for
allr ¢ R, qr'r = r = q,r, where q . is the unity of Q. Thus
qr' — qq induces a partial endomorphism of Qp whose kernel
contains R, and so (qr' - q3)Q = 0. Hence qr' - q;5 = (qr' - qo)qo
=0, that is, r' has the inverse q.

The converse is obvious.

As an immediate consequence we have:

PROPOSITION 7.4. If Q is the maximal ring of quotients
of a commutative ring R with unity, then the elements r'r-

(r',r € R, r with zero annihilator in R) form a subring F of Q
which contains R.
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This subring F is also a ring of quotients in our sense and
it has been called the full ring of quotients [ 11,p.40] . If,
moreover, every non-zero element of R has zero annihilator, R
is called an integral domain, and its full ring of quotients be-
comes a field, called the field of quotients of R.

PROPOSITION 7.5. If R is an integral domain, its maxi-
mal ring of quotients is also its full ring of quotients.

Proof. Letqe Q, q+ 0. Since Qp is an essential exten-
sion of Rp, by 2.2, qRn R =+ 0, hence there exist r,r'e R
with qr = r' £ 0. By 7.3, r has an inverse r-l sothatq=r'r
Thus Q = F.

It is not true in general that the maximal ring of quotients
of a commutative ring with unity coincides with its full ring of
quotients. In section 9 we shall exhibit a ring which is its own
full ring of quotients but which is not rationally complete.

The following remark establishes a connection between
the theory of rational extensions of a ring and classical multi-
plicative ideal theory. An integral domain in which all non-zero
ideals are invertible is called a Dedekind ring. Let R be such
a ring, Q its ring of quotients. We know by 4.2 that all raticnal
extensions of R are isomorphic over R to R-submodules of Q.
These submodules are precisely the fractional ideals of R whose
inverses are integral ideals.

8. Rings with minimum condition.

PROPOSITION 8.1. Let R be a ring with the minimum
condition on right ideals. Then R contains a smallest right ideal
N such that N £ R (RR).

Proof. Let N be the intersection of all right ideals A of
R such that A & R (RR). Because of the minimum condition,
N is already the intersection of a finite number of such ideals.
Hence N « R (RR) by 1.3 (iii).

PROPOSITION 8.2. Let R be a ring with a smallest right
ideal N such that N « R (RR). Then any homomorphism of Ng

into Rp is an endomorphism of Ny, and N is a two-sided ideal.

Proof. Let 4> : NR = Rp. Then ¢'1N & N = R (RR)
by 1.2 and 1.3 (ii). Hence N € ¢~IN, thatis, im¢ < N. In
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particular, if ¢ is the homomorphism induced by an elementr
of R, we have TN & N. Therefore N is a two-sided ideal.

PROPOSITION 8.3, Let R be a ring with zero left annihi-
lator and with a smallest right ideal N such that N £ R(RR).
Then

(i) N is the smallest two-sided ideal with zero left anni-
hilator in R,

(ii) the ring of endomorphisms of NR is a maximal ring of
right quotients of R.

Proof. By the definition of N, any two-sided ideal A con-
tains N if and only if A & R(RR). By 6.4, this is the same as
saying that A has zero left annihilator. Since N is two-sided,
by 8.2, (i) follows.

Finally, Fr(R,R) & Fr(N,R) by 3.3. If ¢ € Fr(N,R),
then dom¢ & N & R(Ry), hence dom¢ = N. Thus Fr(N,R) =
Hom(N, R), which is Hom(N,N) by 8.2. Therefore Fr(R,R)=
Hom(N, N).

9. Algebraic rings. We call a ring R (which is not neces-
sarily commutative) algebraic over a field F if F is a subring of
the centre of R and if every element of R satisfies a polynomial
equation with coefficients in ¥'. For example, a ring of finite
matrices over F is algebraic over F.

PROPOSITION 9.1. If a ring R is algebraic over a field
F, then any element r of R possesses a two-sided inverse r-1
in R, provided its left or right annihilator is zero.

Proof. Let p(x) be a polynomial of smallest degree such
that p(r) = 0. We may assume that r + 0, and so p(x) will have
degree at least 1. Write p(x) = xq(x) — f, where f ¢ F and q(x)
has smaller degree than p(x). Since p(x) was minimal, q(r)+ 0.
If r has zero right annihilator f = rq(r) % 0, hence r has the right
inverse r-! = q(r)f'l. Since q(r)r = rq(r), r-1 is also a left in-
verse. For the same reason, the result holds when r has zero
left annihilator.

EXAMPLE 9.2. Let F be any field and let
R be the ring of all (countably) infinite diagonal matrices over F
in which all but a finite number of diagonal elements are equal
to each other. Let N be the ring of all infinite diagonal matrices
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over F in which all but a finite number of diagonal elements are 0.
Clearly, every element r € R has the form
r=fa+n (f e F, n e N).

Since n is the direct sum of a finite matrix and a zero-matrix, it
satisfies a polynomial equation p(n) = 0. Hence r satisfies p(r -f)
= 0. Thus R is a commutative ring in which every element with
zero annihilator has an inverse by 9.1, that is to say, R is its
own full ring of quotients.

N is an ideal of R. It has elements of the form: an mxm
identity matrix plus a zero matrix, for any finite m. Hence N
has zero annihilator, By 6.4, N &R (RR). In fact, N is the
smallest such ideal. For N = 2 [Fe; where e; is the matrix with
1 in the i-th diagonal place and zero everywhere else. Now if A

<N (RR) then A is the (weak) direct sum of some of these Fe;j.
Suppose Fej is not contained in A, then FejA = 0, contrary to the
assumption that A & N =« R (Rp), in view of 6.4, Therefore all
Fejare contained in A, and so A = N,

It follows from 8.3 that the maximal ring of quotients of R
is the ring of endomorphisms of NR. It is easy to see that this is
the ring of all infinite diagonal matrices. For if ¢ is an endo-
morphism of N, then (¢ ej)(Fei) = 0 if i j, hence¢ ej & ejF,
and therefore ¢ can be induced by multiplication with a diagonal
matrix.

The following example shows that even a finite ring need
not be rationally complete.

EXAMPLE 9.3, Let R be the ring of all two by two matrices
(f; Q) over a field F, for example a finite field, subject to
the condition  +y = f = & . The smallest two-sided ideal
N Witil, zero left annihilator consists of all matrices of the form
y7/! . The maximal ring of right quotients of R is the ring
of all two by two matrices over F.

In view of 9.1, the finite ring constructed above has the
property that any element with zero left or right annihilator has
an inverse in R. Hence the ring of right quotients constructed in

[6] is R, while the maximal ring of right quotients is larger than
R.

McGill University
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p.79,
p-.80,

p.80,
p.83,

CORRECTIONS TO PART I

line 4 from bottom, replace 'increasing sequence' by
"transfinite increasing sequence!'.

line 3 from bottom, replace "$'" by .

after line 5 add: "It is understood that C& B and C'< B!
and that the isomorphism between C and C' is induced by -
that between B and B\,

line 11, replace 'd & C'" by 'yd € C'.

line 13, replace "ascending sequence' by '"transfinite
ascending sequence''.

line 15, replace OJB‘:)B;‘_&" by "/Qé,s.j (L 4:))".
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