
A GENERALIZED RING OF QUOTIENTS II 

G .D . Findlay and J . Lambek 

3 . Fract ional homomorphisms . A par t ia l homomorphism 
from B into A will be called a fractional homomorphism if 

dom 4> éz B (A). Every extension of a fractional homomor­
phism is again fractional, and each fractional homomorphism 
has a unique irreducible extension. 

PROPOSITION 3 . 1 . Two fractional homomorphisms have 
a common irreducible extension if and only if they induce the 
same homomorphism (necessar i ly fractional) on the intersect ion 
of their domains . 

Proof. This follows from 1.3 (iii). 

THEOREM 3 . 2 . The irreducible fractional homomorphisms 
from B into A form an additive group Fr{B,A) containing Hom(B, A) 
as a subgroup. Hom(A,A) and Hom(B,B) act as rings of left and 
right operators respect ively. 

Proof. For«J>,v|; e Fr(B,A) there is a par t ia l homomor­
phism <j> -3-vj; from B into A defined by 

( 4> "t ^ )k s «fb-h + k ( b e dom^domvj» ) . 

Since dom<j> <-\ domvjj ^ B (A) by 1.3 (ii i) , <j> -$- vj> is fractional 
and so can be extended to a unique element of Fr (B,A) also de­
noted by <j> + d; . 

It is easy to verify that Fr(B,A) forms an additive group 
under -f . Fo r example, to verify the associat ive law, we observe 
that 

( (4> + $> ) +X )b » (<j> + (^ + % ) )b 

for all b £ dom^ ^ domijj/\ domX 4=. B (A), and hence whenever 
both sides of the equation a re defined. 

A full homomorphism of B into A is an irreducible par t ia l 
homomorphism and is fractional by 1. 1 ( i ) . Therefore Hom(B,A) 
is a subgroup of F r ( B , A ) . 
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Final ly, l e t * fc Hom(A,A), p e Hom(B,B) and $ & 
F r ( B , A ) . Then <*<£ and <j> £ a re par t ia l homomorphisms from 
B into A with dom o<̂  = dom^> anddom^>jB « £ ~ dom 96 . 
They a re fractional since dom 4> ^ B (A) and p~ dom(j) é=. B (A) 
by 1.2. They a re therefore extendible to unique elements of 
F r ( B , A) also denoted by ^ <£ and <f>P> . The usual associat ive and 
distr ibutive laws follow. 

PROPOSITION 3 . 3 . K C ^ B ( A ) then Fr (C,A) 2 F r ( B , A ) . 

Proof. Let <{> fc F r ( C , A ) . Then dom<f é, C £: B (A). 
Hence 4 can be extended to <j> ! e F r ( B , A ) . Conversely, given 
such a <b ' , it induces a unique $ with domain dom ^ ! r\ C. 

We r e m a r k that the isomorphism ^ ! -^ >̂ induces the 
natural embedding of Hom(B,A) into Hom(C,A). 

PROPOSITION 3 . 4 . If A é. A1 (A') then F r ( B , A) ? 
F r ( B , A ! ) . 

Proof. Any (p £ Fr (B,A) is also a par t ia l homomorphism 
from B into A1 . It is still fractional , since dom <£ ^ B(A) im­
plies dom <{> 4t B(A') by 2 .1 and 2 . 2 . Let ^>! be its i r reducible 
extension. The mapping <j> -> cj> is c lear ly an i somorphism. 

To show that it is onto ; let *J* £ F r ( B , A ! ) . This induces 
a homomorphism (j> : \\f " *A —> A by res t r ic t ing its domain. 
Clear ly , <£ is an i r reducible par t ia l homomorphism from B into 
A. Moreover , it is fract ional , since dom<£ = v|> "*A £• domi|> 

^ B ( A ' ) by 1.2 and 1.3 (ii) and therefore dom <j> £=. B (A) by 
1.1 ( i i ) . Thus 4> = ^ at*d s o the mapping under considerat ion 
is onto. 

^' ^ - a t i o r i a l comple teness . The module A will be called 
rationally complete if every fractional homomorphism from any 
module B into A is extendible to a full homomorphism. 

Thus A is rat ionally complete if and only if F r (B,A) = 
Hom(B,A) for all B. 

THEOREM 4 . 1 . A is rat ionally complete if and only if A 
has no proper rat ional extension. 

Proof. Assume A is rationally complete and let A ! be a 
rat ional extension of A. Then A ^ A1 (A) by 2 . 2 . Thus the 
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iden t i ty m a p p i n g of A is a f r ac t i ona l h o m o m o r p h i s m f rom A' onto 
A and hence can be ex tended to a full h o m o m o r p h i s m of A1 onto 
A . Th i s is a h o m o m o r p h i s m over A and hence an i s o m o r p h i s m 
by 2 . 4 . T h e r e f o r e AJ = A . 

C o n v e r s e l y , a s s u m e that A has no p r o p e r r a t i o n a l e x t e n ­
s i o n . We wi sh to show that any ty £ F r ( B , A ) is a full h o m o ­
m o r p h i s m . Its g r a p h G($) = | (b ,^>b) | bedomc^} is a s u b m o ­
dule of the d i r e c t s u m B 4- A . The p r o j e c t i o n *TT of B + A onto 
B + A - G($ ) = A(4> ) induces an i s o m o r p h i s m be tween A and TTA, 
b e c a u s e A>G(^) = 0 . Thus we m a y identify A with *jr A and r e g a r d 
A((£ ) a s an ex t ens ion of A so tha t %b = T (-<|>b) = - ^ b for any 
bedom<£. If <j> ' : B - ^ A($ ) is defined by <|> ! b = - *TTb th i s shows 
tha t 4> a ^ d cj> * co inc ide on dom (j> G, d o m ^ ' and so <£> l ex tends $ . 
We sha l l show that A((f> ) is a r a t i o n a l ex t ens ion of A and t h e r e ­
fore c o i n c i d e s with A . Hence $> (which is given to be an i r r e d u ­
c ib le p a r t i a l h o m o m o r p h i s m into A) co inc ides with à f and so is 
a full h o m o m o r p h i s m , a s was to be p r o v e d . 

In v iew of 2 . 2 , we need to show tha t A(<J>) is an e s s e n t i a l 
ex t ens ion of A and tha t A £. A(cf>) (A) . 

L e t ck be a p a r t i a l h o m o m o r p h i s m f rom A(d) into A ex ­
tending the ident i ty mapp ing of A . It wil l follow tha t A(é) is an 
e s s e n t i a l e x t e n s i o n of A if we show that e< is not a p r o p e r e x t e n ­
s ion , that i s , domot. e A . 

Now -en* induces a p a r t i a l h o m o m o r p h i s m f r o m B into A 
such tha t 

*nr b = <* ( -<£ b) = - (f> b (b € d o m ^ ) . 

S ince <j> is i r r e d u c i b l e , B^domoinf c dom<}> , by 0 . 3 . Le t d& 
domot, then d = a •+• «TT b w h e r e a € A and b e B . M o r e o v e r , 
t r b e domoC s i n c e A Sr domoc . T h e r e f o r e b e B-%TT~ *doiïW = 
BrNdom^nr S dom<(>, and so ^ b - -^>.b £ A . Hence d o m o ( c 
A . 

F i n a l l y , le t v|> be a p a r t i a l h o m o m o r p h i s m f r o m A(̂ > ) into 
A such tha t AS: k e r ^ . Thenvjnr induces a p a r t i a l h o m o m o r ­
p h i s m f r o m B into A and vjvrç- (dom<f>) » ^ ( -<£(dom$) ) Çr vl) A = 0 . 
T h e r e f o r e i m ^ i r = 0 a s dom^f) ^ B (A) . But A ( ^ ) = A + «fl-B and 
so imi j ) = ^ A + i m ^ - T T = 0 . Thus A £= A(d>) (A) . 

«THEOREM 4 . 2 , If M is a m a x i m a l r a t i o n a l ex t ens ion of 
C, then e v e r y r a t i o n a l ex tens ion of C is i s o m o r p h i c ove r C to 
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exactly one submodule of M. If Bl and B2 are two such submo­
dules, then Bi -» B2 if and only if Bl £ B2. 

Proof. Let C é=. B (B). Since C c dom ^ , M C B, 
dom <^B,M ^r B (B) so that dom <^B,M — B(M) by 2. 1. Thus 
^ B M e Fr (B,M) and so by 4 . 1 is a full homomorphism. 

Since it is also an isomorphism by 2 . 4 , B is isomorphic over C 
to its image under <^B,M* 

If C £ Bi Sz M (I = 1,2) and Bl -> B2, t h e n ^ 1 > B 2 is a 
full i somorphism. It extends the identity mapping of C which can 
be uniquely extended to the identity mapping of M. Therefore 

<r*Bi Bpis the inclusion mapping of B^ into B£. 

In par t i cu la r , if B i and B2 a r e isomorphic over C we have 
Bi - B2. 

COROLLARY 4 . 3 . The maximal rational extension of C 
is unique up to i somorphism over C. 

As in section 1, let I denote the ring obtained from R by 
formally adjoining the ring of in tegers . There is a natural i so­
morphism JJU, between C and Hom(I,C) such that 

(fjt c) i = ci (c * C, iel) 
f^"1^ « 4>1 (4 e H o m ( I , C ) ) . 

We may identify C with Hom(I,C), which in turn may be identi­
fied with a submodule of M = Hom(I,M) = F r ( I , M ) , where M is 
some maximal rat ional extension of C. By 3 .4 , Fr( I ,M) ^ F r ( I , C ) 
and it is easily verified that the isomorphism leaves C = Hom(I,C) 
elementwise invariant . Hence M is isomorphic over C with 
F r ( I , C ) . We have thus established 

PROPOSITION 4 . 4 . Fr ( I ,C) is a maximal rat ional exten­
sion of C. 

If R contains a unity and we confine ourselves to the ca te ­
gory of unitary modules , we can replace I by R in the above 
argument . Hence a unitary module C has the maximal rat ional 
extension Fr (R,C) relat ive to the category of unitary modules . 
Now for unitary C, Fr ( I ,C) is also unitary and hence F r (R ,C) 
is also the maximal rat ional extension of C with respect to the 
category of all modules . 
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Again, let R be an algebra over a field F and suppose we 
study the category of all representat ion modules of R and R - F -
homomorphisms. 4 .4 would still hold with respect to this ca te­
gory provided I is obtained from R by formally adjoining the 
field F in place of the ring of in tegers . 

5 • Rings of Quotients. A ring S is called an extension of 
a ring R if there is given an isomorphism of R into S. There is 
no harm in assuming that S contains R as a subring. S can then 
be regarded as a right R-module S R , a left R-module R S and a 
two-sided R-module R S R . Following Utumi we call an extension 
S of R a ring of right quotients of R if S R is a rational extension 
of Rj^. We denote this situation by the formula R £ S ( S R ) . 

PROPOSITION 5 . 1 . If S and T a r e rings of right quotients 
of R then any homomorphism over R of S R into T R is a ring 
homomorphism and conversely. 

Proof. Let 4> be a homomorphism of S R into T R over R 
and let s1 be an element of S. Define i|) : S R —* T R by 

^ s = { (|> s1) ( $ s) - <j> ( s f s ) (s e S ) . 

For any r s. R w e have <(>T = r, hence 

<j> r = ( § s!)r - <£> (sfr) = 0. 

But R ^ S ( T R ) by 2 . 1 ; therefore im vj? « 0, so that ^ is a ring 
homomorphism, The converse is obvious. 

PROPOSITION 5 .2 . If A R S B R , than Fr(BR,AR) is a 
ring containing Hom(BR,AR) as a subring. 

Proof. If ^ , ty £ Fr(B,A) the-composite mapping <f>tp 
is a fractional homomorphism from B into A. For dom <tj> ^ 
B (A), hence by 1.2 

d o m ^ s ^ " dom(j) z. dom ^ ^ B ( A ) , 

Therefore ^ ^ can be extended to a unique element of F r (B ,A) , 
also denoted by <fx|; . It is easy to verify that Fr(B,A) forms 
a ring with respect to this definition of multiplication. If dom^> 
= doirnj; = B then dom^vj; * B hence Hom(B,A) is a subring. 
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THEOREM 5 . 3 . Any ring R has a maximal ring of right 
quotients Q which is unique up to isomorphism over R. More ­
over, Q R is the maximal rational extension of R R and every ring 
of right quotients of R is isomorphic over R to a unique subring 
of O. 

Proof. Let Q = F r ( I R , R R ) . By 5.2 this is a ring extension 
of H o m ( I R , R R ) , which may be identified with R, since the natural 
isomorphism between them is a ring i somorphism. ^ Q can be 
regarded as a right R-module because it contains R and also in 
view of the definition 

(q . r ) i = q(ri) (q e F r ( I R , R R ) , r e R, r i e dom q), 

which is implied by 3 .2 . It is easily verified that these two ways 
of making Q an R-module a re in fact the s a m e . J The remainder 
of the theorem follows from 4 .2 and 5. 1. 

PROPOSITION 5.4 . Given A S , if R ^ S (A R ) , then any 
i r reducible par t ia l R-homomorphism from any right S-module 
into Ag is a par t ia l S-homomorphism. 

Proof. Given Bg, let <j> be an i rreducible par t ia l homomor-
phism from B R into A R . For any element d ê dom^> consider 
the set Fç[ = { s e S | ds € dom 4} . Clearly F 3 is an R-submo­
dule of S and contains R. Define ^ :F^ —̂  A by 

<|> s = $ (ds) - (<|>d)s (s e F d ) . 

Then \> R = 0. Now R é . S (AR); hence im\^ = 0, so that $ (ds) = 
( >̂ d)s ( s e F^ ) . Thus ^ coincides with the homomorphism^ ' : 
dS —> A defined by (J>!(ds) » (<}> d)s on the intersection of their 
domains . By 0 . 3 , §> extends <£> ! and so dS c dom^ , that is 
F d - S. Thus <|>(ds) = (<£d)s f o r a 1 1 s €. S. Since this holds for 
any d €. d o m i , § is an S-homomorphism. 

PROPOSITION 5 . 5 . Given A.S, if R ^ S (AR) then C £. 
B (As) if and only if C ^ B ( A R ) , for any B$ and C$. 

Proof. Assume C ^ B (Ag) and let <£ be a par t ia l homo-
morphism of B R into A R such that C ĉ  ker<£ . We want to prove 
that im<£ = 0. Without loss of generali ty we may assume that <f> 
is i r reducible . By 5.4 <f> is a par t ia l S-homomorphism. Now 
C S. ker<£ and C ^. B (A§) hence im >̂ = 0. 

The converse is t r iv ia l . 
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PROPOSITION 5.6 . If Q is a maximal ring of right quotients 
of R then Q is i ts own maximal ring of right quotients. 

Proof. It suffices to show that any i r reducible fractional 
homomorphism j> from any B Q into Q Q is full. Now 56 is an 
R-homomorphism and, since dom <j> *L B ( Q Q ) , we have dom^> 

éz B (QR) by 5 .5 . Thus <p is a fractional homomorphism from 
B R into Q R which may be extended to a full homomorphism ^ ' 
since Q R i s rationally complete. Finally, by 5 .4 , ^ ' is a Q-
homomorphism and (f>1 - <j> since <j> is i r reducible . 

PROPOSITION 5 .7 . If C s £ B s aad R £ S (C R ) f then B s 

is an essential extension of C5 if and only if B R is an essent ial 
extension of C R . 

Proof. Let Bg be an essential extension of C5. The iden­
tity mapping $ of C is therefore an irreducible S-homomorphism. 
By 5.4 , its i r reducible extension as à par t ia l R-homomorphism 
from B into C is also an S-homomorphism and must therefore 
be >f itself. Hence y is also irreducible as an R-homomor-
phism, and so B R is an essential extension of C R . 

The converse is obvious. 
PROPOSITION 5 .8 . If S is a ring of right quotients of R 

and T is a ring of right quotients of S, then T is a ring of right 
quotients of R. 

Proof. We a re given that R ^ S (SR) and S i : T ( T s ) . By 
2 , 2 , To is an essential extension of Sg and S £ T (S$). By 5.7 , 
T R is an essent ial extension of S R and, by 5. 5, S £ T (S R ) . 
Again by 2 . 2 , S £±T ( T R ) , and so, by 2 . 3 , R £. T ( T R ) . 

6. Rings with zero left annihilator. We consider a ring 
R such that rR - 0 implies r = 0 for all r c R. These a re the 
r ings studied by Utumi £.12J . 

PROPOSITION 6 . 1 . If R has zero left annihilator then 
F r ( R R , R R ) is a maximal ring of right quotients of R. 

Proof. We first show that R 6z I (R R ) , where I is obtained 
from R by formal adjunction of in tegers . Let <£ be any par t ia l 
homomorphism from I into R such that R £. ker«£ . Then (im^>)R 
C <f>R = 0, hence im<£ = 0. 

Thus R £=. I (RR) and by 3.3 there is a canonical i somor­
phism between Fr( I ,R) and Fr(R,R) which sends Hom(I,R) into 
Hom(R,R) . The image of Hom(I,R) consists of the endomorphisms 
of R R induced by multiplication. We may identify this image 
with R; then Fr(R,R) becomes a maximal rational extension of R. 

PROPOSITION 6 . 2 . The maximal ring of right quotients 
contains a unity if and only if R has zero left annihilator. 

Proof. If R has zero left annihilator its ring of right quo­
tients Fr (R,R) contains the identity automorphism of R which is 
a unity. 
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Conversely, a s sume that R £=. Q ( Q R ) and that Q contains an 
element qQ such that rqg = r for all r € R. If rR = 0 then r in­
duces a par t ia l endomorphism of Q R whose kerne l contains R. 
Hence rQ = 0 and so r • rqg - 0. 

PROPOSITION 6 . 3 . Let Q be the maximal ring of right 
quotients of a ring R with zero left annihilator and assume A 6z 
Q ( Q R ) . Then for each homomorphism ^ *• A R ~> Q R there 
exis ts a unique element q such that $ a = c l a ( a e A). 

Proof. <̂> , regarded as a par t ia l endomorphism of QR> 
is fractional and so can be extended to a full endomorphism^ ' 
of Q R since O R is rat ionally complete . Moreover , by 5.4;<^' 
is a lso an endomorphism of O Q . Therefore , setting q = <J) 4 ; w e 
find 

4> a = (£ !a = (j>'(la) = (^ ! l ) a = qa (a t A). 

PROPOSITION 6 .4 . Let A be a two-sided ideal in a ring 
R with zero left annihilator . Then A £=.R ( R R ) if and only if A 
has zero left annihilator in R, that i s , rA • 0 implies r = 0 for 
all r £ R. 

Proof. Assume A £=. R ( R R ) and rA = 0. Then r induces 
an endomorphism of Rj^ whose kernel contains A. Hence rR = 0, 
and therefore r = 0. 

Conversely, suppose A has zero left annihilator, and let 
<£ be a par t ia l endomorphism of R R such that A c ker <£ . 

F o r any d 6 dom<f), (<j> d)A - <J> (dA) C. <^A = 0 so that p d= 0. 
Thus A é= R ( R R ) . 

7. Commutative r ings . P r i o r to studying commutative 
r ings we establ ish the following, due originally to Utumi 
D 2 , (1.3)] . 

PROPOSITION 7 . 1 . If S is a ring of right quotients of R, 
then an element of S l ies in the centre of S if and only if it com­
mutes with all e lements of R. 

Proof. Given an element s1 of S assume s fr = r s ' for all 
r Q R. Consider the mapping <jb defined by 

t£ s = s 's - ss1 (s G S). 

It is easi ly verified that <f> is an endomorphism of S R whose 
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kernel contains R. Therefore i m ^ - 0, that i s , s 's - s s ' for 
all s e S. 

PROPOSITION 7 .2 . If S is a ring of right quotients of R, 
then S is commutative if and only if R i s . 

Proof. Assume R is commutative; then by 7. 1 every e le­
ment of R lies in the centre of S. Hence, again by 7. 1 every 
element of S lies in the centre of S. 

It is easily seen that any anti-automorphism of a ring R 
can be extended to an ant i - isomorphism between its maximal 
ring of right quotients and its maximal ring of left quotients. 
If R is commutative the identity automorphism of R is an anti-
automorphism. It can be extended to an isomorphism between 
the two rings of quotients since each is commutative. It follows 
from this, if not more directly, that any ring of right quotients 
of a commutative ring is also a ring of left quotients. Hence 
we may omit any reference to right and left. 

PROPOSITION 7 . 3 . If Q is the maximal ring of quotients 
of a commutative ring R with zero annihilator, then any element 
of R has an inverse in Q if and only if it has a zero annihilator 
in R. 

Proof. Let r ' be an element of R having zero annihilator 
in R and define a homomorphism <p of ( r ! R ) ^ into Q R by 
<£(r'r) = r (r fe. R) . This makes sense since r ! r « 0 implies 
r » 0. Now r ' R is a (two-sided) ideal of R with zero annihilator 
since r r ' R - 0 implies r r ! « 0 and hence r = 0. Therefore r 'R 

£=, Q ( Q R ) b y 6 . 4 . It follows from 6.3 that there exists an e le­
ment q £ Q such that <£ ( r ' r ) » q r ! r for all r € R. That i s , for 
all r €. R, q r ' r • r = q c r , where q c i s the unity of Q. Thus 
q r ! - qQ induces a par t ia l endomorphism of Q R whose kernel 
contains R, and so (qr* - %) Q m 0. Hence qr1 - q0 - (qr1 - q0)q 
s O, that i s , r1 has the inverse q. 

The converse is obvious. 

As an immediate consequence we have: 

PROPOSITION 7 .4 . If Q is the maximal ring of quotients 
of a commutative ring R with unity, then the elements r ' r " 1 

( r ^ r 6 R, r with zero annihilator in R) form a subring F of Q 
which contains R. 
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This subritig F is also a ring of quotients in our sense and 
it has been called the full ring of quotients £ l l , p . 4 0 j . If, 
moreove r , every non-zero element of R has zero annihilator, R 
is called an integral domain, and its full ring of quotients be­
comes a field, called the field of quotients of R. 

PROPOSITION 7 . 5 . If R is an integral domain, i ts maxi ­
mal ring of quotients is also its full ring of quotients . 

Proof. Let q e Q, q 4- 0. Since Q R is an essent ia l exten­
sion of R R , by 2 . 2 , qR r\ R =^ 0, hence there exist r , r ! e R 
with qr = r1 =̂. 0. By 7 . 3 , r has an inverse r " 1 , so that q = r ' r " . 
Thus Q - F . 

It is not t rue in general that the maximal ring of quotients 
of a commutative ring with unity coincides with its full ring of 
quotients . In section 9 we shall exhibit a ring which is its own 
full ring of quotients but which is not rationally complete . 

The following r e m a r k establ ishes a connection between 
the theory of rat ional extensions of a ring and c lass ica l mult i ­
plicative ideal theory. An integral domain in which all non-zero 
ideals a r e invertible is called a Dedekind r ing . Let R be such 
a r ing, Q its ring of quotients. We know by 4 . 2 that all rat ional 
extensions of R a re isomorphic over R to R-submodules of Q . 
These submodules a re prec ise ly the fractional ideals of R whose 
inverses a r e integral idea ls . 

8. Rings with minimum condition. 

PROPOSITION 8 . 1 . Let R be a ring with the minimum 
condition on right ideals . Then R contains a smal les t right ideal 
N such that N ^ R ( R R ) . 

Proof. Let N be the intersect ion of all right ideals A of 
R such that A =̂ R ( R R ) . Because of the minimum condition, 
N is a l ready the intersect ion of a finite number of such idea ls . 
Hence N ^ R ( R R ) by 1. 3 (iii). 

PROPOSITION 8 .2 . Let R be a ring with a smal les t right 
ideal N such that N ;= R ( R R ) . Then any homomorphism of N R 
into R R is an endomorphism of N R , and N is a two-sided ideal . 

Proof. Let £ : N R - * R R . Then ^"lN ^ N £= R ( R R ) 
by 1. 2 and 1. 3 ( i i) . Hence N S <J> " XN, that i s , im <j> £. N. In 

164 

https://doi.org/10.4153/CMB-1958-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1958-016-6


par t i cu la r , if <f> is the homomorphism induced by an element r 
of R, we have r N £ N . Therefore N is a two-sided ideal. 

PROPOSITION 8 . 3 . Let R be a ring with zero left annihi-
lator and with a smallest right ideal N such that N ^ R ( R R ) . 

Then 
(i) N is the smal les t two-sided ideal with zero left anni-

hilator in R, 

(ii) the ring of endomorphisms of N R is a maximal ring of 
right quotients of R. 

Proof. By the definition of N, any two-sided ideal A con­
tains N if and only if A éz R ( R R ) . By 6 .4 , this is the same as 
saying that A has zero left annihilator. Since N is two-sided, 
by 8 .2 , (i) follows. 

Finally, F r (R,R) ^ Fr(N,R) by 3 . 3 . If <j> £ F r ( N , R ) , 
then dom<f> é* N 4z R(R R ) , hence dom $ = N. Thus Fr(N,R) = 
Hom(N,R), which is Hom(N,N) by 8 .2 . Therefore F r ( R , R ) S 
Hom(N,N). 

9* Algebraic r ings . We call a ring R (which is not neces­
sar i ly commutative) algebraic over a field F if F is a subring of 
the centre of R and if every element of R satisfies a polynomial 
equation with coefficients in F . For example, a ring of finite 
ma t r i ce s over F is algebraic over F . 

PROPOSITION 9. 1. If a ring R is algebraic over a field 
F , then any element r of R possesses a two-sided inverse r"* 
in R, provided its left or right annihilator is ze ro . 

Proof. Let p(x) be a polynomial of smal les t degree such 
that p(r) = 0. We may assume that r ^ 0, and so p(x) will have 
degree at least 1. Write p(x) = xq(x) - f, where f €. F and q(x) 
has smal ler degree than p(x). Since p(x) was minimal , q(r)+ 0. 
If r has zero right annihilator f = rq(r) + 0, hence r has the right 
inverse r" * « q(r)f . Since q(r)r » rq(r ) , r" * is also a left in­
v e r s e . For the same reason, the resul t holds when r has zero 
left annihilator\ 

EXAMPLE 9 .2 . Let F be any field and let 
R be the ring of all (countably) infinite diagonal ma t r i ces over F 
in which all but a finite number of diagonal elements a re equal 
to each other . Let N be the ring of all infinite diagonal ma t r i ces 
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over F in which all but a finite number of diagonal e lements a re 0. 

Clear ly , every element r £ R has the form 

r = f + n ( f €. F , a 6 N). 

Since n is the direct sum of a finite ma t r ix and a z e r o - m a t r i x , it 
satisfies a polynomial equation p(n) = 0. Hence r satisfies p(r -f) 
= 0. Thus R is a commutative ring in which every element with 
zero annihilator has an inverse by 9. 1, that is to say, R is its 
own full ring of quotients. 

N is an ideal of R. It has elements of the form: an m * m 
identity mat r ix plus a zero ma t r ix , for any finite m . Hence N 
has zero annihi lator . By 6 .4 , N é= R ( R R ) . In fact, N is the 
smal les t such ideal. For N « ÎL jFe ^ where e^ is the ma t r ix with 
1 in the i-th diagonal place and zero everywhere e l s e . Now if A 
étN ( R R ) then A is the (weak) direct sum of some of these Fe{. 

Suppose F e : is not contained in A, then FejA = 0, cont rary to the 
assumption that A é: N è R ( R R ) > in view of 6 . 4 . Therefore all 
Fe j a r e contained in A, and so A - N. 

It follows from 8.3 that the maximal ring of quotients of R 
is the ring of endomorphisms of N R . It is easy to see that this is 
the ring of all infinite diagonal m a t r i c e s . For if <j> is an endo-
morphism of N R , then ( 4 ej)(Fei) * 0 if i £ j , hence ^ ê  e e j F , 
and therefore ^ can be induced by multiplication with a diagonal 
m a t r i x . 

The following example shows that even a finite ring need 
not be rat ionally complete . 

EXAMPLE 9 . 3 . Let R be the ring of all two by two ma t r i ce s 
\y Î ) over a field F , for example a finite field, subject to 

the condition o( -»• y « 6 •+• & . The smal les t two-sided ideal 
N with zero left annihilator consis ts of all ma t r i ce s of the form 

( y / / . The maximal ring of right quotients of R is the ring 
of all two by two mat r i ces over F . 

In view of 9. 1, the finite ring constructed above has the 
proper ty that any element with zero left or right annihilator has 
an inverse in R. Hence the ring of right quotients constructed in 
16] is R, while the maximal ring of right quotients is l a rge r than 
R. 

McGill University 
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CORRECTIONS TO PART I 

p . 78, line 4 from bottom, replace "increasing sequence11 by 
?ftransfinite increasing sequence", 

p . 79, line 3 from bottom, replace "^" by " \ j / " . • 
p . 80, after line 5 add: "It is understood that C £ . B and C 1 ^ B1 

and that the isomorphism between C and C ! is induced by 
that between B and BV. 

p . 80, line 11, replace "d e C" by "\|S:d € C"-
p . 83, line 13, replace "ascending sequence" by "transfinite 

ascending sequence", 
p . 8 3 , line 15, replace " cTĝ  0 c r l ' ' by %VQ, s> t l*-j)"> 
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