A problem of Hanna Neumann on closed sets of group words

L.G. Kovács and M.R. Vaughan-Lee

Abstract

In Problem 1 of her book Varieties of groups, Hanna Neumann asked whether a fully invariant subsemigroup of a free group of infinite rank is necessarily a subgroup. This note presents an example which shows that the answer is negative.

Notation and terminology follow Hanna Neumann's book [1].
Let $\{g, h\}$ be a free generating set of the free group G of rank 2 in the variety \underline{N}_{6} of all nilpotent groups of class at most 6 , and let $u=[[h, g, g, g],[h, g]]$. Note that, with the obvious order on the given free generating set, u is a basic commutator. A routine calculation shows that if the image of u under an arbitrary endomorphism of G is expressed in terms of basic commutators, in this expression u itself will occur with square exponent (and, of course, only commutators of weight 6 occur with nonzero exponent). Consequently, in the basic commutator expression of a product of endomorphic images of u the exponent of u is nonnegative, and so u^{-1} is not such a product.

It follows that if $v=\left[\left[x_{2}, x_{1}, x_{1}, x_{1}\right],\left[x_{2}, x_{1}\right]\right]$ in x_{∞}, then U^{-1} does not lie in the (fully invariant) subsemigroup of X_{∞} generated by the images of v under the endomorphisms of X_{∞}. This answers Problem 1 of Hanna Neumann's book [1] in the negative.

We are grateful to Professor B.H. Neumann for pointing out that a
variant of this example settles a question which had been put to him by Professor Graham Higman in July 1958. Namely, let H denote the factor group of G over the (central) subgroup generated by the basic commutators of weight 6 other than u, and let h denote the image of u in H : then all values of v in H are of the form $h^{n^{2}}$. As a finitely generated torsionfree nilpotent group, H can be fully ordered; do this so that $h>1$. Now $v \phi \geq 1$ for every value $v \phi$ of v in H, and of course $v \phi=h \neq 1$ for a suitable substitution ϕ. The question was whether any word could be nontrivially semi-definite on any ordered group, in the sense in which v is on H.

Reference

[1] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).

Institute of Advances Studies, Australian National University, Canberra, ACT, and

Department of Mathematics, University of Queensland, St Lucia, Queensland.

