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p-adic Families of Cohomological Modular
Forms for Indefinite Quaternion Algebras
and the Jacquet–Langlands
Correspondence

Matthew Greenberg andMarco Seveso

Abstract. We use themethod of Ash and Stevens to prove the existence of small slope p-adic families
of cohomological modular forms for an indeûnite quaternion algebra B. We prove that the Jacquet–
Langlands correspondence relatingmodular forms onGL2/Q and cohomomologicalmodular forms
for B is compatible with the formation of p-adic families. _is result is an analogue of a theorem of
Chenevier concerning deûnite quaternion algebras.

1 Introduction

_is paper deals with a basic instance of the compatibility between two of themajor
themes in the study of automorphic forms:
● Langlands’ principle of functoriality: this (mostly conjectural) principle describes

the precise relationships between automorphic representations of diòerent groups.
● p-adic variation: systems ofHecke eigenvalues associated with automorphic forms

o�en vary in p-adic analytic families.
_e Jacquet–Langlands correspondence, perhaps the simplest nontrivial instance of
the principle of functoriality, gives precise conditions under which a classical cuspi-
dal eigenform f can be li�ed to an eigenform f B on a Shimura curve attached to a
quaternion algebra B. Both classical cuspidal eigenforms and eigenforms on Shimura
curves are known to display p-adic variation. Our main result is that the correspon-
dence f ↝ f B is compatible with moving f and f B in p-adic analytic families when
B is indeûnite.1 Sections 2–6 deal with the local theory, and Sections 7–12 with the
global thing.

Remark 1.1 We began studying these issueswith applications to p-adic L-functions,
p-adic Abel–Jacobi maps and Stark–Heegner points/Darmon cycles in mind (see, for
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1_e corresponding result for deûnite B was proved by Chenevier [6]. His work was an inspiration

for ours, and we adapt many of his techniques.
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example, [8,12,15,19] for the deûnition of these points/cycles). For these applications,
we refer the interested reader to [9, 13,20].

1.1 p-adic Families

Let p be a prime and let M0 be a positive integer with p ∤ M0. Let X be the p-adic
weight space and letΩ ⊂ X be an aõnoid subset deûned overQp , and let E be a p-adic
ûeld. A p-adic analytic family of overconvergent eigenforms on Ω of tame level M0 is a
formal q-expansion

F(q) =
∞

∑

n=1
anqn

∈ (O(Ω) ⊗̂Qp E)[[q]]

such that, for all classical weights k ∈ Ω,

Fk(q) ∶=
∞

∑

n=1
an(k)qn

∈ E[[q]]

is the q-expansion of an eigenform in S†k+2(Γ0(pM0)).
In this introduction, we will consider modular forms with trivial nebentype and

level divisible by p but not by p2 for ease of exposition. In the rest of the paper, we
will work in more generality.

1.2 The Jacquet–Langlands Correspondence

SupposeM0 = DM, where D is squarefree with an even number of prime factors and
(D,M) = 1. Let B be the indeûnite quaternion Q-algebra ramiûed precisely at the
primes dividing D. Associated with these data is a space Sk+2(ΓD0 (pM)) of eigen-
forms on a Shimura curve associated with a choice of Eichler order of level pM in
B. Let T1

+ = T1
(pM0 , 1)+ and TD+ = TD(pM , 1)+ be the double-coset Hecke algebras

described in Section 7.1. _ere is a natural map T1
+ → EndC Sk+2(Γ0(pM0)). _e

D-new subspace Sk+2(Γ0(pM0))
D-new

⊂ Sk+2(Γ0(pM0)) is T1
+-stable, andwe can set

T 1,D-new
k = im(T1

+ → EndC Sk+2(Γ0(pM0))
D-new

). Deûne

TDk = im(TD+ → EndC SDk+2(Γ0(pM))) .

_eorem 1.2 (Jacquet–Langlands correspondence) _ere is a canonical isomorphism
T 1,D-new

k
∼
→ TDk .

_us, if f ∈ Sk+2(Γ0(pM0))
D-new is an normalized eigenform, then there is an

eigenform f B ∈ Sk+2(ΓD0 (pM)) with the same system ofHecke eigenvalues.
Under certain conditions, f can be ût into a p-adic analytic family. Let ap( f ) be

the Up-eigenvalue of f .

_eorem 1.3 (Hida, Coleman) If ordp ap( f ) < k + 1 and ap( f )2
/= pk+1, then there

is an aõnoid Ω ⊂ X with k ∈ Ω and a p-adic analytic family F of eigenforms on Ω of
tame level M0 such that Fk = f .

At the expense of possibly shrinking Ω around k, we assume that for all classical
weights w ∈ Ω, the specialization Fw of the family F is D-new. _us, Fw admits a
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Jacquet–Langlands li� FBw ∈ Sw+2(ΓD0 (pM)). It is natural to ask if the Fw can be
interpolated by a “p-adic analytic family.” _e quotation marks in the last sentence
are used becausewe have not yet deûned a notion of p-adic family for modular forms
on Shimura curves. _e corresponding notion for elliptic modular forms does not
generalize, asmodular forms on B do not admit Fourier expansions. Note also that the
absence of Fourier expansions precludes a simple notion of “normalized” formodular
forms on Shimura curves; the FBw are only well deûned up to scalar multiple.

1.3 Cohomological Modular Forms

_ere are twoways to resolve these issues that allow for a useful notion of p-adic fam-
ily in the context of Shimura curves. _e method we pursue in this paper involves
replacing the forms FBv by their associated Eichler–Shimura cohomology classes.2 It
is these cohomology classes that we interpolate. _e Eichler–Shimura theorem fur-
nishes us with a canonical isomorphism

ES±∶ Sk+2(ΓD0 (Mp)) ∼
Ð→ H1

(ΓD0 (Mp),Vk(C))
±
,

whereVk is the highestweight k representation ofGL2/Q and ΓD0 (Mp) acts onVk(C)

through a choice of splitting B ⊗ C ≅ M2(C). For either choice of sign, there is a
natural action of TD+ on the right hand side and ES± is TD+ -equivariant. It follows that
the image of TD+ acting on this cohomology group is identiûed with TDk .

_ere is a canonical isomorphism

H1
(ΓD0 (Mp),Vk(Q)) ⊗C ∼

Ð→ H1
(ΓD0 (Mp),Vk(C)) .

_e ±-decomposition is deûned over Q, as are the Hecke operators. _e above map
respects ±-decompositions and is Hecke-equivariant. It follows from the Eichler–
Shimura theorem that if Q( f B) is the number ûeld obtained by adjoining the Hecke
eigenvalues of f B , then

dimQ( f B) H1
(ΓD0 (Mp),Vk(Q( f B)))±, f

B
= 1,

where the superscript f B denotes the associated TD+ -eigenspace. If E is a p-adic ûeld
containing Q( f B), then

dimE H1
(ΓD0 (Mp),Vk(E))

±, f B
= 1.

1.4 p-adic Families of Cohomological Modular Forms

Remarkably, the representations Vk(Qp) themselves can be p-adically interpolated.
Consider the subsemigroup

Σ0(pZp) = {(
a b
c d ) ∈ M2(Zp) ∩GL2(Qp) ∶ p ∤ aand p ∣ c} .

of GL2(Qp). _en there is a universal highest weight module/vector pair (D, δ) for
linear representations of Σ0(pZp) on locally convex O(X)-vector spaces. Let k ∈ X.

2Andreatta, Iovita, and Stevens [2] have developed an elegant and powerful arithmetico-geometric
method of studying p-adic families.
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If v ∈ Vk(Qp) is a highest weight vector, then by the universal property of (D, δ),
there is a unique O(X)-linear, Σ0(pZp)-equivariant weight k specialization map

(1.1) ρk ∶DÐ→ Vk(Qp)

such that ρk(δ) = v. Here, O(X) acts on Vk(Qp) through the evaluation-at-k map
O(X)→ Qp .

If Ω ⊂ X, write DΩ for D ⊗̂O(X) O(Ω). We deûne the space of p-adic families of
quaternionic modular forms parametrized by Ω to be the space H1

(ΓD0 (Mp),DΩ)
±.

_e Hecke algebra TD+ acts naturally on H1
(ΓD0 (Mp),DΩ)

±. If k ∈ Ω is a classical
weight, then the specialization map (1.1) induces an O(Ω)-linear, TD+ (pM ,N)-equi-
variant map

(1.2) ρk ∶H1
(ΓD0 (pM),DΩ)

±
Ð→ H1

(ΓD0 (Mp),Vk(Qp))
±
.

_e specializations of such a family Φ ∈ H1
(ΓD0 (Mp),DΩ)

± are simply the classes
ρk(Φ) ∈ H1

(ΓD0 (Mp),Vk)
±, where k ∈ Ω is a classical weight.

But the principal question remains: to what extent do p-adic families of quater-
nionic eigenforms exist? Our answer is given by the following theorem.

_eorem 1.4 Suppose ϕk ∈ H1
(ΓD0 (Mp),Vk(E))± is a TD+ -eigenvector with Up-

eigenvalue ap(ϕk) such that ordp ap(ϕk) < k + 1 and a2
p /= pk+1. _en there is a

TD+ -eigenvector Φ ∈ H1
(ΓD0 (Mp),DΩ)

± such that ρk∗(Φ) = ϕk , and Φ is unique up
to multiplication by an element α ∈ O(Ω)

× with α(k) = 1.

_e distribution module D to be considered in this paper is the “classical one”
considered in [22]. _e relation with those considered in [4, _eorem 3.7.3] when
the reductive group is isomorphic to GL2 overQp is the following. Let ω be the char-
acter of the Borel subgroup of upper triangular matrices that sends g to its upper le�
entry. Ash and Stevens deûne a space of distribution Dω(X) supported on a suitable
three dimensional manifold X modelled on the “big cell” of GL2. _is space is en-
dowed with the action of a semigroup Σp ⊋ Σ0(pZp) and has a highest weight vector
δ ∈ Dω(X). _e universal property of (D, δ) yields a unique Σ0(pZp)-equivariant
morphism (D, δ) → (Dω(X), δ). However, we will not need and will not exploit
the universal property of (D, δ): the specialization maps will have a more concrete
description.

1.5 Slope ≤ h Decompositions

Key to the proof of _eorem 1.4 is the fact that, for suõciently small Ω, the space
H1

(ΓD0 (Mp),DΩ)
± admits a slope ≤ h decomposition with respect to Up , i.e., a

TD+ -equivariant decomposition

H1
(ΓD0 (Mp),DΩ)

±
= H1

(ΓD0 (Mp),DΩ)
±,≤h

⊕H1
(ΓD0 (Mp),DΩ)

±,>h
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such that H1
(ΓD0 (Mp),DΩ)

±,≤h is a ûnitely generated O(Ω)-module on which Up
actswith slope ≤ h and ismaximalwith respect to this property (see [3]). _e Eichler–
Shimura cohomology group H1

(ΓD0 (Mp),Vk(Qp)) also admits a slope ≤ h decom-
position. (_is is a linear algebraic result, lacking the functional analytic depth of the
existence of slope ≤ h decompositions over aõnoid algebras.)

_eorem 1.5 _ere is an aõnoid Ω ⊂ X with k ∈ Ω such that the following hold.
(i) H1

(ΓD0 (Mp),DΩ)
± admits a TD+ -equivariant slope ≤ h decomposition with re-

spect to Up .
(ii) H1

(ΓD0 (Mp),DΩ)
±,≤h is free of ûnite rank over O(Ω).

(iii) _e specialization map (1.2) induces an isomorphism

H1
(ΓD0 (Mp),DΩ)

±,≤h
⊗O(Ω) E

∼
Ð→ H1

(ΓD0 (Mp),Vk(E))
±,≤h

,

where the O(Ω)-algebra structure on E is given by the evaluation-at-k-map.

_eorem 1.5(i) and (iii) are applications of the Ash–Stevens theory of slope decom-
positions for the arithmetic cohomology developed in [3,4] of slope decompositions
of arithmetic cohomology. Much of the ûrst part of the paper is devoted to estab-
lishing the functional analytic properties of themodulesDΩ required for application
of Ash–Stevens machinery. Part (ii) is not a formal consequence of the Ash–Stevens
theory in that it uses the one-dimensionality of X in an essential way.

_eorem1.5 is themain input for the proof of_eorem1.4. Before taking up the ex-
istence of eigenvectors,we discuss the problemof li�ing systems ofHecke eigenvalues
or eigenpackets. Note that li�ability of eigenvectors implies li�ability of eigenvalues,
but these are not equivalent in general.

It is convenient to use geometric language when considering systems of Hecke
eigenvalues. Write TD ,±,≤h

k and TD ,±,≤h
Ω for the image of the images of the Hecke

algebras in the endomorphism rings of

H1
(ΓD0 (Mp),Vk(E))

±,≤h
and H1

(ΓD0 (Mp),DΩ)
±,≤h

,

respectively. _ere is a structural morphism

SpTD ,±,≤h
k Ð→ Sp E (resp. SpTD ,±,≤h

Ω Ð→ Ω).

Specialization in weight k induces amorphism SpTD ,±,≤h
k → SpTD ,±,≤h such that

SpTD ,±,≤h
k

//

��

SpTD ,±,≤h
Ω

��
Sp E // Ω

commutes, where Sp E → Ω is induced by the evaluation-at-k map O(Ω) → E. We
view the eigenpacket of ϕk ∈ H1

(ΓD0 (Mp),Vk(E))±,≤h as an E-valued point xk of
SpTD ,±,≤h

k . Our prospective li� of this eigenpacket is a section of xΩ of SpTD ,±,≤h
Ω →

https://doi.org/10.4153/CJM-2015-062-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-062-x


966 M. Greenberg andM. Seveso

Ω such that

SpTD ,±,≤h
k

// SpTD ,±,≤h
Ω

Sp E

xk

OO

// Ω

xΩ

OO

commutes.

Corollary 1.6 Under the above assumptions, the section xΩ exists at the expense of
possibly shrinking Ω around k.

In addition to its reliance on _eorem 1.5, this corollary depends crucially on the
multiplicity-one property:

dimE H1
(ΓD0 (Mp),Vk(E))±,xk = 1.

From here, the fact that the eigenspace associated with xΩ is free of rank one over
O(Ω) follows from some commutative algebra. _is establishes _eorem 1.4. For
details, see Corollary 11.4.

1.6 Eigencurves

_e preceding discussion can be globalized. _e compatibility of slope ≤ h decompo-
sitionswith �at base change implies that there is a unique coherent sheaf ofOX-mod-
ulesTD ,±,≤h

X
such that Γ(Ω,TD ,±,≤h

X
) = TD ,±,≤h

Ω wheneverH1
(ΓD0 (Mp),DΩ)

± admits
a slope ≤ h decomposition. We deûne the slope ≤ h eigencurve CD ,±,≤h by

CD ,±,≤h
= SpOX

TD ,±,≤h
X

.

By construction, it admits a structural “weight” map wt ∶ CD ,±,≤h
→ X. As indicated

above, the ûber of wt over a classical weight k with k + 1 > h is identiûed with the set
of slope ≤ h systems of TD+ -eigenvalues occuring in H1

(Γ0(Mp),Vk(E))±,≤h :

CD ,±,≤h
k = SpTD ,±,≤h

k .

A similar approach, built on overconvergent modular forms rather than Eichler–
Shimura cohomology groups, yields themore classical eigencurves wt∶C≤h

CMB → X of
Coleman–Mazur and Buzzard; see Section 12.1 for details.

1.7 Compatibility with the Jacquet–Langlands Correspondence

We can reword _eorem 1.2 as follows. By the Hecke-equivariance of slope ≤ h de-
compositions, there is a canonical isomorphism

SpT 1,D-new,≤h
k

∼
Ð→ SpTD ,±,≤h

k .

On the other hand, by construction, the ûber over a classical weight k with k > h − 1
of CD-new,≤h

CMB is SpT 1,≤h
k . Consequently,

CD-new,≤h
CMB,k

∼
Ð→ CD ,±,≤h

k .

https://doi.org/10.4153/CJM-2015-062-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-062-x


p-adic Families of Cohomological Modular Forms 967

It follows fromChenevier’s lemma (Proposition 10.9) that there is a uniquemorphism

CD-new,≤h
CMB,red /Xfl ∼

Ð→ CD ,±,≤h
red /Xfl

whose restriction to ûbers above k with k > h−1 are as described above. _e subscript
“red” means that we need to take the associated reduced curve, and the isomorphism
is over a suitable�at locusXfl

⊂ X asdeûned in Section 10 containing all the arithmetic
weights. As a consequence, we prove that, loosely speaking, D-new p-adic families
have Jacquet–Langlands li�s.

_eorem 1.7 Let F be a p-adic family of eigenforms on Ω of tame level M, and
slope ≤ h. _en there is a system of Hecke eigenvalues xΩ ∈ SpTD ,±,≤h

Ω and a Hecke
eigenvector Φ±

∈ H1
(ΓD0 (Mp),DΩ)

±,xΩ such that for all classical weights k ∈ Ω with
k > h − 1, ρk(Φ±

) ∈ H1
(ΓD0 ,Vk(E))±,xk is the image under the Eichler–Shimura map

of a Jacquet–Langlands correspondent of Fk .

1.8 Other Approaches

We use the cohomological machinery of Ash and Stevens to establish p-adic Jacquet–
Langlands correspondences, it being well-adapted to the applications to p-adic L-
functions we have in mind; see [13, 20]. _ere are two other approaches to such p-
adic Jacquet–Langlands correspondences in the literature, both of a more geometric
nature than that of this paper. In [14], Newton establishes p-adic Jacquet–Langlands
correspondences using the vanishing cycles functor on integral models of Shimura
curves in conjunctionwithEmerton’s completed cohomology theory and correspond-
ing eigencurve construction [11]. Presumably, one could also approach the results
of [13, 20] using Newton’s method in conjunction with Emerton’s completed coho-
mology based construction of p-adic L-functions [10]. _e second alternative ap-
proach, due to Andreatta, Iovita, and Stevens [2] uses their notion of (families of)
p-adic overconvergent sheaves and corresponding eigencurve construction. _e the-
ory developed in [2] has two very attractive features. First, it gives us a conceptual,
geometric way to talk about the space of p-adic families of overconvergent modular
forms. _is theory would allow for amuch cleaner statement of_eorem 1.7. Second,
it seems to generalize extremely well to higher dimensional situations; see [1].

1.9 Organization of the paper

We begin the paper by describing the weight space—the parameter space for the
p-adic families we want to study in Section 2. In the subsequent Sections 3–5, we
attach polynomial, locally polynomial and locally analytic weight modules to points
k ∈ X(R) valued in certain aõnoid algebras. As we describe their construction, we
establish functional analytic properties of these modules required for the existence
of slope decompositions on their cohomology. Our local study of weight modules
being ûnished, we move on to describing the Ash–Stevens machinery that gives rise
to slope decompositions of arithmetic cohomology groups with coeõcients in the
weight modules studied in the previous sections: this is the content of Section 6.
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We analyze closely the case of the cohomology of unit groups arising from indeû-
nite quaternion algebras in Section 7–9. _is analysis, togetherwith an formalism for
eigencurves developed in the subsequent Section 10, yields our main results concern-
ing the existence of p-adic families of classes in the cohomology groups of quater-
nionic unit groups, proved in Section 11, and the compatibility of their existence with
the Jacquet–Langlands correspondence, proved in Section 12.

2 Weight Characters

We ûx E, a p-adic ûeld, as our working ûeld. Let N ∈ N prime to p and let XN be the
rigid analytic variety over Qp such that, for every aõnoid E-algebra R,

XN(R) = Homcts(Z×p,N , R×) ,

whereZ×p,N ∶= Z×p×(Z/NZ)
×. Wewill refer to elements ofXN(R) asR-valuedweights.

Write D(Z×p,N) for the space of locally analytic distributions on Z×p,N . If µ ∈

D(Z×p,N), we can deûne a function µ̂ on XN by the rule

µ̂(λ) = ∫
Z×p,N

tλdµ(t).

_eorem 2.1 (Amice–Velu) _e map µ ↦ µ̂ is a topological E-linear isomorphism
ofD(Z×p,N) onto O(XN).

Deûnition 2.2
● A weight є ∈ XN(E) has level r if it factors through (Z/prNZ)

×. _eminimal such
r is called the conductor of є.

● A weight κ ∈ XN(E) is arithmetic of level (resp. conductor) r if tκ = tkє(t) for some
k ∈ N and є∶Z×p,N → E× of level (resp. conductor) r.

If κ ∈ XN(E) is arithmeticof level r,wewrite κ = (k, є). _is slight abuse is justiûed
by the fact that κ is uniquely determined by (k, є). More precisely, setting ∆N ∶=

Hom((Z/NZ)
× , E×) and assuming that µprN ⊂ E, the set of E-valued arithmetic

weights of level r is identiûed with N × ∆prN ↪ XN(E) by the rule (k, є)↦ ( ⋅ )
kє.

We set X ∶= X1 so that, over E ⊃ µN ,

XN = ⊔

єN∈∆N

XєN and X ≃ XєN ,

the identiûcation being given by the rule κ ↦ κєN .

Deûnition 2.3 When µprN ⊂ Ewe deûneNr ,N ⊂ XN(E) to be the imageofN×∆prN ,
i.e., the set of arithmetic weights of level r.

With this notation we have, when µprN ⊂ E,
Nr ,N = ⊔

єN∈∆N

Nr ,єN , Nr ,єN ∶= Nr ,N ∩XєN and Nr ∶= Nr ,1 ≃ Nr ,єN .

_e canonical inclusion Z×p ⊂ Z×p,N induces a ûnite and étale morphism XN → X

under which Nr ,N (resp. Nr ,єN ) maps to Nr . Note that N1 ⊂ X(Qp). For later use we
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deûne
N>λ

r ,N ∶= {κ = (k, є) ∈ Nr ,N ∶ k > λ}

for λ ∈ R as well as the sets N>λ
r ,єN and N

>λ
r deûned in a similar way.

Remark 2.4 If Ω ⊂ X is an aõnoid subset, we write ΩN ⊂ XN for its inverse
image under themap XN → X identifying each XєN ⊂ XN with X. We also set ΩєN =

ΩN ∩XєN . Furthermore, ifM is anO(ΩN)-module, itwill be locally free if and only if
the єN -component is locally free overO(Ω)-module for every єN . (_is follows from
the fact that XN → X is ûnite and étale.)

3 Arithmetic Weight Modules

3.1 Algebraic Highest Weight Modules

For an integer k ≥ 0, let Pk be the space of polynomials in x of degree at most k. _e
algebraic group GL2 acts on Pk from the le� by the rule

(3.1) (gk f )(x , y) = jk(g , x) f (xg),

where

(3.2) jk(g , x) = (a + cx)k and xg = b + dx
a + cx

, with g = (
a b
c d ) .

LetVk be the space of linear functionals on Pk . _enVk is a rightGL2-module under
the dual action: (µ∣k g)( f ) = µ(gk f ). _e Pk (resp. Vk) form a complete list of the
irreducible le� (resp. right) representations of the algebraic group GL2, up to twists
by powers of the determinant.

3.2 Locally Polynomial Weight Modules

For integers n ≥ 0, let Pk ,n = Pk ,n[Zp] be the space of functions f ∶Zp → E such that,
for each disk B[a, p−n

] = a + pnZp of radius p−n in Zp , the restriction f ∣a+pnZp is a
polynomial function of degree at most k. _ere are obvious inclusions in ,m ∶ Pk ,n ↪
Pk ,m for m ≥ n. Deûne the semigroup

Σ0(pnZp) = {(
a b
c d ) ∈ GL2(Qp) ∩M2(Zp) ∶ a ∈ Z×p , c ∈ pnZp} .

_en Σ0(pZp) acts on Zp from the right by the rule (x , σ)↦ xσ as in (3.2).

Lemma 3.1 If σ ∈ Σ0(pZp) and a ∈ Zp , then

B[a, p−n
]σ ⊂ B[ aσ , p−n

∣det(σ)∣]

Equality holds when det(σ) ∈ Z×p , i.e., σ ∈ Γ0(pZp).

Let k = (k, єp) be an arithmetic weight with єp of conductor r. _en for σ ∈

Σ0(pZp), the function jk(σ , ⋅ ) deûned by

jk(σ , x) = (a + cx)k = єp(a + cx) jk(σ , x), σ = (
a b
c d ) ,
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belongs to Pk ,r−1 (where Pk ,−1 ∶= Pk ,0). _erefore, (3.1) with k replaced by k deûnes a
le� weight k action of Σ0(pZp) on Pk ,n for n ≥ r − 1. We can actually make a more
precise statement. It follows from Lemma 3.1 that if σ ∈ Σ0(pZp), σk is as in (3.1) and

nσ ∶= ordp(det σ),

then there is a (unique) E-linear map σ̃k∶ Pk ,n+nσ → Pk ,n such that σk = in ,n+nσ ○ σ̃k
for all n ≥ r − 1.

Note also that the natural map

(3.3) Pk
∼
Ð→ Pk ,0

is a Σ0(pZp)-equivariant isomorphism.
Let Vk ,n be the E-dual of Pk ,n . _is space is equipped with a right weight k action

of Σ0(pZp) by duality for n ≥ r−1;writeVk,n for the correspondingmodule. Abusing
notation,write σk for the endomorphismofVk ,n dual of the endomorphism σk of Pk ,n .
Dual to σ̃k, there is a unique map σ̃k ∶ Vk ,n → Vk ,n+nσ such that σk = pn+nσ ,n ○ σ̃k,
where pm ,n is dual to in ,m :

Vk,n+nσ

��
Vk,n σk

//

σ̃k
;;

Vk,n .

_e projection Vk ,0 → Vk dual to (3.3) is a Σ0(pZp)-equivariant isomorphism.
Let Pk = Pk(Zp) be the space of functions on Zp that are locally polynomial of

degree at most k:

Pk = lim
Ð→

Pk ,n .

_e maps in ,m ∶ Pk,n → Pk,n being of Σ0(pZp) equivariant, we obtain a le� weight
k action of Σ0(pZp) on Pk ; write Pk for the corresponding module. Deûne Vk =

Vk(Zp) to be the strong dual of Pk . Equipping Vk with the weight k action dual to
that on Pk, we have a canonical Σ0(pZp)-equivariant topological isomorphism:

Vk Ð→ lim
←Ð
n

Vk,n .

In the special case σ ∈ Σ0(prZp), we have

jk(σ , x) = єp(a + cx)(a + cx)k
= єp(a)(a + cx)k

∈ Pk ,0 .

_us, by the same reasoning as above, we obtain a weight k-action of Σ0(prZp) on
Pk ,n for all n ≥ 0. Write Pk,n for the corresponding Σ0(prZp)-module. It is clear
that if n ≥ r − 1, then this weight k action of Σ0(prZp) agrees with the weight k ac-
tion of Σ0(prZp) deûned above, justifying the overlapping notation. Dually, we have
Σ0(prZp)-modules Vk,n for all n ≥ 0, notationally consistent with those introduced
previously for n ≥ r − 1.
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3.3 Twisting

If V is an (E , Σ0(prZp))-module, we write V{єp} for the Σ0(prZp) module with
underlying set V but with action twisted by єp ∶ (v , σ) ↦ є(aσ)vσ . With this conven-
tion, the identity maps Pk ,n{єp}

∼
→ Pk,n and Pk{єp}

∼
→Pk are Σ0(prZp)-equivariant

isomorphisms. Dualizing, we obtain canonical identiûcations Vk ,n{єp}
∼
→Vk,n and

Vk{єp}
∼
→Vk,n .

4 Locally Analytic Weight Modules

Let Ω be an E-aõnoid variety and suppose k∶Ω → X is amorphismof E-rigid spaces.

Assumption 4.1 We assume throughout that Ω is absolutely reduced so that the norm
on the F-algebra

O(Ω ×Sp E Sp F) = O(Ω) ⊗̂E F
is multiplicative for any p-adic ûeld F.

(Our primary cases of interest are when Ω is a closed disk in X or an E-valued
point.) Set R = O(Ω) and let An[R] = An[Zp , R] be the R-Banach module for the
sup-norm ∣ ⋅ ∣n of functions f ∶Zp → R that can be represented by convergent power
series on each disk B[a, p−n

]. When there is no danger of ambiguity, we will use the
shorthand

An = An[E].
In fact, we have a canonical isomorphism

(4.1) An ⊗̂E R ∼
Ð→ An[R].

Since ∣ ⋅ ∣n is the sup-norm, we have the following lemma.

Lemma 4.2 Let σ ∈ Σ0(pZp), let f ∈ An[R], and let σ f ∈ An[R] be deûned by
(σ f )(x) = f (xσ). _en ∣σ f ∣n ≤ ∣ f ∣n .

It is well known that the continuous homomorphism Z×p → R× associated with
k is necessarily locally analytic. In other words, there is an n = nk such that k ∈

Ank+1[Z×p , R]. It follows that for each σ ∈ Σ0(pZp),we have jk(σ , ⋅ ) ∈ Ank[R],where
jk(σ , x) is deûned as in (3.2). Combining this with Lemma 3.1, we conclude that

(σk f )(x) ∶= jk(σ , x) f (xσ)

deûnes an le� weight k action of Σ0(pZp) on An[R] for all n ≥ nk; write Ak,n for the
corresponding module. (We drop explicit mention of the coeõcient ring R, since it is
encoded in the weight k.)

It follows from Assumption 4.1 that ∣ jk(σ , ⋅ )∣nk ≤ 1 for all σ ∈ Σ0(pZp). Together
with Lemma 4.2, this observation implies

(4.2) ∣σ ∣An[R] ≤ 1.

Here, ∣ ⋅ ∣An[R] is the operator normon the spaceLR(An[R],An[R]) of bounded R-li-
near endomorphisms of An[R]. As in the locally polynomial case, the mapping σk
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increases radius of convergence: there is a unique σ̃k∶Ak ,n+nσ [Zp] → Ak ,n[Zp] such
that σk = in ,n+nσ ○ σ̃k, where in ,m is the inclusion of An[Zp] into Am[Zp] for n ≥ m.

Let Dn[R] = Dn[Zp , R] be the strong dual of An[Zp , R], i.e.,

Dn[R] = Dn[Zp , R] ∶= LR(An[Zp , R], R).

When confusion is unlikely to result, we can write Dn = Dn[E]. When Dn[R] is
equipped with the dual action of Σ0(pZp) written (µ, σ) ↦ µ∣kσ , we obtain an
(R, Σ0(pZp))-module denotedDk,n . Dualizing the situation for locally analytic func-
tions, for each n ≥ nk there is a uniquemap σ̃k making the diagram

(4.3) Dn+nσ [R]

��
Dn[R] σk

//

σ̃k
99

Dn[R]

commute. It follows from (4.2) that ∣σ ∣Dn[R] ≤ 1, where ∣ ⋅ ∣Dn[R] is the operator norm
on the space LR(Dn[R],Dn[R]).

Let A(R) = A(Zp , R) be the space of locally analytic R-valued functions on Zp :

A(R) = A(Zp , R) ∶= lim
Ð→

An[Zp , R].

When there is no danger of confusion, we will use the shorthand A = A(E). Since
completed tensor products commute with direct limits (because R is normed), we
have a canonical isomorphism

(4.4) A ⊗̂ R ∼
Ð→ A(R).

_e inclusion maps An[R] ↪ An+1[R] being Σ0(pZp)-equivariant, we obtain a le�
weight k action of Σ0(pZp) on A(Zp , R), giving rise to a le� Σ0(pZp)-module that
we denoteAk.

_e space of locally analytic distributions D(R) = D(Zp , R) is, by deûnition, the
strong dual ofA(R):

D(R) =D(Zp , R) ∶= LR(A(Zp , R), R).

When confusion is unlikely, we will use the shorthandD =D(E). _e natural map

D(R)Ð→ lim
←Ð
n
Dn[R]

is a topological isomorphism. _e we writeDk for themoduleD(R) equipped with
the right Σ0(pZp)-action arising from duality.

Let LE(V ,W) be the space of bounded, E-linear functionals between E-Banach
modules V and W and write W ⊗̂ V for W ⊗̂E V . Let V ′ be the strong E-dual of
V . _en the canonical map W ⊗̂ V ′

→ LE(V ,W) identiûes W ⊗̂ V ′ with the closed
subspace CE(V ,W) ⊂ LE(V ,W) of completely continuous maps. We have

(4.5) R ⊗̂ Dn
∼
Ð→ CE(An , R) ⊂ LE(An , R)

∼
Ð→ LR(An[R], R) = Dn[R].

(_enaturalmapLR(An[R], R)
∼
Ð→ LE(An , R) obtained from (4.1), always a contin-

uous bijection, is a homeomorphism by theOpen Mapping _eorem.) _us, R ⊗̂ Dn
is identiûed with an R-submodule of Dn[R], proper if R has inûnite dimension over
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E. On the other hand, a�er taking inverse limits,we get a canonical isomorphism [16,
Proposition 18.2]

(4.6) R ⊗̂D
∼
Ð→D(R).

Lemma 4.3 _e image of CE(An , R) in Dn[R] is stable under the weight k-action of
Σ0(pZp).

Proof Consider the diagram

(4.7) R ⊗̂D
j //

1⊗̂pn

��

D(R)

pn

��
R ⊗̂ Dn jn

// Dn[R]

where jn and j are given by (4.5) and(4.6), respectively. Wemust show that im( jn) ⊂
Dn[R] is stable under the weight k-action of Σ0(pZp). Since jn is a topological iso-
morphism of R ⊗̂ Dn onto the closed subspace CE(An , R) of LE(An , R) = Dn[R], it
follows that jn induces an isomorphism

closure of im(1 ⊗̂ pn)in R ⊗̂ Dn
∼
Ð→ closure of jn(im(1 ⊗̂ pn))in Dn[R].

It is a standard fact that pn ∶D→ Dn has dense image, implying that 1 ⊗̂ pn does too.
_erefore, the closure of im(1 ⊗̂ pn) in R ⊗̂Dn is equal to R ⊗̂Dn . _us, it remains to
show that the closure of jn(im(1⊗̂pn)) is stableunder theweightk action ofΣ0(pZp).
By the commutativity of (4.7) and the fact that j is an isomorphism, jn(im(1 ⊗̂ pn)) =
im(pn). But pn is equivariant for theweight k action of Σ,making im(pn) stable. _e
stability of the closure follows from the continuity of the endomorphism σk of Dn[R]
for all σ ∈ Σ0(pZp).

_us, we can deûne Ck,n ⊂ Dk,n to be the Σ0(pZp)-submodule with underlying
space CE(An , R). We have established the following lemma.

Lemma 4.4 _ere is a canonical (R, Σ0(pZp))-equivariant isomorphism

Dk
∼
Ð→ lim

←Ð
Ck,n .

4.1 δ-distributions

For each x ∈ Zp , we deûne

δx = δR
x ∈D(R) (resp. δx = δR

x ∈ Dn[R]) by δx( f ) = f (x),
where f ∈ A(R) (resp. f ∈ An[R]). It is obvious that the projections pn ∶ D(R) →
Dn[R] send δx to δx , justifying the overlap in notation.

Lemma 4.5 _e distributions δR
x , x ∈ Zp , topologically generateD(R) over R.

Proof By [17, Lemma 3.1], the E-span of {δEx ∶ x ∈ Zp} is dense inD. One can verify
that the isomorphism (4.6) maps 1 ⊗̂ δEx to δR

x , and the result follows.
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4.2 Specialization

Let ϕ∶R → R′ be an R-algebra homomorphism and let k′ ∈ X(R′) be an R′-valued
weight character. Ifk′ = ϕ○k,we say thatk′ is a specialization of kor,more speciûcally,
that ϕ specializes k to k′.

Lemma 4.6 Suppose ϕ specializes k to k′. _ere are canonical (R, Σ0(pZp))-equi-
variant maps

ϕn ∶Dk,n Ð→ Dk′ ,n and ϕ∶Dk Ð→Dk′ .

_ey satisfy the obvious compatibilities with the projections

Dk Ð→ Dk,n+1 Ð→ Dk,n and Dk′ Ð→ Dk′ ,n+1 Ð→ Dk′ ,n .

_emap R-linear map ϕ∶D(R)→D(R′) underlying ϕ∶Dk →Dk′ is given by

D(R) = R ⊗̂D
ϕ⊗̂1
Ð→ R′ ⊗̂D =D(R′).

Proof Let ϕn ∶Dn(R)→ Dn(R′) be the composite

Dn[R] = LR(An[R], R) = LE(An , R)
ϕ
Ð→LE(An , R′)
= LR′(An[R′], R′) = Dn[R′].

(4.8)

Here, we have used (4.1) twice, once for R and once for R′. By (4.4) we have the
continuous bijection LR(A(E), R) ∼

Ð→ LE(A, R), which is a homeomorphism by
the Open Mapping _eorem. Hence, we can deûne the map ϕ in a similar way. _e
compatibilities alluded to in the statement of the lemma are obvious.

We now establish the Σ0(pZp)-equivariance of ϕn and ϕ. Since the projections
pn ∶D(R)→ Dn[R] and p′n ∶D(R′)→ Dn[R′] have dense image and ϕn ○ pn = p′n ○ϕ,
the Σ0(pZp)-equivariance of ϕ implies that of the ϕn . By Lemma 4.5, it suõces to
show that ϕ(δR

x ∣kσ) = ϕ(δR
x )∣k′σ . Tracing through the isomorphisms in the analogue

of (4.8) deûning ϕ, one easily checks that ϕ(δR
x ) = δR′

x . Since A = A(E) generates
A(R′) as an R′-module, it suõces to show that ϕ(δR

x (σk f )) = δR′
x (σk′ f ) for f ∈

A(E). _is last identity follows from the specialization relation k′ = ϕ ○ k.

Remark 4.7 Setting bz = (
1 z
0 1 ) , we have δR

z = δR
0 bz . Hence, by the density of the

δ-distributions, ϕ is the unique (R, Σ0(pZp))-equivariant map Dk → Dk′ such that
ϕ(δ0) = δ0.

5 Specializing Locally Analytic to Locally Polynomial

Let k∶Z×p → E× be an arithmetic weight. In this case, we have

Ck,n = Dk,n = Dk,n[Zp].

Write k = (k, єp) with єp of conductor r. _en for n ≥ nk = r − 1, we can deûne
Yk,n = Yk,n[Zp] by the following (E , Σ0(pZ))-equivariant exact sequence:

0Ð→ Yk,n[Zp]Ð→ Dk,n[Zp]
ρ
Ð→ Vk,n[Zp]Ð→ 0,
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where ρ = ρk,n is the dual of the natural inclusion Pk,n[Zp]↪ Ak,n[Zp]. Set

Yk = Yk(Zp) = lim
←Ð

Yk,n ,

where the transition maps are the restrictions of those in the projective system of the
Dk,n[Zp]. _en Yk(Zk) ûts into the exact sequence of (E , Σ0(pZp))-modules

(5.1) 0Ð→ Yk(Zp)Ð→Dk(Zp)
ρ
Ð→ Vk(Zp)Ð→ 0,

_e map σ̃k appearing in (4.3), specialized to the case k = k and R = E, sends
Yk ,n[Zp] ⊂ Dn[Zp , E] into Yk ,n+nσ [Zp] ⊂ Dn+nσ [Zp , E], yielding the commutative
diagram

Yk ,n+nσ [Zp]

��
Yk ,n[Zp] σk

//

σ̃k
88

Yk ,n[Zp]

(n ≥ nk).

Remark 5.1 If we restrict the weight k action to Σ0(prZp), then all of the above
considerations hold for all n ≥ 0. In particular, Yk,n[Zp] is deûned for all n ≥ 0 as a
Σ0(prZp)-module.

5.1 An Operator Norm Calculation

Let σ ∈ Σ0(pZp) and write ∣σk∣Yk ,n[Zp] for the operator norm of σk as an endomor-
phism of the E-Banach space Yk,n[Zp].

Lemma 5.2 If σ ∈ Σ0(pZp), we have ∣σk∣Yk ,n[Zp] = p−(k+1)nσ for all n ≥ nk. If
σ ∈ Σ0(prZp), then the same holds for all n ≥ 0.

Proof Since ∣σ(k ,єp)∣Yk ,n[Zp] = ∣σk ∣Yk ,n[Zp], it suõces to prove the result for k = k ≥ 0.
We ûrst remark that, for every σ ∈ Σ0(pZ), there exist γ, γ′ ∈ Γ0(pZ) such that
σ = γ diag(1, pnσ

)γ′, and it follows that ∣σ ∣Yk ,n[Zp] = ∣diag(1, pnσ
)∣Yk ,n[Zp], and we

can assume that σ = diag(1, pnσ
). In the following discussion we can unambiguously

write ∣ ⋅ ∣ for all the norms involved.
We begin with a key calculation. For c ∈ {0, . . . , pn

− 1}, r ≥ 0, and ∣x∣ ≤ 1, deûne

bc ,r(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

p−nr
(x − c)r if ∣x − c∣ ≤ p−n ,

0 otherwise.

_en the bc ,r form an orthonormal basis of the E-Banach space An[Zp]. _erefore,
if µ ∈ Dn[Zp], we have

∣µ∣ = sup
c ,r

∣µ(bc ,r)∣.

Let σ = diag(1, pd). _en

(σkbc ,r)(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

p−nr
(pdx − c)r if ∣pdx − c∣ ≤ p−n ,

0 otherwise.
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Suppose n ≤ d. Now ∣pdx − c∣ ≤ p−n means that pdx = c + pn t for some t ∈ Zp .
_erefore, pn

∣c as ∣x∣ ≤ 1, ∣c∣ ≤ 1, and n ≤ d. But since 0 ≤ c ≤ pn
− 1, this happens only

when c = 0. _us, n ≤ d implies σkbc ,r = 0 if c /= 0, while σkb0,r(x) = p−nr
(pdx)r for

every x ∈ Zp ⊂ pn−dZp . We write

Zp =
pn
−1

⊔

c=0
c + pnZp

and we note that, for x ∈ c + pnZp ,

σkb0,r(x) = p−nr
(pdx)r

= pdr p−nr
(x − c + c)r

= pdr
r
∑

s=0
(

r
s
)cr−s pn(s−r)bc ,s(x).

It follows that
σkb0,r = pdr ∑

s=0, . . . ,r
c=0, . . . ,pn

−1

(

r
s
)cr−s pn(s−r)bc ,s .

When r ≥ k + 1, we deûne the k-truncation of σkb0,r by the rule

Tk(σkb0,r) = pdr ∑

s=k+1, . . . ,r
c=0, . . . ,pn

−1

(

r
s
)cr−s pn(s−r)bc ,s

= pd(k+1)
∑

s=k+1, . . . ,r
c=0, . . . ,pn

−1

(

r
s
)cr−s pn(s−r)+d(r−(k+1))bc ,s .

We remark that n(s − r) + d(r − (k + 1)) ≥ (r − s)(d − n) ≥ 0 for every k + 1 ≤ s and
n ≤ d, so that

(5.2) ∣Tk(σkb0,r)∣ ≤ p−d(k+1)
∣µ∣ (n ≤ d , r ≥ k + 1).

Suppose now that d ≤ n. _en

∣pdx − c∣ ≤ p−n
⇐⇒ ∣x − p−d c∣ ≤ pd−n

≤ 1.

_ere exist x ∈ Zp satisfying these inequalities only if pd ∣c, i.e.,

c = pd c′ , c′ ∈ {0, . . . , pn−d
− 1},

in which case

(σkbc ,r)(x) = (σkbpd c′ ,r)(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

p(d−n)r
(x − c′) if ∣x − c′∣ ≤ pd−n ,

0 otherwise.

We write Zp =⊔
pn−d

−1
c′=0 c′ + pn−dZp and Zp =⊔

pd
−1

c′′=0 c
′′
+ pdZp . _erefore, we have

c′ + pn−dZp =
pd
−1

⊔

c′′=0
c′ + pn−d

(c′′ + pdZp) =
pd
−1

⊔

c′′=0
c′ + pn−d c′′ + pnZp .

If c′′ ∈ {0, . . . , pd − 1} and ∣x − (c′ + pd c′′)∣ ≤ p−n , then one computes that

(σkbc ,r)(x) = pdr
r
∑

s=0
(

r
s
)c′′r−s p(n−d)(r−s)+n(s−r)bc′+pn−d c′′ ,s(x).
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It follows that

σkbc ,r = pdr ∑

s=0, . . . ,r
c′′=0, . . . ,pd

−1

(

r
s
)c′′r−s p(n−d)(r−s)+n(s−r)bc′+pn−d c′′ ,s .

If r ≥ k + 1, we deûne the k-truncation of σkbc ,r by the rule

Tk(σkbc ,r) = pdr ∑

s=k+1, . . . ,r
c′′=0, . . . ,pd

−1

(

r
s
)c′′r−s p(n−d)(r−s)+n(s−r)bc′+pn−d c′′ ,s

= pd(k+1)
∑

s=k+1, . . . ,r
c′′=0, . . . ,pd

−1

(

r
s
)c′′r−s pd(s−(k+1))bc′+pn−d c′′ ,s .

We have d(s − (k + 1)) ≥ 0 for s ≥ k + 1, so that

(5.3) ∣Tk(σkbc ,r)∣ ≤ p−d(k+1)
∣µ∣ (d ≤ n, r ≥ k + 1).

Suppose now that σ = diag(1, pd) and µ ∈ Yn ,k[Zp]. We have µσk ∈ Yn ,k[Zp] so
that (µσk)(bc ,r) = 0 if r ≤ k + 1, and, when r ≥ k + 1, by (5.2) and (5.3), we have

∣ (µσk)(bc ,r)∣ = ∣ µ(Tk(σkbc ,r))∣ ≤ p−d(k+1)
∣µ∣,

implying

∣µσk ∣ = sup
c ,r

∣ (µσk)(bc ,r)∣ ≤ p−d(k+1)
∣µ∣.

_erefore, σ acts on Yn ,k[Zp] with norm ≤ p−d(k+1)
= pnσ(k+1). To show that this

value is achieved, we must ûnd a distribution µ ∈ Yn ,k[Zp] with ∣µσk ∣ = p−d(k+1)
∣µ∣.

_e bounded distribution determined by

µ(bc ,r) =
⎧
⎪⎪
⎨
⎪⎪
⎩

1 if (c, r) = (0, k + 1),
0 otherwise,

works.

6 Slope Decompositions and the Ash–Stevens Machinery

6.1 S-decompositions

Suppose that R is a commutativeNoetherian ring,R is a commutative R-algebra, and
S ⊂ R is amultiplicative subset. LetH be anR-module. Ash and Stevens [4] introduce
the following key notion.

Deûnition 6.1 A direct sum decomposition H = HS ⊕H′ is an S-decomposition if
the following hold:
(i) for every h ∈ HS, there is an element s ∈ S such that sh = 0;
(ii) HS is a ûnitely generated R-module;
(iii) every element of S acts invertibly on H′.
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When S-decompositions exist, they are unique.
Let G be a ûnite group of order n acting on H. _en have the canonical decompo-

sition of H:
H =⊕

χ
H(χ)

Lemma 6.2 Suppose the action ofG onH commuteswith that ofR and that µn ⊂ R×.
_en each H(χ) admits an S-decomposition. Moreover, H(χ)S = HS(χ) and H(χ)′ =
H′

(χ).

Proof It is easy to check that G preserves HS and H′. _erefore, HS = ⊕χ HS(χ)
and H′

=⊕χ H′
(χ). Since HS(χ)⊕H′

(χ) ⊂ H(χ) and

H = HS ⊕H′
=⊕

χ
HS(χ)⊕H′

(χ) ⊂⊕
χ
H(χ) = H,

it follows that HS(χ) ⊕ H′
(χ) = H(χ). It is obvious that this decomposition is fact

an S-decomposition of H(χ), i.e., H(χ)S = HS(χ) and H(χ)′ = H′
(χ).

6.2 Slope ≤ h Decompositions

Let E be a p-adic ûeld and let R be an E-Banach algebra. We let R×m be the group of
multiplicative elements in R, i.e., elements r ∈ R× such that ∣rx∣ = ∣r∣∣x∣ for all x ∈ R.

Deûnition 6.3 ApolynomialQ(T) ∈ R[T]has slope≤ h if the slopes of all segments
of comprising its Newton polygon are ≤ h.

LetV be an R-module. We do not assume thatV possesses a topological structure.
If Q(T) ∈ R[T], we set Q∗

(T) ∶= Tdeg(Q)Q(1/T) and we let aQ = Q∗
(0) be the

leading coeõcient of Q. Let u∶V → V be an R-linear map. For h ∈ R, h > 0, deûne
the semigroup

Sh(u) = ⟨{Q(u) ∶ Q(T) has slope ≤ h and aQ ∈ R×m
}⟩ ⊂ EndR V

and set

V≤h
= {x ∈ V ∶ Q∗

(u)x = 0 for some Q(u) ∈ Sh(u)}.

Lemma 6.4 ([4, Lemma 7.0.2]) V≤h is an R-submodule of V .

Suppose we have a direct sum decomposition

(6.1) V = V≤h
⊕ V>h

for some R-submodule V>h of V . We call (6.1) a slope ≤ h decomposition if it is an
S-decomposition with S = Sh(u).
Among our main goals is showing that, for suitable Ω ⊂ X, the space H1

(Γ0 ,DΩ)

admits a slope ≤ h decomposition. To prove this, the Ash–Stevens machinery relies
on ûniteness properties of the arithmetic group Γ0 as well as on functional analytic
properties of the coeõcient moduleDΩ .
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6.3 Orthonormalizable Modules

Let G be a group, let Γ ⊂ G be a subgroup, and let Σ ⊂ G be a subsemigroup with
Γ ⊂ Σ ⊂ G.

Deûnition 6.5 By an orthonormalizable Banach (R, Σ)-module we understand a
Banach (R, Σ)-module V such that V is an orthonormalizable Banach R-module, as
deûned in [7, p. 423], and such that each σ ∈ Σ acts onV with operator norm atmost 1.

_e next result follows directly from [18, Corollary to Proposition 1].

Lemma 6.6 Let k ∈ X(E). _en Vk,n , Dk,n , and Yk,n are orthonormalizable Banach
(E , Σ0(pZp))-modules for all n ≥ nk. If k = (k, є) is an arithmeticweight of conductor
pr , then spaces are orthonormalizable Banach (E , Σ0(prZp))-modules for all n ≥ 0.

We now consider projective limits of such objects.

Deûnition 6.7 An orthonormalizable (R, Σ)-module is an (R, Σ)-module D to-
gether with an (R, Σ)-module isomorphism

D
∼
Ð→ lim

←Ð
(Dn , pn+1,n),

where (Dn , pn+1,n)n≥nD
is a projective system of orthonormalizable Banach (R, Σ)-

modules. When Σ = 1, we simply say that D is an orthonormalizable R-module.

Lemma 6.8 Let R be an aõnoid E-algebra and let k ∈ X(R). _en Dk is an or-
thonormalizable (R, Σ0(pZp))-module.

Proof ByLemma 4.4, there is a canonical (R, Σ0(pZp))-module isomorphismDk =

lim
←Ð

Ck,n . Each Ck,n is orthonormalizable thanks to the canonical isomorphism R ⊗̂E
Dn = Ck,n and [7, Proposition A1.3], and the lemma follows.

Suppose that D is an orthonormalizable R-module and L∶D→D is an R-module
homomorphism.

Deûnition 6.9 We say that L is completely continuous if
● L = lim

←Ð
Ln , where Ln ∶Dn → Dn are completely continuous R-linear morphisms;

● there exists an integer nL ≥ nD and, for every n ≥ nL , a commutative diagram

(6.2) Dn+1
Ln+1 //

pn+1,n

��

Dn+1

pn+1,n

��
Dn Ln

//
L̃n

;;

Dn

.

Remark 6.10 (i) If the pn+1,n are completely continuous, then every continuous
R-linear morphism Ln ∶Dn → Dn making (6.2) commutative is completely continu-
ous. Hence, in this case, we simply require the Ln to be R-linear morphisms in order
for L = lim

←Ð
Ln to be completely continuous.
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(ii) IfD is an orthonormalizable (R, Σ)-module and L = lim
←Ð

Ln is completely con-
tinuous, γLγ′ = lim

←Ð
γLnγ′ is completely continuous for every γ, γ′ ∈ Γwith nγLγ′ = nL

(take γL̃nγ′ in (6.2).
(iii) We always view D = lim

←Ð
(Dn , pn+1,n) with the initial topology making the

projections pn ∶D→ Dn continuous (see [16, S 5 D]). In thiswayD becomes a Fréchet
space endowed with a continuous (R, Σ)-module structure. Conversely, a Fréchet
space is the inverse limit D = lim

←Ð
(Dn , pn+1,n) of Banach spaces such that the pn+1,ns

have dense image. If D is endowed with a continuous (R, Σ)-module structure, we
can take the Dn to be Banach R-modules onwhich Σ acts continuously and the pn+1,n
to be (R, Σ)-linear.

(iv) Let D be an orthonormalizable (R, Σ)-module and suppose R → R′ is a con-
traction. _en

R′ ⊗̂R D = lim
←Ð

(R′ ⊗̂R Dn , 1⊗̂R pn+1)

and the 1 ⊗̂R pn+1,n have dense image if the pn+1,n have dense image. In particular,
R′ ⊗̂R D is an orthonormalizable (R′ , Σ)-module.

Remark 6.11 Let V and W be Banach E-spaces on which a group Γ acts contin-
uously by operators of norm ≤ 1. _en for every γ ∈ Γ and every f ∈ L(V ,W),
∣ f γ∣L(V ,W) = ∣γ f ∣L(V ,W) = ∣ f ∣L(V ,W).

Suppose from now on that (Γ, Σ) is aHecke pair in G. For each σ ∈ Σ, the double
coset ΓσΓ can be decomposed into ûnitely many le� Γ-cosets:

ΓσΓ =⊔
i∈I

Γσi .

When D = D is an orthonormalizable Banach (R, Σ)-module, Remark 6.11 implies
that ∣σ ∣ = ∣ΓσΓ∣ depends only on the double coset ΓσΓ. _us, we can set ∣ΓσΓ∣ = ∣σ ∣.
Justiûed by Remark 6.10(ii), we give the following deûnition.

Deûnition 6.12 If D is an orthonormalizable (R, Σ)-module, we say that [ΓσΓ]
deûnes a completely continuous operator if σ ′ ∈ ΓσΓ is completely continuous for
some or equivalently any σ ′ ∈ ΓσΓ. In this case, nΓσΓ ∶= nσ ′ ≥ nD is well deûned.

We now assume that R is an absolutely irreducible aõnoid E-algebra (endowed
with the supremum norm) and write Ω ∶= Sp(R). If Ω′

= Sp(R′) ⊂ Ω is an open
aõnoid domain, the associatedmorphism R → R′ is a contraction, and we set

Dn ,Ω′ ∶= R′⊗̂RDn , pn+1,n ,Ω = 1⊗̂R pn+1,n , and DΩ′ ∶= lim
←Ð

(Dn ,Ω′ , pn+1,n ,Ω′).

In particular,DΩ′ = R′⊗̂RD (Remark 6.10(iv)). _e following important result is the
main result of the theory of Ash and Stevens, in which the usefulness of the purely
algebraic notion of slope decomposition manifests itself. _is result extends Cole-
man’s results on the existence of slope decompositions for orthonormalizable Banach
modules to the cohomology of an inverse limit of such objects.

We need one further notion.

Deûnition 6.13 We say that Γ is arithmetic if and only if there exists Γ′ ⊂ Γ of ûnite
index such that Z has a resolution by ûnitely generated free Z[Γ′]-modules.
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_e proof of the following theorem can be extracted from [4].

_eorem 6.14 Suppose thatD is an orthonormalizable le� (R, Σ)-module on which
[ΓσΓ] deûnes a completely continuous Hecke operator, that (Γ, Σ) is aHecke pair in G,
and that Γ is arithmetic. Let k ∈ Ω.

(i) _ere is an open aõnoid neighbourhood Ω′
= SpR′ of k in Ω such that, setting

DΩ′ = R′ ⊗̂R D, the cohomology group H i
(Γ,DΩ′) admits a slope ≤ h decomposition

relative to the Hecke operator [ΓσΓ]. _e spaces H i
(Γ,Dn ,Ω′) also admit slope ≤ h

decompositions and the natural maps D→ Dn induce isomorphisms

H i
(Γ,DΩ′)≤h ∼

Ð→ H i
(Γ,Dn ,Ω′)≤h

(n ≥ nD).

(ii) If Ω′′
= SpR′′ is an open aõnoid subset of Ω′, then the groups H i

(Γ,DΩ′′)

andH i
(Γ,Dn ,Ω′′) also admit slope ≤ h decompositions and there are canonical isomor-

phisms

H i
(Γ,DΩ′′)≤h

≅ R′′ ⊗̂R′ H i
(Γ,DΩ′)≤h , H i

(Γ,Dn ,Ω′′)≤h
≅ R′′ ⊗̂R′ H i

(Γ,Dn ,Ω′)≤h .

(iii) If R is a p-adic ûeld, D = D is an orthonormalizable Banach (R, Σ)-module,
and ∣ΓσΓ∣ < p−h , then H i

(Γ,D)
≤h

= 0.

7 Level Structures

Let B be the (unique up to isomorphism) indeûnite quaternionQ-algebra of discrim-
inant D. For a place v let Hv (resp. M2(Qv)) be the unique (up to isomorphism)
division (resp. split) quaternion Qv-algebra and ûx identiûcations

ιv ∶Bv
∼
Ð→ Hv (v ∣ D), ιv ∶Bv

∼
Ð→M2(Qv) (v ∤ D).

Taken together, these induce an identiûcation

ιA∶B ⊗AQ
∼
Ð→ ∏

v∣D
Hv ×

′

∏

v∤D
M2(Qv).

Note that∞ ∤ D as B is indeûnite.
For a 2-by-2 matrix g, we deûne ag , bg , cg , and dg by

g = (
ag bg
cg dd

) .

If v = ℓ ∣ D, let OHℓ be the ring of integers ofHv . If v = ℓ ∤ D∞ and r ≥ 1, we write

Σ1(ℓrZℓ) ⊂ M2(Zℓ) ∩GL2(Qℓ) (resp. Σ0(ℓrZℓ) ⊂ M2(Zℓ) ∩GL2(Qℓ))

to denote the subsemigroup deûned by the conditions ag ∈ 1 + ℓrZℓ (resp. ag ∈ Z×ℓ )
and cg ∈ ℓrZℓ . If r = 0, we deûne the semigroup

Σ(Zℓ) ∶= M2(Zℓ) ∩GL2(Qℓ).

We set
Γ∗(ℓrZℓ) ∶= Σ∗(ℓrZℓ) ∩GL2(Zℓ)

for ∗ = 1, 0, or nothing.
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Let M, N ∈ N be such that M, N , and D are pairwise coprime. We consider the
semigroup

ΣD∗ (M ,N) = B× ∩ ι−1
A (∏

ℓ∣D
H×

ℓ × ∏

ℓr∥M
Σ0(ℓrZℓ) × ∏

ℓr∥N
Σ1(ℓrZℓ)

× ∏

ℓ∤DMN∞
Σ(Zℓ) ×GL∗2(R)) ,

where ∗ is + or nothing and GL+2 (R) indicates the subset of matrices with positive
determinant and its congruence subgroup

ΓD(M ,N) = B× ∩ ι−1
A (∏

ℓ∣D
O×

Hℓ
× ∏

ℓr∥M
Γ0(ℓrZℓ) × ∏

ℓr∥N
Γ1(ℓrZℓ)

× ∏

ℓ∤DMN∞
Γ(Zℓ) ×GL+2 (R)) .

7.1 Hecke Algebras

For any commutative ring R, let

TDR (M ,N) = TR(ΓD(M ,N), ΣD(MN , 1)) ,

TDR (M ,N)+ = TR(ΓD(M ,N), ΣD+ (MN , 1))

be the double coset R-algebras associated with theHecke pairs

(ΓD(M ,N), ΣD(MN , 1)) and (ΓD(M ,N), ΣD+ (MN , 1)) ,

respectively. We point out that, in addition to containing the Hecke operators Tℓ for
ℓ ∤ MN and Uℓ for ℓ ∣ MN , the algebra TDR (M ,N) also contains an involution “at
inûnity”: let g−1 ∈ ΣD(M ,N) ⊂ ΣD(MN , 1) be an element of reduced norm −1 nor-
malizing ΓD(M ,N) and such that g2

−1 = 1 and deûne the involution

W∞ ∶= [ΓD(M ,N)g−1ΓD(M ,N)] = [ΓD(M ,N)g−1] ∈ T
D
(M ,N).

In addition, TDR (M ,N) contains the diamond operators ⟨d⟩ for d ∈ (Z/NZ)
×. If

g ∈ ΓD(MN , 1) ⊂ ΣD(MN , 1) is such that aιℓ(g) ∈ d + NZℓ for ℓ ∣ N , then

⟨d⟩ ∶= [ΓD(M ,N)gΓD(M ,N)] = [ΓD(M ,N)g] ∈ TD(M ,N).

If TDR (M ,N) acts on V , then V = V+
⊕V−, where V± is the ±1-eigenspace for the

action of the involution W∞. If єN ∈ ∆N ∶= Hom((Z/NZ)
× , R×), let

V(єN) ∶= ⋂

d∈(Z/NZ)×
ker(⟨d⟩ − єN(d));

then we can write V = V(єN)⊕ V єN for an R-module V єN such that

R′ ⊗R V = ⊕

є′N∈∆N ,є′N /=єN
(R′ ⊗R V)(є′N)

for any R-algebra R′ such that µN ⊂ R′. In particular, if µN ⊂ R, we have

V = ⊕

єN∈∆N ,ε∈{±1}
V ε

(єN) = ⊕

єN∈∆N ,ε∈{±1}
V(єN)

ε .

https://doi.org/10.4153/CJM-2015-062-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-062-x


p-adic Families of Cohomological Modular Forms 983

Since ⟨d⟩ ∈ TD(M ,N) for all d ∈ (Z/NZ)
×, if v is a TDR (M ,N)-eigenvector, then

v ∈ V(єN)
ε for some єN ∈ ∆N and ε ∈ {±1}. In our applications, R will be aD(Z×p)-al-

gebra. _en V is naturally a D(Z×p,N)-module via dv ∶= v⟨d⟩ for d ∈ (Z/NZ)
× and

V ε
(єN) (as well as V(єN)) is naturally a D(Z×p,N)-module via єN . Via the Amice–

Velu theorem we can regard them as O(XN)-modules.
Suppose now that D is an R[ΣD(MN , 1)]-module. _en

H i
(ΓD(M ,N),D) = ⊕

єN∈∆N ,ε∈{±1}
H i

(ΓD(M ,N),D)
ε
(єN)

and, when R is aQ-algebra, restriction gives isomorphism

H i
(ΓD(MN , 1),D{є−1

N })
∼
Ð→ H i

(ΓD(M ,N),D{є−1
N })

ΓD
(MN ,1)/ΓD

(M ,N)

= H i
(ΓD(M ,N),D)

ε
(єN).

As remarked above, when R is aD(Z×p)-algebra,

H i
(ΓD(M ,N),D) and H i

(ΓD(M ,N),D)
ε
(єN)

are naturally O(XN)-modules. _anks to Lemma 6.2 the same applies to the slope
≤ h subspaces with respect to suitableHecke operators.

7.2 Dependence on D

By the local structure theory, there is a canonical isomorphism

TD(M ,N)∗

= T(GL+2 (R),GL∗2(R))⊗ ⊗

ℓ∣D
T(O×

Hℓ
,H×

ℓ )⊗ ⊗

ℓr∥M
T(Γ0(ℓrZℓ), Σ0(ℓrZℓ))

⊗ ⊗

ℓr∥N
T(Γ1(ℓrZℓ), Σ0(ℓrZℓ)) ⊗ ⊗

′
ℓ∤DMN∞ T(Γ(Zℓ), Σ(Zℓ))

=∶ T∗∞ ⊗ ⊗
′
ℓ<∞ TDℓ (M ,N),

the symbol⊗′ denoting restricted tensor product and ∗ being + or nothing.
Suppose D = D′M′ is a factorization of D with D′ divisible by an even number

of primes. By our running assumption that D is squarefree, D′ is squarefree and
(D′ ,M′

) = 1. Let R be a commutative ring. For ℓ ∤ M′, we have TDℓ (M ,N) =

TD
′

ℓ (MM′ ,N), while for ℓ ∣ M′, there are R-algebra isomorphisms

R[T]
∼
Ð→ TR(Γ0(ℓZℓ), Σ0(ℓZℓ)) and R[T , T−1

]
∼
Ð→ TR(H×

ℓ ,O
×
Hℓ

)

given by T ↦ [Γ0(ℓZℓ)(
1 0
0 p )Γ0(ℓZℓ)] = Uℓ and T ↦ [O×

Hℓ
πℓO

×
Hℓ

] = Wℓ , where
πℓ ∈ O×

Hℓ
has reduced norm ℓ. If λℓ ∈ R×, then the map TR(Γ0(ℓZℓ), Σ0(ℓZℓ)) →

TR(H×
ℓ ,O

×
Hℓ

) given by T ↦ T induces an isomorphism

TR(Γ0(ℓZℓ), Σ0(ℓZℓ))/(U2
ℓ − λℓ)

∼
Ð→ TR(H×

ℓ ,O
×
Hℓ

)/(W2
ℓ − λℓ).

Taking the restricted tensor product of the above isomorphisms, we obtain an R-al-
gebra isomorphism

(7.1) jD ,D
′
∶TD

′
R (MM′ ,N)/(U2

ℓ − λℓ ∶ ℓ ∣ M′
)

∼
Ð→ TDR (M ,N)/(W2

ℓ − λℓ ∶ ℓ ∣ M′
).
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8 The Comparison Theorem

Let p be a prime and suppose that M, N , and D are integers prime to each other and
prime to p. Consider theHecke pair

(Γ, Σ) = (ΓD(prM ,N), ΣD(prMN , 1))

and the associated Hecke algebra TD(Γ, Σ). Let k = (k, єp) ∈ X(E) be an arithmetic
weight character of conductor pr . _e T(Γ, Σ)-equivariant long exact sequence in
Γ-cohomology arising from (5.1) takes the form

⋅ ⋅ ⋅Ð→ H1
(Γ,Yk)Ð→ H1

(Γ,Dk)Ð→ H1
(Γ,Vk)Ð→ H2

(Γ,Yk)Ð→ ⋅ ⋅ ⋅ .

Let σ ∈ Σ be such that nσ ≥ 1. By_eorem 6.14 and Lemma 6.8, we can take slope ≤ h
componentswith respect to ΓσΓ of each term in the above sequencewithout disturb-
ing the exactness. _e following comparison theorem now follows from Lemma 5.2
and_eorem 6.14(iii).

_eorem 8.1 (Stevens) If h < (k + 1)nσ then the natural maps ρk∶Dk → Vk and
p∶Vk → Vk,0 = Vk{єp} induce T(Σ, Γ)-equivariant isomorphisms

ρk∶H1
(Γ,Dk)

≤h ∼
Ð→ H1

(Γ,Vk)
≤h ∼
Ð→ H1

(Γ,Vk{єp})≤h .

Remark 8.2 By the discussion in Section 7.1, these isomorphisms respect decom-
position into±-eigenspaces aswell as єN -isotypic components associatedwith neben-
type characters.

9 The Control Theorem

Let R be an absolutely irreducible aõnoid E-algebra, let k ∈ X(R), and suppose that
ϕ∶R → E specializes k to κ ∈ X(E) as in Section 4.2. Let Iκ = ker ϕκ be its kernel,
sitting in the exact sequence

(9.1) 0Ð→ Iκ Ð→ R
ϕ
Ð→ E Ð→ 0.

Applying the exact functor ⋅ ⊗̂E D yields the exact sequence

0Ð→ Iκ ⊗̂E DÐ→ R ⊗̂E D
ϕ⊗̂1
Ð→ E ⊗̂E DÐ→ 0.

We have canonical isomorphisms E ⊗̂E D =D and, by (4.6), R ⊗̂E D =D(R). More-
over,

Iκ ⊗̂E D = Iκ ⊗̂R R ⊗̂E D = Iκ ⊗̂R D(R).
_e image of Iκ ⊗̂RD(R) in R ⊗̂RD(R) =D(R) is IκD(R). _us,we obtain the exact
sequence

0Ð→ IκD(R)Ð→D(R)
ϕ
Ð→D(E)Ð→ 0.

Taking Σ0(pZp)-actions into account and observing that if ϕ specializes k to κ as in
Section 4.2 then the inducedmap ϕ∶Dk →Dκ is Σ0(pZp)-equivariant by Lemma 4.6,
we get the following theorem.
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_eorem 9.1 (cf. [4,_eorem 3.7.4]) If ϕ∶R → E specializes k ∈ X(R) to κ ∈ X(E),
then ϕ induces the following (R, Σ0(pZp))-equivariant, topologically exact sequence:

(9.2) 0Ð→ IκDk Ð→Dk
ϕ
Ð→Dκ Ð→ 0.

Suppose that R is a principal ideal domain, so that we may write Iκ = Rπκ . _en
(9.1) is identiûed with the exact sequence

(9.3) 0Ð→ R πκ
Ð→ R κ

Ð→ E → 0.

Applying the exact functor ⋅ ⊗̂E D and arguing as above, we obtain an alternate form
of (9.2):

(9.4) 0Ð→Dk
πκ
Ð→Dk

ϕ
Ð→Dκ Ð→ 0.

We continue with theHecke pair

(Γ, Σ) = (ΓD(prM ,N), ΣD(prMN , 1))

and the associated Hecke algebra TD(Γ, Σ). Suppose for the remainder of this sec-
tion that R = SpΩ where Ω is an aõnoid subset of X. Let σ ∈ Σ be such that
ordp nrd(σ) ≥ 1 and so that σ acts completely continuously on Dk. _en by _e-
orem 6.14 and Lemma 6.8, H i

(Γ,Dk) admits a slope ≤ h decomposition with respect
to [ΓσΓ], a�er possibly shrinking Ω around k. (We do not re�ect this shrinking in
the notation.) _us, we have a TD(Γ, Σ)-equivariant decomposition

H i
(Γ,Dk) = H i

(Γ,Dk)
≤h
⊕H i

(Γ,Dk)
>h .

_e cohomology group H i
(Γ, IκDk) lies in themiddle of a ûve term exact sequence

coming from the long exact sequence in Γ-cohomology associated with (9.3). _e
other terms in this sequence have slope ≤ h decompositions for reasons we have
already discussed. It follows that H i

(Γ, IκDk) admits a slope ≤ h decomposition
with respect to [ΓσΓ] by _eorem 6.14. Moreover, the long exact sequence associ-
ated with (9.3) remains exact a�er passing to slope ≤ h parts:

⋅ ⋅ ⋅Ð→ H i
(Γ, IκDk)

≤h
Ð→ H i

(Γ,Dk)
≤h ϕκ
Ð→ H i

(Γ,Dκ)
≤h
Ð→ ⋅ ⋅ ⋅ .

Considering instead the long exact sequence associated with (9.4), we obtain the fol-
lowing long exact sequence of TD(Γ, Σ)-modules:

(9.5) ⋅ ⋅ ⋅Ð→ H i
(Γ,Dk)

≤h πκ
Ð→ H i

(Γ,Dk)
≤h ϕκ
Ð→ H i

(Γ,Dκ)
≤h
Ð→ ⋅ ⋅ ⋅ .

Suppose for the remainder of this section that κ = (k, εp) is arithmetic of level
r ≥ 1 and that h < nσ(k + 1). _en by _eorem 8.1, there is a canonical TD(Γ, Σ)-
equivariant isomorphism

ρκ ∶H i
(Γ,Dκ)

≤h ∼
Ð→ H i

(Γ,Vk{єp})≤h .

It follows that, abusively writing ρκ to denote the composition ρκ ○ ϕκ , (9.5) is iden-
tiûed with

(9.6) ⋅ ⋅ ⋅Ð→ H i
(Γ,D)

≤h πκ
Ð→ H i

(Γ,Dk)
≤h ρκ
Ð→ H i

(Γ,Vk{єp})≤h
Ð→ ⋅ ⋅ ⋅ .
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Vanishing criteria for the Γ-cohomology of Vk{єp} are well known.

Lemma 9.2 H i
(Γ,Vk{εp}) = 0 if one of the following conditions is satisûed:

● i > 2,
● i = 0, 2 and k > 0,
● i = 2, k = 0 and Γ is cocompact, i.e., D /= 1, where D is the discriminant of B.

We ûnally come to the control theorem. Typically, it is applied when [ΓσΓ] is the
Up-operator, i.e., when σ ∈ Σ has reduced norm p. _e Up operator has degree p
by [21, Proposition 3.33]).

_eorem 9.3 We can shrink Ω around κ so that
● R = O(Ω) is a principal ideal domain,
● H i

(Γ,Dk)
≤h

= 0 for i /= 1,
● H1

(Γ,Dk)
≤h is free of ûnite rank over R.

Moreover, the sequence

(9.7) 0Ð→ IκH1
(Γ,Dk)

≤h
Ð→ H1

(Γ,Dk)
≤h ρκ
Ð→ H1

(Γ,Vk{єp})≤h
Ð→ 0

is exact if one of the following conditions is satisûed:
● k > 0 and h < nΓσΓ(k + 1);
● k = 0, h < nΓσΓ and h < ordp deg[ΓσΓ].
In particular, when [ΓσΓ] = Up is the degree p operator Up with nUp = 1, this is always
true when 1 ≤ h < k + 1.

Proof Replacing Ω by a closed subdisk containing κ,we can assume that R is a prin-
cipal ideal domain. By (9.6), the sequence

0→ IκH i
(Γ,Dk)

≤h
Ð→ H i

(Γ,Dk)
≤h
Ð→ H i

(Γ,Vk{єp})≤h

is exact. SetH i
∶= H i

(Γ,Dk)
≤h andwriteH i

κ for the localization ofH i at Iκ . Since Iκ is
amaximal ideal, H i

κ/IκH i
κ = H i

/IκH i and H i
/IκH i

⊂ H i
(Γ,Vk{εp})≤h by the above

exact sequence. If i ≥ 3, then H i
(Γ,Vk{εp}) = 0 by Lemma 9.2, so that H i

/IκH i
= 0.

Since H i is a ûnitely generated R-module, by Nakayama’s Lemma H i
κ = 0, and this

means that there exists s ∉ Iκ such that sH i
= 0. Choose ρ ∈ K such that 0 < ∣ρ∣ ≤

∣s(κ)∣. Let R[s−1
] (resp. H i

[s−1
]) be the localization of R (resp. H i) at {sn}. _ey can

be endowedwith a seminorm as in [5, p. 233 Prop. 3], that depends on the choice of ρ
andmakes ρ/s power bounded in R[s−1

]. Let R⟨s−1
⟩ (resp.H i

⟨s−1
⟩) be the completion

of R[s−1
] (resp. H i

[s−1
]). _en Ω′

= SpR⟨s−1
⟩ ⊂ Ω is an open aõnoid domain such

that κ ∈ Ω′ (it represents the element x ∈ Ω such that ∣ρ∣ ≤ ∣s(x)∣, see [5, p. 281,
Prop. 4]) and R⟨s−1

⟩ ⊗̂R H i
= H i

⟨s−1
⟩ = 0 because the image of H i

[s−1
] = 0 is dense

in H i
⟨s−1

⟩. By _eorem 6.14, R⟨s−1
⟩ ⊗̂R H i

= H i
(Γ,Dk′)

≤h with k′ associated with
Ω′

⊂ Ω → X, and we are ûnished with the case i ≥ 3.
If k > 0, Lemma 9.2 together with a similar argument shows that we can further

assume H i
= 0 for i = 0, 2. It follows that (9.6) reduces to (9.7). Localizing (9.7)

at κ, we see that H1
κ is πκ-torsion free and hence free, since Rκ is a principal ideal

domain. Since the property of being free is Zariski-open, there exists s ∉ Iκ such that

https://doi.org/10.4153/CJM-2015-062-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-062-x


p-adic Families of Cohomological Modular Forms 987

H1
[s−1

] is a free R[s−1
]-module. It follows that H1

⟨s−1
⟩ is a free R⟨s−1

⟩-module and
Ω′

= SpR⟨s−1
⟩ ⊂ Ω is an open aõnoid domain such that κ ∈ Ω′ and R⟨s−1

⟩ ⊗̂R H1
=

H1
⟨s−1

⟩ is a free R⟨s−1
⟩-module. _e claim when k /= 0 follows.

Now suppose that k = 0, h < nΓσΓ and h < ordp(deg(ΓσΓ)). Since the action of
[ΓσΓ] on H i

(Γ,Vk{εp}) is Eisenstein for i = 0, 2, i.e., acts through the degree char-
acter, we conclude that H i

(Γ,Vk{εp})≤h
= 0. An argument similar to that presented

above shows that we can assume H i
= 0 for i = 0, 2, and the rest follows as in the

previous paragraph.

Remark 9.4 By the discussion in Subsection 7.1, themaps in (9.7) respect decom-
position into±-eigenspaces aswell as єN -isotypic components associatedwith neben-
type characters. In particular, we get a TDR (Γ, Σ)-equivariant exact sequence

0Ð→ IκH1
(Γ,Dk)(єN)

±,≤h
Ð→ H1

(Γ,Dk)(єN)
±,≤h

ρκ
Ð→ H1

(Γ,Vk{єp})(єN)
±,≤h

Ð→ 0

such that H1
(Γ,Dk)(єN)

±,≤h is a locally free R = O(Ω)-module in an aõnoid neigh-
bourhood Ω of an arithmetic weight κ ∈ N>h/nσ−1

r .

When k corresponds to the inclusion Ω ⊂ X of an aõnoid in the weight space in
the weight space, we will sometimes write DΩ for Dk. As explained in Section 7.1,
H1

(Γ,DΩ)
≤h (resp. H1

(Γ,DΩ)(єN)
±,≤h) is naturally an O(ΩN)-module that is a lo-

cally free in a suitable neighbourhood of any arithmetic

κ ∈ N>h/nσ−1
r ,N (resp. κ ∈ N>h/nσ−1

r ,єN ≃ N>h/nσ−1
r )

(see Remark 2.4).

10 Abstract Eigenvarieties

Suppose that M is a ûnitely generatedmodule over a noetherian ring A and that T =

TM ⊂ EndAM is a commutative A-subalgebra, automatically ûnitely generated over
A. For every (commutative) A-algebra R, we can consider the canonical morphisms
of R -algebras

R ⊗A T Ð→ R ⊗A EndR M Ð→ EndR(R ⊗A M).

We set

TR ∶= R ⊗A T , MR ∶= R ⊗A M ,

TR ∶= im (TR → EndR(R ⊗A M)) , KR ∶= ker (TR ↠ TR) ,

and deûne dual modules

D(R) ∶= HomA−alg(T , R) = HomR−alg(TR , R), D(R) ∶= HomR−alg(TR , R).
If λ ∈D(R), we deûne

Mλ = MR ,λ ∶= {m ∈ MR ∶ tm = λ(t)mfor all t ∈ TR}

= ⋂

t∈TR

ker ( t − λ(t)∶MR → MR) .
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Elements of the set
E(R) ∶= { λ ∈D(R) ∶ Mλ /= 0}

are called systems of eigenvalues occurring in MR .

Lemma 10.1 _e following facts hold:
(i) If R is a �at A-algebra, then TR = TR .
(ii) If R = A/a is a quotient of A, then (KA/a)

d
= 0, with d = dM depending only on

the A-moduleM.
(iii) _e identity E(R) =D(R) holds under either of the following conditions:

● R = K is a ûeld.
● M is a �at A-module and R is an integral domain.

Proof (i) Since M is ûnitely presented and R is A-�at,

R ⊗A EndR M = EndR(R ⊗A M).

Furthermore, since R is a �at A-algebra, the inclusion T ⊂ EndR M induces an inclu-
sion R ⊗A T ⊂ R ⊗A EndR M.

(ii)When R = A/a, we have TR = T/aT andMR = M/aM. Suppose that t ∈ T/aT
is zero in EndA/a(M/aM) and let t ∈ T be a li� of t. To say that the image of t
is zero means that tM ⊂ aM. Suppose that M is generated by d elements. Since
t ∈ T ⊂ EndR M, Nakayama’s Lemma implies that the relation

td + a1 td−1
+ ⋅ ⋅ ⋅ + ad−1 t + ad with a i ∈ a

i
⊂ a

holds inEndR M. In particular, td ∈ aT and td = 0 inTR . In otherwords, (KA/a)d = 0.
(iii) If R is a ûeld, then MR is R-torsion free. Similarly, if R is A-�at, then MR is

R-�at and, hence, R-torsion free. Suppose that λ ∈ E(R). We ûrst claim that λ∶TR →

R factors through TR . To see this, choose t ∈ KR and a nonzero m ∈ Mλ . _en
0 = tm = λ(t)m, implying λ(t) = 0 by the R-torsion freeness of MR . _us, λ factors
through TR = TR/KR , showing that E(R) ⊂D(R).

Let K be the fraction ûeld of R. Since MR is R-torsion free, MR ⊂ MK . _e inclu-
sion R ⊂ K and the identiûcation K ⊗R TR = TK yield

D(R) = HomR−alg(TR , R) ⊂ HomR−alg(TR ,K) ⊂ HomR−alg(TR ,K)

= HomK−alg(TK ,K).

Let λ ∈D(R) andwrite λ again to denote its image inHomK−alg(TK ,K). Suppose that
MK ,λ /= 0 and choose a nonzero element x ∈ MK ,λ . Writing x = m/s with m ∈ MR
and 0 /= s ∈ R, it easily follows that m ∈ MR ,λ . _en 0 /= m = sx ∈ MR is such
that tm = λ(t)m for every t ∈ TR . _us, it suõces to prove that, given a K-algebra
T ⊂ EndK(M) acting on a ûnite dimensional K-vector space M and a K-algebra
homomorphism λ∶T → K, we must have Mλ /= 0. Being a commutative Artinian
algebra over a ûeld, we can write T = ⊕m Tm as the direct sum of its localizations at
maximal ideals. _ere is a corresponding T-module decomposition M = ⊕m Mm.
Let m = ker λ, so that λ factors through Tm. Since T ⊂ EndK(M), the equality Mm =

mMm (yielding Mm = 0 by Nakayama’s Lemma) would imply Tm = 0. Hence, we
have mM m ⫋ Mm and there is aminimal n = nm such that mn+1Mm = 0. _e action
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of Tm on 0 /= mnMm ⊂ M factors through λ and any non-zero x ∈ mnMm yields an
eigenvector such that tx = λ(t)x.

Remark 10.2 Suppose that R is an A-algebra that is the composition ofmorphisms
as in Lemma 10.1(i) and (ii) taken in any order. It is easily checked, using Lemma
10.1(i) and (ii), that KdR = 0 with d = dM depending only on M as an A-module.

Let p be a prime ideal of A and set k(p) = Ap/pAp.

Proposition 10.3 Suppose that R = k(p) ∶= Ap/App is a residue ûeld at p ∈ Spec(A)
or that M is a �at A-module and that R is an integral domain such that the A-algebra
structure on R is the composition of morphisms as in Lemma 10.1(i) and (ii) taken in
any order. _en E(R) =D(R).

Proof If R = k(p) is a residue ûeld at p ∈ Spec(A), then A → Ap → k(p) is the
composition of a morphism as in Lemma 10.1(i) followed by a morphism as in (ii).
_erefore TR → TR has nilpotent kernel in both cases (Remark 10.2). Since R is
reduced,D(R) =D(R) and, by Lemma 10.1(iii),D(R) = E(R).

Write f ∶A → T for the structural morphism, and let R = k(p) with its natural
A-module structure. _en Tk(p) = Tp/pTp and Mk(p) = Mp/pMp. _e maximal
ideals of Tk(p) are in natural bijection with the primes P ∈ Spec(T) such that p =

f −1
(P). We can write Tk(p) as the product of its localization at maximal ideals

Tk(p) = ⊕

f −1(P)=p
Tk(p),P .

_ere is a corresponding Tk(p)-module decomposition

Mk(p) = ⊕

f −1(P)=p
Mk(p),P .

Note also that, byRemark 10.2, themaximal ideals of T k(p) are in bijectionwith those
of Tk(p). In particular, we can also write

T k(p) = ⊕

f −1(P)=p
T k(p),P ,

where, abusing notation, we denote by T k(p),P the localization of T k(p) at the prime
corresponding to P. Of course, Tk(p),P surjects onto

T k(p),P ⊂ Endk(p)(Mk(p),P),

and the residue ûelds of Tk(p),P and T k(p),P are identiûed with k(P) ∶= TP/TPP.
Suppose that Tk(p) acts semisimply on Mk(p),P, i.e., T k(p),P = k(P) is a ûeld.

_en Mk(p),P = MP/PMP and

(10.1) dimk(p)(Mk(p),P) = [ k(P) ∶k(p)] dimk(P)(MP/PMP).

_e following notion is useful in studying the ramiûcation of themap Ap → TP.

Deûnition 10.4 P ∈ Spec(T) is said to be amultiplicity-one point when T k(p),P =

k(P) is separable over k(p) and dimk(p)(Mk(p),P) = [k(P) ∶ k(p)].
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Proposition 10.5 If Ap → TP is unramiûed, then T k(p),P = k(P) is a separable
k(p)-algebra. Conversely, ifP ∈ Spec(T) is amultiplicity-one point, then Ap → TP is
unramiûed.

Proof Note that T ⊂ EndT(M), and M is ûnitely presented, so TP ⊂ EndTP
(MP).

By Nakayama’s Lemma, MP can be generated by

dP/p ∶= dimk(P)(MP/PMP)

elements (as a TP-module). Set

KP/p ∶= ker(Tk(p),P → T k(p),P).

_e proof of Lemma 10.1(ii) with (A, a, T ,M) = (TP , pTP , TP ,MP) shows that
K
dP/p
P/p

= 0.
To say that Ap → TP is unramiûed is to say that Tk(p),P = k(P) is a separable

k(p)-algebra, so T k(p),P = Tk(p),P is a separable k(p)-algebra. Conversely, let P be
a multiplicity one point. By (10.1), dP/p = 1, so that Tk(p),P = T k(p),P = k(P) is
separable over k(p).

Remark 10.6 Suppose R = k(p) so that E(k(p)) = D(k(p)) (Proposition 10.3).
If λ ∈ D(k(p)), then Mλ /= 0 and Pλ ∶= ker(λ) is a prime ideal of Spec(T) such
that p = f −1

(Pλ). Since λ∶Tk(p) → k(p) is a morphism of k(p)-algebras, we have
k(Pλ) = k(p). Furthermore, Mk(p),Pλ = Mλ (see the end of the proof of Lemma
10.1(iii)) and to say that Pλ is a multiplicity one point is equivalent to saying that
dimk(p)(Mλ) = 1.

Suppose now that X is a locally Noetherian rigid analytic space, M is a coherent
sheaf of OX-modules, and T is a sheaf of commutative subalgebras of EndOX M. De-
ûne

(C w
Ð→ X) = SpOX

T .

Let XM-fl (resp. XT-fl) be the maximal subspace of X such that M∣XM-fl is a sheaf of
�atOXM-fl -modules (resp. T ∣XT-fl is a sheaf of �at, commutativeOXT-fl -algebras). _en
XM-fl, XT-fl, and Xfl

∶= XM-fl
∩ XT-fl are open in X. Setting C∗-fl = SpOX∗-fl

T ∣X∗-fl ,
for ∗ = M, T , or nothing, we have a canonical isomorphism C∗-fl = C ×X X∗-fl , and
w restricts to a ûnite, �at map C∗-fl → X∗-fl.

Corollary 10.7
(i) _e formation of the covers w∶C → X and w∶C∗-fl → X∗-fl commute with �at

base change Y → X.
(ii) If x ∈ X(k(x)), then there is a canonical bijection between points of the ûbre

Cx(k(x)) and the set of systems of Tk(x)-eigenvalues occuring in Mk(x).
(iii) If Ω = SpR ⊂ XM-fl is an aõnoid and R is an integral domain, then there is a

canonical bijection between the set of sections s ∶ Ω → CM-fl of w and the set of systems
of T(Ω)-eigenvalues occuring in M(Ω).

(iv) If y ∈ C (resp. y ∈ CT-fl) is amultiplicity-one point, then w is unramiûed (resp.
étale) at y.
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(v) Let x ∈ Xfl and let y ∈ Cflx (k(x)) be a multiplicity-one point such that w is
integral in a neighbourhood of y. Let λy be the system of Tk(x)-eigenvalues occuring in
Mk(x) associated with y by (ii). _en:
● _ere is an aõnoid neighbourhood Ω = SpR of x and a unique section s∶Ω → Cfl of
w such that s(x) = y.

● If λs is the system of T(Ω)-eigenvalues occuring in M(Ω) corresponding to s by (iii),
then λy is equal to the composite

T(Ω)
λs
Ð→ R x

Ð→ k(x),

and λs is the only system of T(Ω)-eigenvalues with this property.
● _e eigenspaceM(Ω)λs ⊂ M(Ω) is a free R-module of rank one.

Proof Part (i) follows from Lemma 10.1(i). Parts (ii) and (iii) are consequences of
Proposition 10.3. In (iv) we just have to prove that themorphism is unramiûed, since
w∶CT-fl

→ XT-fl is �at by construction. To see (iv), let y ∈ C i , let A i → Ti be the
morphism induced by w, and let A i ,x → Ti ,y be its localization. _is localization
is unramiûed by Proposition 10.5 and induces OX ,x → OC ,y on the completions by
[5, p. 298 Prop. 3]. Hence, OX ,x → OC ,y is unramiûed. _e existence and uniqueness
of s in (v) follows from the étaleness of w at y (which is (iv)). It also follows from
(ii) and (iii) that this is equivalent to the existence and uniqueness of a system of
eigenvalues λs having the required property.

10.1 Maps Between Eigenvarieties

Let (Th ,Mh
), with h = 1, 2, be two pairs with Mh a coherent sheaf of locally free

OX-modules and Th
⊂ EndOX Mh a coherent subsheaf of locally free commutative

OX-subalgebras. We assume that there exists a commutative ring T and a cover X =

⋃i Ω i by open aõnoids such that, for every i, there exists a surjective homomorphism
of O(Ω i)-algebras O(Ω i)⊗Z T↠ Th

(Ω i). We set (Ch w
Ð→X) = SpOX

Th .

Deûnition 10.8 A subset Z ⊂ X is called Zariski dense if, whenever Z ⊂ Y ⊂ X and
Y is an analytic subset, we have Y = X and if,moreover, the same property holds for
Z ∩Ω ⊂ Ω when restricting to an open aõnoid subdomain Ω ⊂ X.

If t ∈ T and x ∈ X, we let thx be the natural image of t in T
h
k(x) ⊂ Endk(x)(Mh

k(x)).
We leave the proof of the following proposition, an adaptation of [6], to the reader.

Proposition 10.9 Suppose the Jacobson sheaf of ideals of OX is trivial. Let Z ⊂ X be
a Zariski dense subset such that, for every x ∈ Z and t ∈ T,

det(T − t2x) divides det(T − t1x).
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in the polynomial ring k(x)[T]. _en there is a unique closed immersion C2
red → C1

red
of rigid analytic spaces over X such that the diagram

OX(Ω)⊗Z T

�� &&
T 1

(Ω)red // T2
(Ω)red

commutes for every open aõnoid Ω.

11 The Case of Shimura Curves

Let h > 0. We continue working with theHecke pair

(Γ, Σ) = (ΓD(prM ,N), ΣD(prMN , 1)) .
By _eorem 6.14, we can ûnd an admissible cover

X =⋃

i
Ω i , Ω i = SpR i

by open aõnoids such that the spaces H1
(Γ,DΩ i ) admit slope ≤ h decompositions

with respect to Up . As explained at the end of Section 9, H1
(Γ,DΩ i ) is naturally an

O(Ω i ,N), where Ω i ,N is the inverse image of Ω i in XN and, by Remark 2.4,

XN =⋃

i
Ω i ,N , Ω i ,N = SpR i ,N ,

is an admissible cover. Set

M i ∶= H1
(Γ,DΩ i )

≤h ,

Ti = TDR i ,N
(prM ,N)

≤h
= im (TDR i ,N

(prM ,N)Ð→ EndR i ,N (M i)) .

Proposition 11.1
(i) _e correspondence Ω i ,N ↦ M i extends to a coherent sheafM of OXN -modules.
(ii) _e correspondence Ω i ,N ↦ Ti extends to a coherent sheaf T ⊂ EndOXN

M of
commutative OXN -algebras.

Proof _e glueing conditions [5, S9.3.3] follow directly from the compatibility of the
formation of slope ≤ h decompositions with �at base change and Lemma 10.1(i).

Deûnition 11.2 _e rigid analytic space

CDr (M ,N)
≤h
∶= SpOXN

T

is called the slope ≤ h eigencurve associated with the Hecke pair (Γ, Σ). It comes
equipped with a ûnite weight map

wt∶CDr (M ,N)
≤h
Ð→ XN Ð→ X.

Replacing themodules H1
(Γ,DΩ i )

≤h with themodules H1
(Γ,DΩ i )(єN)

±,≤h and
assuming that E ⊃ µN , we ûnd in a similar way that

wt∶CDr (M , єN)
±,≤h

Ð→ XєN ≃ X,
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and we have, over E ⊃ µN ,

wt∶CDr (M ,N)
≤h

= ⊔

єN∈∆N ,ε∈{±1}
CDr (M , єN)

ε ,≤h
Ð→ ⊔

єN∈∆N

XєN = XN .

_e following result is now a consequence of_eorem 9.3 and Corollary 10.7.

Corollary 11.3 If κ = (k, єp , єN) ∈ N>h−1
r ,N (resp. κ = (k, єp , єN) ∈ N>h−1

r ,єN ≃ N>h−1
r ),

the set of E-points of the ûber of CDr (M ,N)
≤h (resp. CDr (M ,N)

ε ,≤h) is in a natu-
ral bijection with the E-systems of Hecke eigenvalues occurring in H1

(Γ,Vk{єp})≤h

(resp. H1
(Γ,Vk{єp})(єN)

ε ,≤h
= H1

(Γ,Vk{єpє−1
N })

ε ,≤h).

We give the following concrete application of Corollary 10.7.

Corollary 11.4 (Existence of cohomological p-adic families) Let κ = (k, єp , єN) ∈

Nr ,N be an arithmetic weight. Suppose ϕ ∈ H1
(Γ,Vk{єp})≤h is a nonzero Hecke eigen-

vector with associated system of eigenvalues λϕ ∶T(Σ, Γ) → E. Suppose, further, that
one of the following conditions is satisûed:
(i) ordp(λϕ(Up)) < k + 1 and dimE H1

(ΓD0 (prN),Vk(E){εp})λϕ = 1.
(ii) r = 1 and ϕ is an MN-new cuspidal eigenvector, ordp(λϕ(Up)) < k + 1 and

λϕ(Up)
2
/= λϕ(⟨p⟩)pk+1.

_en there exists an open E-aõnoid neighbourhood ΩN ⊂ XN of κ such that
H1

(Γ,DΩ)
≤h is a free O(ΩN)-module of ûnite rank, and there exists an Hecke eigen-

vector Φ ∈ H1
(Γ,DΩ)

≤h such that the following hold:
(i) ρκ(Φ) = ϕwhere ρκ is as in (9.7). IfΦ′

∈ H1
(Γ,DΩ)

≤h anotherHecke eigenvector
with ρκ(Φ′

) = ϕ, then Φ′
= αΦ with α ∈ O(ΩN) such that α(κ) = 1.

(ii) If λΦ is the system ofHecke eigenvalues attached to Φ, then H1
(Γ,DΩ)

≤h
λΦ

is a free
O(Ω)-module and

rankO(Ω) H1
(Γ,DΩ)

≤h
λΦ

= 1.

(iii) If κ′ = (k′ , є′p , є′N) is an arithmetic weight such that κ′ ∈ Ω and k′ > h − 1, then
ρκ′(Φ) /= 0.

Remark 11.5 Note that, ϕ being an eigenvector,we have ϕ ∈ H1
(Γ,Vk{єp})(єN)

ε ,≤h

for some (єN , ε) and λϕ(⟨p⟩) = єN(p). _en

H1
(Γ,Vk(E){єp})≤h

λϕ
= H1

(Γ,Vk(E){єp})(єN)
ε ,≤h
λϕ

,

H1
(Γ,DΩ)

≤h
λΦ

= H1
(Γ,DΩ)(єN)

ε ,≤h
λΦ

.

Furthermore, λϕ satisûes the second property in Corollary 11.4 if, e.g., ϕ is cuspidal
and MNp-new or is a p-stabilization of an N-new cusp form with slope ≤ h.

Proof If r = 1 and ϕ ∈ H1
(Γ,Vk{єp}) =∶ H is an MN-new cuspidal eigenvector such

that λϕ(Up)
2
/= λϕ(⟨p⟩)pk+1, then dimE Hλϕ = 1 as explained in [7, B.5.7.1].

Now let r ≥ 1 be arbitrary. Assume that dimE Hλϕ = 1 and that ordp(λϕ(Up)) <
k + 1. _en ϕ gives rise to a point over E and, by Remark 10.6, λϕ corresponds to
a multiplicity one point. By Corollary 10.7(v), there is a li� λΦ of λϕ occurring in
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H1
(Γ,DΩ)

≤h . Let 0 /= Φ ∈ H1
(Γ,DΩ)

≤h be a corresponding eigenvector. Since
dimE Hλϕ = 1, we can assume that ρκ(Φ) = ϕ, scaling Φ if necessary. It follows
from Corollary 10.7(v) that H1

(Γ,DΩ)
≤h
λΦ

is free of rank one. _at Φ′
= αΦ when Φ′

is another eigenvector li�ing ϕ easily follows from (9.7).
Let e be a basis element of H1

(Γ,DΩ)
≤h
λΦ
, so that Φ = αe for some α ∈ O(Ω)

with α(k, єp) /= 0. By theWeierstrass Preparation _eorem we can assume that α ∈

O(Ω)
× a�er shrinking Ω in an aõnoid neighbourhood of (k, єp). _en ρκ′(Φ) =

α(k′ , є′p)ρκ′(e) /= 0, because ρκ′(e) /= 0 by (9.7).

In the next section we will focus for simplicity on the case r = 1, and we will write
C = Cr . If C≤h is one of the curves CD(M ,N)

ε ,≤h or CD(M , єN)
ε ,≤h we will write

C≤h ,∗-fl
/X∗-fl

N to denote the corresponding �at loci. We remark that, since the weight
space XN is covered by open aõnoid domains Ω = SpR such that R is a principal
ideal domain, we have

C≤h ,fl
/Xfl

N = C≤h ,M-fl
/XM-fl

N ⊂ C≤h ,T-fl
/XT-fl

N ⊂ C≤h
/XN

for our eigencurves.

12 p-adic Jacquet–Langlands Correspondences

12.1 The Eigencurves of Coleman–Mazur and Buzzard

_e following theorem, summarizing the construction of eigencurves parametrizing
systems of Hecke eigenvalues occurring in spaces of overconvergent p-adicmodular
forms, is the outgrowth of Coleman’s theory of orthonormalizable p-adic Banach al-
gebras and his corresponding functional analytic study of spaces of overconvergent
modular forms over aõnoids.

_eorem 12.1 (Coleman–Mazur, Buzzard)
(i) _ere is an admissible, open, aõnoid cover of X = ⋃Ω i such that the spaces

M i ∶= S†Ω i
(Γ0(MD) ∩ Γ1(N))

D-new

of D-new p-adic families of overconvergent cusp forms over Ω i admit slope ≤ h decom-
positions

S†Ω i
(Γ0(MD) ∩ Γ1(N))

D-new
=

S†Ω i
(Γ0(MD) ∩ Γ1(N))

D-new,≤h
⊕ S†Ω i

(Γ0(MD) ∩ Γ1(N))
D-new,>h

with respect to Up such M i ∶= S†Ω i
(Γ0(MD) ∩ Γ1(N))

D-new,≤h is an R i ,N = Sp(Ω i ,N)-
module of ûnite rank, Ω i ,N being inverse image of Ω i in XN .

(ii) Let

Ti = T 1
R i ,N

(pMD,N)
D-new,≤h

= im (TR i ,N (Γ
1
(pMD,N), Σ1

+(pMND, 1)) Ð→ EndR i ,N (M i)) .

_en the correspondenceΩ i ,N ↦ Ti extends to a coherent sheaf T of commutativeOXN -
algebras.
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(iii) _e slope ≤ h Coleman–Mazur–Buzzard eigencurve

CCMB(MD,N)
D-new,≤h

∶= SpOXN
T

comes equipped with a ûnite, �at weight map

wt∶CCMB(MD,N)
D-new,≤h

Ð→ XN Ð→ X.

When D = 1, we abbreviate this to CCMB(MD,N)
≤h . In a similar way, one

can consider, for an admissible cover X = ⋃i Ω i by open aõnoids Ω i , the spaces
M†

Ω i
(MD,N) of p-adic families of overconvergent p-adic (not necessarily cuspidal)

modular forms. A similar construction applies, giving rise to a weight map

wt∶MCMB(MD,N)
≤h
Ð→ XN Ð→ X.

When E ⊃ µN , we can deûne the єN -components

CCMB(MD, єN)
≤h and MCMB(MD, єN)

≤h

for єN ∈ ∆N and the above curves decomposes as the disjoint union of these
єN -eigencurves.

We apply Proposition 10.9 as follows. _anks to _eorem 9.3 (see also the dis-
cussion at the end of Section 9) we know that N1,N ⊂ Xfl

N , where Xfl
N = Xfl

N ,h ,M ,D
is the �at locus deûned by any one of the eigencurves CD(M ,N)

±,≤h
/XN , depend-

ing on h, M, and D. Let h > 0 and let Z ∶= N>h−1
1,N . _en Z ∩ Ω ⊂ Ω is inû-

nite for every open aõnoid Ω ⊂ Xfl
N . Since OXN (Ω) is a principal ideal domain,

an easy application of the Weierstrass Preparation _eorem shows that Z ⊂ Xfl
N is

Zariski dense. Let CCMB(MD,N)
D-new,≤h ,fl

/Xfl
N (resp. MCMB(MD,N)

≤h ,fl
/Xfl

N ) be
the pull-back of CCMB(MD,N)

D-new,≤h
/XN (resp. MCMB(MD,N)

≤h
/XN ) to this

�at locus. By construction, the conditions required for the application of Propo-
sition 10.9 are fulûlled over Xfl

N . More precisely, take T ∶= T1
(pMD,N), so that

OXN (Ω)⊗Z T = T1
OXN (Ω)

(pMD,N). We have the following surjections.

(a) By deûnition,

OXN (Ω)⊗Z T↠ T 1
OXN (Ω)(pMD,N)

D-new,≤h .

(b) Let kΩ ∶Z×p,N → OXN (Ω)
× be the weight corresponding to Ω ⊂ XN . Noticing

that kΩ(l) ∈ OXN (Ω)
× and that W2

l = kΩ(l) on H i
(ΓD(pM ,N),DΩ) because

π2
l = l andDΩ has central character kΩ for every l ∣ D, we have

OXN (Ω)⊗Z T↠
T1
OXN (Ω)

(pMD,N)

(T2
l − kΩ(l)∶ l ∣ D)

jD ,1

→

T1
OXN (Ω)

(pMD,N)

(W2
l − kΩ(l)∶ l ∣ D)

↠ TD(pM ,N)
≤h ,

where the isomorphism jD ,1 is given by (7.1).
Suppose ûrst that D /= 1. _e comparison _eorem 9.3, togetherwith analogous com-
parison results for the Coleman-Mazur-Buzzard eigencurve CCMB(MD,N)

D-new,≤h

imply that the ûbers over (k, єp , єN) ∈ Z are identiûed, respectively, with

H1
(ΓD(pM ,N),Vk(E))(є−1

p єN)
±,≤h and Sk+2(Γ1

(pMD,N), E)(є−1
p єN)

D-new,≤h .
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By the Jacquet–Langlands correspondence, they are isomorphic as T-modules and
Proposition 10.9 applies. Suppose now that D = 1. In this case, we replace
CCMB(MD,N)

≤h withMCMB(MD,N)
≤h to take into account the presence of Eisen-

stein cohomology in the ûber of CD(M ,N)
±,≤h over (k, єp , єN). _en we replace the

Jacquet–Langlands correspondence with the Eichler–Shimura isomorphism. Sum-
marizing, we have proved the following result.

_eorem 12.2 If D /= 1, there is a canonical XflN = X
fl
N ,h ,M ,D-isomorphism of rigid

analytic spaces

CD(M ,N)
±,≤h ,fl
red ≃ CCMB(MD,N)

D-new,≤h ,fl
red ,

CD(M , єN)
±,≤h ,fl
red ≃ CCMB(MD, єN)

D-new,≤h ,fl
red .

If D = 1 there is a canonical XflN -isomorphism of rigid analytic spaces

C1
(M ,N)

±,≤h ,fl
red ≃MCMB(MD,N)

≤h ,fl
red , C1

(M , єN)
±,≤h ,fl
red ≃MCMB(MD, єN)

≤h ,fl
red .

As a concrete manifestation of the Jacquet–Langlands correspondence stated in
_eorem 12.2, we give the following result.

Corollary 12.3 Let F(q) = ∑n≥1 anqn
∈ S†Ω(MD, єN)

D-new,≤h be a D-new Ω-eigen-
family of cuspidal forms with system of eigenvalues λF such that D is squarefree and
divisible by an even numer of primes. Set Ωfl

∶= Ω ∩X
fl
N , where XflN = X

fl
N ,h ,M ,D . _ere

exists and eigenfamily Φ ∈ H1
(ΓD(pM ,N),DΩfl)(єN)

±,≤h with system of eigenvalues
λΦ = λF.

Proof We assume D /= 1 for simplicity. Since Ωfl is reduced,

CD(M , єN)
±,≤h ,fl

(Ωfl
) = CD(M , єN)

±,≤h ,fl
red (Ωfl

),

CCMB(MD, єN)
D-new,≤h

(Ωfl
) = CCMB(MD, єN)

D-new,≤h
red (Ωfl

).

Hence, by _eorem 12.2,

CD(M , єN)
±,≤h ,fl

(Ωfl
) = CCMB(MD, єN)

D-new,≤h
(Ωfl

).

_e eigenvalue λF gives rise to a section of the weight map, hence an Ωfl-point in
CCMB(MD, єN)

D-new,≤h
(Ωfl

). _e claim follows from Corollary 10.7(v).

12.2 Moving Between Cohomological Families

Suppose D = D′M′ is a factorization of D with D′ divisible by an even number of
primes. By our running assumption that D is squarefree, D′ is too and (D′ ,M′

) = 1.
We consider the groups/semigroups:

Γ = ΓD(pM ,N), Γ′ = ΓD
′
(pMM′ ,N),

Σ = ΣD(pMN , 1), Σ′ = ΣD
′
(pMM′N , 1).
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Let CD
′
(MM′ ,N)

M′-new,≤h
→ XN be the eigencurve obtained from the procedure

described in Section 11 with H1
(Γ′ ,DΩ i )

M′-new,≤h and

TR i ,N (pMM′ ,N)
M′-new,≤h

∶= im(TR i ,N (pMN ′ ,N)→ EndR i ,N H1
(Γ′ ,DΩ i )

M′-new

in place of H1
(Γ′ ,DΩ i )

≤h and TR i ,N (pMM′ ,N)
≤h , respectively. Take

T ∶= TD
′
(pMM′ ,N)

so that OXN (Ω)⊗Z T = TD
′

OXN (Ω)
(pMM′ ,N). We have the following surjections.

(a) By deûnition,

OXN (Ω)⊗Z T↠ T 1
OXN (Ω)(pMM′ ,N)

M′-new,≤h .

(b) Let kΩ ∶Z×p,N → OXN (Ω)
× be the weight corresponding to Ω ⊂ XN . As above we

have

OXN (Ω)⊗Z T↠
TD

′
OXN (Ω)

(pMM′ ,N)

(T2
l − kΩ(l)∶ l ∣ M′

)

jD ,D′

Ð→

TDOXN (Ω)
(pM ,N)

(W2
l − kΩ(l)∶ l ∣ M′

)

↠ TD(pM ,N)
≤h ,

where the isomorphism jD ,D
′
is given by (7.1).

Let Xfl
N be the intersection of the �at loci deûned by the eigencurves CD(M ,N)

≤h

and CD
′
(MM′ ,N)

M′-new,≤h , depending on (h,N ,M ,M′ ,D,D′) and containing the
arithmetic weights N>h−1

1,N . _e following p-adic Jacquet–Langlands correspondence
now follows from Proposition 10.9 and the above discussion.

_eorem 12.4 _ere is a canonical XflN -isomorphism of rigid analytic spaces

CD(M ,N)
≤hfl

≃ CD
′
(MM′ ,N)

M′-new,≤h ,fl .
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