GREEN POTENTIAL OF EVANS TYPE ON ROYDEN’S
COMPACTIFICATION OF A RIEMANN SURFACE
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Introduction

1. Let R be a hyperbolic Riemann surface and g“(z) be the Green function
on R with its pole w in R. We denote by % (R) the totality of sequences

(zn)7 -1 of points in R not accumulating in R and
lim infpae €°(24) >0.

Clearly the family % (R) is independent of the special choice of the pole w
and so .Z(R) is determined completely by the structure of R. We say that
R is regular (resp. frregular) if Z(R) =4 (resp. Z (R)x#). It is well re-
cognized that for many problems, regular hyperbolic Riemann surfaces are more
manageable than irregular ones. Hence it is important to provide tools to
eliminate the irregularity in some sense. The main pourpose of this paper is

to show the following”

TueoreM 1. On any irregular hyperbolic Riemann surface R, there exists
a positive harmonic function u(z) satisfying the following three properties:

(1) #(2) is an Evans function on R, i.e. lims,e u(24) = © for any sequence
(2n) 7-1 belonging to the class % (R);

(2) u(2) is quasi Dirichlet finite of the first order, i.e. there exists a finite
Dositive constant K such that Dr(min(«(z), ¢))<Kc for any poitive number c;

(3) u(2) is singular, i.e. the greatest harmonic minorant of min(u(z), ¢) on

R is identically zero for any positive number c.

Here we make a remark to the property (1). Let (Rs)7-1be a normal ex-
haustion of I and set Ry=#. For a positive number a and a point w in R
and a non-negative integer », we set
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1) We published an outline of a part of this paper in [9]. We also published some
results closely related to this paper in [8] and [10].
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Viw,a,n)=zeR; g°(z)>a)-R, @®=012...).
Then the property (1) is equivalent to the following property :

(1) limp,» inf(#(2); z€ V(w, a, n)) = o for any (w, @) such that V(w, a,0)

is not a compact set in R.

In fact, let (2,)7-; be in <Z(R). Then there exists a positive integer 7(m)
such that (2;)j-n(m, is contained in V(w, 27! lim infe,. g“(zx), m) for any po-
sitive integer m. From this, it follows that (1') implies (1). Convrsely, assume
that (1) holds. If (1’) is not true for some (w, @) with non-compact V(w, a, 0),
then there exists a sequence (z.)s-: of points in R such that there exists an
increasing sequence (k.)n-1 of positive integers with z,€ V(w, a, ks) and
(#(2n))n=1 is bounded. Clearly (z.)n-1 belongs to -4 (R) and so the bounded-
ness of (u(z,))n-1 contradicts (1).

2. Let R' be a parabolic Riemann surface and (Ry)7-o be a normal ex-
haustion of R’ such that R; is a disc (z; |z|<1). Applying Theorem 1 to the
hyperbolic Riemann surface R= R' — R; which is clearly irregular, we get a
positive harmonic function #(z) on R satisfying (1). Let g“(z) be Green’s
function on R=R' — R, with its pole w in R. Then, since R' is parabolic,
inf(g°(z); ze R'— R!)>0. Hence from (1), it follows that

lingse inf(#(2); 2€ R — Ry) = .

This is equivalent to that % = o continuously at the Alexandroff point of R'.
Modifying #, it may be assumed that

(3" #(z) =0 continuously at each point of oRi,

From this (3) follows, since R’ is parabolic. We must remark that in the
present case, without assuming (2), properties (1) and (3') implies the more
precise properties than (2). In fact, for any ¢>0, since (z€ R; u(z)<c) is

closure compact in R’ and j *du=5 *du, we get
3Ry’ U=c

Dr(min(z, ¢)) =§

Ry’ U (#=C)

%7 * g *
u du—j“=cc du (SaR,,' du)c.

Now by multiplying a suitable positive constant, we may assumej *du=2m.
oR,’

Let

https://doi.org/10.1017/5S0027763000011417 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011417

GREEN POTENTIAL OF EVANS TYPE 207

u(2) on R'— R{;

ste) = { —-gl(z) on R,

where g’ (z) is the Green function in Ry with its pole w in R;. Then since

f *ds =0,
9Ry+0(R—Ry)

the equation L(k —s) =h —s, where L is a normal linear operator of Sario [13],
has a solution on R’ which is harmonic in R — (w) and has the same singularity
as s(z) at w and the Alexandroff point of R. Hence h(z) has the negative
logarithmic pole at w and % = o continuously at the Alexandorff point of R'.
This k(z) is the so called Evans-Selberg’s potential on R'. Hence Theorem 1
contains generalized Evans-Selberg’s theorem (see Evans [2], Selberg [14],
Noshiro [12], Kuramochi [3], Nakai [8]).

3. Theorem 1 is a consequence of a more precise facts as mentioned below.
Let R be a hyperbolic Riemann surface and R* be its Royden’s compactification.
We denote by I'= R* — R, which is called Royden’s boundary of R. We denote
by 4 the totality of regular points in I" with respect to the Dirichlet problem,
which is called (Royden’s) harmonic boundary of R and 4=0 if and only if
R is hyperbolic. It will be seen that the Green function g“(z) on R can be
extended to the Green kernel g(p, ¢) on R* such that g(z, p) is finitely conti-
nuous in (2, ») of RxI" and g(z, w) =g"“(z) and as the function of z, g(z, p)
(p= R*) is a non-negative singular harmonic function on R— (p) and conti-

nuous on R*. We set

nn=@perl; gz, p)>0 on R),
which is an Fe-set in I and Iy # if and only if R is irregular.

THEOREM 2. Assume that R is an trregular hyperbolic Riemann surface.
Then there exists a unit positive regular Borel measure u on R* satisfying the
Sollowing six properties:

(4) there exists a sequence (qn)n-1 of points in I's such that p(R* — (gn)n=1)

=0, f.e. p= >\t eq;, where ;>0 and D1ti=1 and e, is a unit point measure
=1 1=1
at qi;
(5) gu(z) = gg(z, @)du(q) is a positive harmonic function on R;

(6) Dzr(min(gu.(2), ¢))<2nc for any positive number c;
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(7) g.(2) is continuous on R*,
(8) gu(p) = on Iy;
(9) gu(») =0 on 4.

4. In Chapter 1, we explain Royden’s compactification and some of its
fundamental properties. In Chapter 2, we define Green kernel on Royden’s
compactification and discuss its fundametal properties. In Chapter 3, we treat
transfinite diameters and modified Tychebycheff’'s constants for subsets of R*
with respect to Green kernel. In Chapter 4, we complete the proofs of Theo-

rems 1 and 2.

5. Here we explain some notations and terminologies used in this paper.
Functions (resp. continuous functions) on a space (resp. a topological space)
considered in this paper are assumed to be mappings (resp. continuous map-
pings) of the space into the completed real line [ — o, «]. For two numbers

or functions a and b, we denote
aNb=min(a, b) and aU b= max(a, b).

Let R be an open Riemann surface and R* be its Royden’s compactification
(see Section 1.1). For a subset A in R*, we denote by A (resp. A) the totality
of inner point of A (resp. the closure of A) considered in R*. For a set A
in R* we denote by 3A the boundary of A relative to R (and not to R¥), i.e.
9A=(A—-A)NR Hence2(ANR)=2A. A normal exhaustion (Rx)5-, of R is

a sequence of closure compact subdomains R, of R such that
Rn4-131—3n and R= URn
n=1

and R—R» (n=0,1,2,...) have no component which is closure compact in
R and R-— R, is connected and each 3R, consists of a finite number of mutually
disjoint analytic closed Jordan curves. If oR, consists of a finite number of
mutually disjont piece-wise analytic closed Jordan curves, then we say that
(R4)7%-1 is a normal exhaustion of R with piece-wise analytic boundary. Finally,
for two a.c.T functions f and g on an open set G in R (see Section 1.1), we
set Dirichlet inner product and Dirichlet integral by

Do(/,8) = [§ drn*dg and Do(s) = [{ arn*ar=[{ |grads(e) Paxay,

respectively, where z=x+1y is a local parameter on K. If there is no afraid
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of confusion, we simply write D(f, 2) and D(f) instead of Dq(f, g) and De(f)
respectively.

1. Royden’s compactification and some fundamental properties

1.1. A real vlaued function F(x,y) defined in (a, ) X (¢, d) is said to be
absolutely continuous in the sense of Tonelli (abreviated as a.c.T) if F is con-
tinuous and if for any fixed y in (¢, d) except a set of measure zero the function

x-> F(x,y) is absolutely continuous in the usual sense and the same is true if
x and y are interchanged and, further, 2% F(x,y) and a%F(x,y) are integrable in

any compact subset of (a, b) x (¢, d). Since this notion is conformally invariant,
this notion can be easily carried over Riemann surfaces using local parameters.

A (real) Royden’s algebra M(R) associated with a Riemann surface R is
the totality of real valued bounded continuous a.c.T functions f on R with
finite Dirichlet integrals Dx(y). This M(R) is a Banach algebra with the usual
algebraic operations and the norm || /|| = supr!| £ |+ vDz(f) ([5]).

A sequence (f»)7-1 of functions on R is said to converge to a function f
on R in C- (or D-) topology if f» converges to f uniformly on each compact
subset of R (or Dz(fn—f)-0), in notation f=C-limufn (or f= D-limufa).
We also say that (f»)5-: converges to f in B- (or BD-) topology if (fn)5n-1 is
bounded and converges to f in C-topology (or (fx)x-1 converges to f in B- and
D-topology), in notation f = B-limafs (or f = BD-lim, f,,). We remark that M(R)
is BD-complete ([5]).

We denote by My(R) the totality of functions in M(R) with compact support
in R. We also denote by Mai(R) the BD-closure of My(R) in M(R). Clearly
My(R) and M,(R) are ideals of M(R). We also remark that M,(R) is BD-
complete.

The Royden’s compactification R* of R is a unique compact Hausdorff space
containing R as its open and dense subset and each function can be continuously
extended to R* and M(R) separates points in R*. The set I'= R* — R is called
Royden's boundary of R ([5], [11). A part 4 of R* defined by

4= (pe R*; f(p) =0 for any f € MA(R))

is called the harmonic boundary of R. This set 4 is a compact subset of I
and 4= 9 if and only if R is hyperbolic ([6]). This set 4 is the totality of
regular points in I" with respect to Dirichlet problem ([7]). It holds the follow-
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ing duality ([6])
M,(R) = (f= M(R); f vanishes on 4).

1.2. For the application of Royden’s compactification, the following four
facts play the fundamental role. From the definition of a.c.T function, we
have the following ([6], p. 69 in [1]):

LemMma 1.2.1. The algebra M(R) forms a vector lattice with lattice oper-
ations f U g and fN g.

Since M(R) is a subalgebra of total algebra B(R™) of bounded continuous
functions on R* with M(R)=>1 and M(R) separates points in R*, by Weier-

strass-Stone’s approximation theorem, we get:

LemMma 1.2.2. The algebra M(R) is dense in B(R™*) with respect to the
uniform convergence topology on R*.

Lemma 1.2.3 (Kusunoki-Mori [51). Let U be a subdomain of R sunch that
UNd4d=0 and dU consists of at most countable number of mutually disjoint
analytic Jordan curves not ending and not accumulating in R. Then the double

U of U along oU is a compact or parabolic Riemann surface.

Lemma 1.2.4 (Nakai [6]1). Suppose that u(2) is a harmonic function bounded
Srom below (or above) defined on a subdomain U of R such that oU (which may

be empty) consists of at most a countable number of Jordan curves not accumu-
lating in R. If u satisfies
lim infyszoc#(2) =m (o7 lim supysequ(2) < M)

at any point ¢ in dUU (U N 4), then u=m (or u< M) on U.

1.3. Since R is dense in R*, we may say that a function f defined on R
is continuous on R* if f is continuously extended to R*. We say that a non-
negative function f on R is quasi Dirichlet finite on R if fN¢ is a.c.T and
Dr(fN¢)< o for any positive number ¢. It is easy to see that afi+ 3fe
(a, $>0) is quasi Dirichlet finite on R along with fi; and fs.

Lemma 1.3.1. If f s quasi Dirichlet finite continuous function on_ R, then
f s continuous on R*.

Proof. For any n=1,2, ..., fNn can be continuously extended to R*.
We denote by f, the extended function. Let A(p) =limn,» fn(p), whose ex-
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istence is clear, since (f»)5-: is non-decreasing on R*. Assume that A(p,) < o
(po € R*). Then there exists an »n such that k(p,) <m. Since f» is continuous
at po, there exists a neighborhood U of p, in R* such that f.(p)<n (p€ U).
If m>n, then (fNm)Nn=sNn on R. Hence fmNn=f, on R*. Thus
S D) Nm=fr(p)<m (p< U) implies that fin(p) = fn(p) in U and so by making
m,/ o, we get h(p) =f,(p) in U. Thus h is continuous at p,. Next suppose
that k(p,) = . Then for any ¢>0, there exists an f, such that f.(p) >c.
Since f» is continuous on R*, there exists a neighborhood V of p, such that
fo(p)>con V. As h=f, on R*, so h(p)>c (p= V). This shows that h is
continuous at p,. Hence h is continuous on R*. Clearly h(2) =limp,e fa(2) =
limssw f(2) Nn=f(2) on R. Thus & is a continuous extention of f. In other

words, f is continuous on R*.

1.4. We prove three more lemmas which plays an important role in our
paper.

LemMma 1.4.1. Let (¢n)u-1 be a sequence in Mi(R) such that ¢ = B-limn¥»
on R and ¢ is a.c.T on R and lim, Dx(¢n,— ¢) =0 for each compact subset K
of Rand Dp(¢,) <A< o (n=1,2,...). Then ¢ belongs to Ms(R) and Dx(®, f)
=1limu D(@n, 1) for each f in M(R)®.

Proof. Let (Rx)n-o be a normal exhaustion of R. We take a continuous
function ¢, on R such that

Pn on Ry;
¢n =19 harmonic in R, —Rp;
l 0 on R—R;,

n=1,2,...,, where we set ¢, =¢. Then clearly ¢, € My(R) C Ma(R). Let
Cn=9Pn—¢n and ¢'=¢ —¢,. Then ¢} and ¢’ satisfy the assumption of Lemma
1.4.1. If the conclusion of Lemma 1.4.1 is valid for ¢5 and ¢’, then the same
is true for ¢, and ¢. Hence to prove our lemma, we may assume without loss
of generality that ¢=¢,=00n R (n=1,2,...).

Let I*(R) be the real Hilbert space of all real first order measurable differ-

entials & such that ||’ = SSR“ AN*a < . We denote (a, B) = “Ra/\ *B. Notice

2) Mr. M. Kawamura proved that this Lemma is true without assuming that ¢ is a.c.
T and limnDK(¢n—¢)=0.
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that dfe I'*(R) if f € M(R). Then (d¢,)n-1CT*R) and ld¢.l’<A (n=1,2,
...). Hence by the weak compactness of bounded set in the Hilbert space,
any subsequence of (d9¢,)s-, possesses a waekly convergent subsequence. We
show that the weak limit of any weakly convergent subsequence is d¢. If this
can be shown, then we can conclude that (d¥,)s-, itself converges weakly to d¢.

Assume that (d¢p,)%-; is wearkly convergent. Then B->limp(B, d¢.,) is a
bounded linear functional on I"*(R). By the reflexivity of the Hilbert space,
there exist an « in I'*(R) such that for any B I'’(R), (8, a) =limk(B, dPn,).
Assume that 5 =0 outside R,. Then

| (8, dp — dpm) | < |18l}+ | dP — dPmllr,, = | BINDrm (9= @) > 0

as k"o, Thus (8, dp) =1lime(B, d¢»n,). Hence (B,d¢ —a) =0 for any B I''(R)
with 8 =0 outside R». This shows that a =d¢ on Ru. Since R is arbitrary,
a =dy on R and limg d¢,, = dy (weakly).

Hence we obtain that lim, d¢» = d¢ (weakly) and in particular, lim, Dg(¢x, f)
= Dr(¢@, f) for any f in M(R) and Dx(¢)< o, As ¢ =B-lim¢, so ¢ is con-
tinuous on R and so ¢ & M(R).

Finally we prove that ¢ € My(R). Let u, be continuous on R such that

¢=0 on Ry;
#um =y harmonic in Ry~ Ro;
[ on R— Rm.
As we have
DR(um+p - Um, um+p) = S (um+p - um)*dunﬂ-t' =0,
ORyUORm+p

80 Dr(tm+p — tm) = De(thm) — Deltbm+p). Hence (#m)m-1 is D-convergent. Since
#m=0 on Ry, (un)m-1 converges to a function % in C-topology, where » =0 on
R, and harmonic in R— R, Moreover, since |um|<supg|¢|, 2= B-limuunm

on R. Hence
# = BD-limmum on R.
Let ¢m=¢ —um and ¢ =¢ —u. Then
¢ = BD-limm ¢m
and as ¢m< My(R), so ¢ € M,(R). Since
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De(tm, om) = j ¢hz*dum =0,

ORgUORM

Dz(u, ¢) =0. Next, since ¢, Mi(R), we can find ¢, r< My(R) such that

¢, = BD-limg ¢n,r.  Suppose that the support of ¢n is contained in Ra(&).
Then

| D(#, @nr) | = if Ok du

-~ *
< SUDsR, | ¥, k| S du—0.
ARoUORR(k) 9Ry

as k /" . Hence D(u, ¥»)=0(n=1,2,...). Thus D(u, ¢) =lim, D(u, ¢,) =
0. Hence from
D(¢, u) = D(u, u) + D(¢, u),
we conclude that D(%) =0. As =0 on R,.so#=0on Rand so ¢ = ¢ € Mi(R).
Q.E.D.

Lemma 1.4.2 [Generalized Dirichlet principle]. Let K be a compact set in
R* (which may be empty) such that KN4=90 and KN R =K and 9K consists
of at most a countable number of piece-wise analytic curves not accumulating
in R. Assume that f € M(R). Then there exists a unique u in M(R) such that
f on 4UK;
u=|

harmonic in R— K
and Dr(f) = Dglu) + De(f — u) and
Dr(u) =min(Dgr(h); he M(R) and A=f on 4UK).

Proof. Let (Rn)n-1 be a normal exhaustion of R and u, be continuous on
R such that

f on R—(R,—-K);
unz{

harmonic in R,— K.

Clearly us= M(R) and |ua| <supz|f|l on R (n=1,2,...). Hence by choosing
a suitable subsequence, we may assume that (#,)5-; is B-convergent on R. We
set # = B-lim,un, on R. Then#=f on KN R and harmonic in R - K. Clearly
f—unEe My(R) and f—u, =0 on R— (R,— K). Hence

Dg(f— un, u,,)-—-g (f = un)*dun=

v o(Rn—K)

and so Dg(f) = Dg(#n) + Dr(f — u,) and in particular, Dr(%,) <Dg(f). Similarly,
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D}z(un — Un+p, un*p) =0 and so DR(un - un+p) = DR(M”) - DR(u;Hp). Thus

(#n)n-1 is D-convergent and so # = D-limsu, on R. Hence
#=BD-lim,%, on R.

Thus # = M(R) and « is continuous on R*. From this, z=f on KN R implies
u=f on K =KNR. Moreover, f—u=BD-lim,(f—us) and f—u,< M (R)
implies that f—u < Mix(R) or u=f on 4. From Dz(f) = Dr(us) + De(f — un),
we get Dgr(f) = Dgr(n) + Dr(f —u) and Dz(u)<Dxg(f). The unicity of such a
u follows from Lemma 1.2.4.

Next let € M(R) with h=f on 4UK. Construct v M(R) for h such
that v =% on 4U K and harmonic in R — K. Then Dg(v)<Dx(h). As v=h=
f =u on 4U K, the unicity assures that v =% on R Thus Dr(2)<Dg(h).

Q.E.D.

LemMma 1.4.3. Let K and K' be compact sets in R* such that K' DK and
KNd=¢ and ENR=K and KNR=K' and relative boundaries 9K and oK'
consist of al most a counsable number of disjoint analytic Jordan curves not
ending and not accumulating in R. Then

(1.4.1) there exists a unique u in M(R) such that u=1 on K and u=0
on 4 and u is harmonic in R— K;

(1.4.2) Dg(n) = Sax*du;

(1.4.3) ¢ Sa l*dul < o, then faxl*du = jax*du.

K’

Proof. Let (Rx)n-o be a normal exhaustion of R and F be a compact set in
R* such that #>4 and FNR = F and FN K= and oF consists of at most a
countable number of piece-wise analytic Jordan curves not ending and not ac-
cumulating in R. We put Fr=F— R.,. By Lemmas 1.2.1 and 1.2.2, we can
find a function f in M(R) such that f =0 on Fand f=1on K. By Lemma
1.4.2, there exists a function #r in M(R) such that #z = f on KUdEF,U 4 and
# is harmonic in R— KU9F,. By Lemma 1.2.4, ux=0 on FrN R Hence

1 on K
np= 9 harmonic in R— KU Fp;
0 on Fy

and by Lemma 1.4.2,
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Dxr(ur) <D(f).
Next let u,» be continuous on R,— K—F; (n>Fk) and harmonic in R,— K
-~ Fy such that #,»=1 on 9KN R, and #%,»=0 on 9F,;N R, and %uk,n=0 on

OR,— K—F.. We set uz,»=0 on Fr and #z,»=1 on K. Then, since

DR,,(uk,n+p = Uk, n, uk,n) = S )(uk, n+p uk,n)*duk,n =0,
ke

¥ Rn~K~F,
we get
DR,,(uk, n+p — uk,n) = Dn,,(uk, n+p) - DR,,(uk, n)SDRmLp(uk, n+p) - DR,,( Uk, n).

On the other hand,

Dr, (961 — v, n, i, n) =f (g — vp, ) *dthi,n =0
O(Rp~K-—-Fg)

implies that Dg,(#r, 1) = Dg,(tk, thk,n) <VDgr,(%r) * VDr,(t4r, n), OF
Dg,(4r,n) < Dr,(ur) < Dr(f).

As (Dg,(#%k,n))n-r is non-decreasing and bounded, so
limn DR"(uk, n+p — Uk, n) =0.

Since (g, #)n>r is bounded and g, is harmonic in R, — K— Fr and 0 on 9F;
and 1 on 9K, lim, ¢, » is a harmonic function in R — K — F, which equals 0 on oF;
and 1 on oK. Hence by Lemma 1.2.4, ux=limsur,» in R— K— Fr and so on
R. Hence by Fatou’s Lemma,

Dr,(ur, — tp, n) <lim infp Dg, (e, p — 4k, n)
and so
limy Dg, (#r — #r, n) <lim,(lim infy Dr,(%r,p — t6p,n)) =0
and also
limy, Dz, (%#,») = Dr(uz).

Similarly as before, since

Dg,(4k+q,n = Uk, n, Uk+q,n) = g (Ukrq,n— Yk, n) *duk+q,n =0 (n>k+q),
Jo(Rn-Frrq-x)

we have

DR,,,(uk+q,n - uk,n)SDRn(ukﬂ], n- uk,n) = DR,,(uk.n) - DR,,(%k-bq,n) (n> m)
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and so by making 7 « and then m /" «, we get
Dr(strrq — ) < Dr(ur) — Da(ur+q).

As Dgr(up) = lim, Dg,(ur,») < Dzr(f), so

limg De(stp+q—ur) = 0.

Since ur=1 on K and (m)f-: is bounded and u; is harmonic on R— K — Fp,
(#r) -1 converges to a function # on R in B-topology and # is harmonic on

R— K and =1 on K. Moreover
u = BD-limp ur.

and ur e M\(R) implies #=0 on 4. This # is the desired in (1.4.1) and the
unicity follows from Lemma 1.2.4.

Next we prove (1.4.2). From (1.4.1), we can find a function e in M.(R)

such that
1 on R~ Fy;
e=1 harmonic in ¥ ks
0 on 4.

Clearly e is superharmonic on R. Let k. be continuous on R such that

e on R— Ru;
hm={ "

harmonic in Ru.

Then it is easily seen that 0 < hm+p < hm<e on R and since

Dahn = s ) = | (hon = Bimep) *dlimsp =0,

aRm+1;

we get De(hm — hm+p) = De(Mm) — De(Bm+p). Hence if we put h=limy,h, on
R, then k= BD-lim,; by on R and so h HBD(R)CM(R) and as 0<h<e, so
h=0 on 4. Hence by Lemma 1.2.4, h=0. Hence if we put

90m=e—hm,

then 0< ¢m < Pmip<e<1 on R and e= BD-lim; ¢, and the support of ¢, is

contained in R.,. Now we have
Dz (or Pm, ur) = lim, -DR,.(uk. nPmy Uk, n)

. *
= hmnS Uk, nPm dug,n
3(Rp—K - F)
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= llmnf 2 Pm *duk, n.

vIKn
AS %k, n—> % (n—> ) uniformly on Ru, so *dur,n— *dur on 9K N R, uniformly
and so

D(urPm, ur) = LK . O dur.

We can easily show that
ur = eur, = BD-limu; Omur,
on R. Since *dur>0 on 9K and 0<¢m<1, we get ¢, dur<*dur on oK. Hence

D (urPm, ur) < Sax*duk and so
*
D(uk)SLK dup.

On the other hand, by Fatou’s lemma,

Sax*dukslim infm Sa O™ dur = limuy D(up Pom, wr) = D(up).

KRy,

This shows that D(w) =§3K*duk. By Lemma 1.2.4, ur <wur+p on R and as

ur=tur+p=1 on 0K, so *dur>*dur+»>=0 on oK. Hence *dur— *du and by

Lebesgue’s convergence theorem,
j *du = limkg *dur = limg D(ur) = D(u),
oK 9K

which proves (1.4.2).
Finally we prove (1.4.3). Let RN (K'—K) = \USx be the decomposition

into connected components. If we have S o *d":S@ o *du, then since
Snn nNOK’
S | *du| and j |*du| are finite, we get
oK ).
{ rau=(  tau=5{  tau={ *au
JOK n Y 8nnoK n SnnoK’ 9K’

Hence we may assume without loss of generality that (X’ — K) N R is a domain.
Let T be the double of (X’'— K) N R with respect to 9K and oK' and (Ty)%-:
be a normal exhaustion of 7 and 7y is a disc in (X’ — K) C R such that T,c
(K'-K)NRNT,. For convinience, we set 1p=0T,N(K'—K)NR. We take
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a continuous function v, on T such that

1 on Ty;
vn =4 harmonic in T, — Ty;
0 on T—T,.

Since (X'~ K)NRNA4=g¢, T is parabolic by Lemma 1.2.3 and so
BD‘limn Un = 1

on 7. Since *dv, =0 on 0K U2K' and S *du =0, we get

To

Untdu = S vnrdu.

Dinr-x)(vn,u) = g
9K —0K’

J(OK=0K/)UT U Ty

As vi*du->*du and |v,*du| <*du on 29KNoK' and |*du| is integrable on
9K U9K!', so by Lebesgue’s convergence theorem,

*du=1ima{ ox*du=1limy Digr-xjnn (0a) = Die-rron(L, #) =0,

SBK-BK'

which shows Sax*du= SaK *du, i.e. (1.4.3). This completes the proof.

II. Green kernel on Royden’s compactification
2.1. Let R be a hyperbolic Riemann surface and g“(z) be the Green
function on R with its pole w in R. Let (R,)5-o be a normal exhaustion of R
with w in R, and g (z) be the Green function on R.,. We set gh(2) =0 for z
in R—R,. By definition, g7 (2) g°(2) on R and wus(2) =g“(2) —gh(z) is
bounded and B-lim,ualz) =0 on R. Since %, is harmonic in R, and u,=g"
on R — Ry,

DR(un — Un+p, un+p) = S (un - un+p)*dun+p =0.
BRn-l-p

Hence Dgr(%n — thn+p) = Dr(2ts) — Dr(#n+p). From these, we conclude that BD-
lims %, =0. In other words, gi(z) /' g¥(z) on R and Dz(gh(2) —g“(2)) -0 as
n,/ . Hence

g°(2) Ne=BD-lim,g(z) Ne¢

on R for any ¢>0 (cf. p. 78, Satz 7.4 in [1]). As gi(z) Nce My(R) and
Dgr(gh(2) Ne¢) =2 ne, so we get

g’(@NceMy(R) and Dz(g°(z)N¢e)=2nc
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for any ¢>0. Hence g*(z) is quasi Dirichlet finite and so by Lemma 1.3.1,
k7))

g"¥ is continuous on R*. As g“(p) Nc=0 on 4 for any ¢>0, so g“(p) =0 on 4.
Since g“(z) = &°(w) on R x R, we may define g?(z) as g°(p) for p in I. We set
L=(per; g°($)>0)

for a fixed w in R. By Harnack’s inequality, we can easily see that I} is in-
dependent of the special choice of w in R. Hence In=(peTl; g”(p»)>0 for
any weR) = (peTl'; g°(z)>0 on R as the function of z). Since g“(p)=0
(pe 4), we see that

FoCF— A
Thus, if pe '~ T, (resp. p= I, then g?(z) =0 (resp. g2(2z)>0) on R.

Lemma 2.1.1. The function g°(p) = g°(w) is continuous in (p, w) on R* xR

and finitely continuous in (p, w) on I'x R.

Proof. As g"(2)=g%w) is continuous in (z, w) on RX R, so we have only
to show the finite continuity of g”(p) =g?(w) at (P, wo) in I'XR. Let ¢ be
an arbitrary positive number. Since g”'(p) = g?(w,) is continuous in p on R,
we can find a neighborhood W of p, such that we,& W and

Ig”(wo) - g""(wo) |<e

for any p in W. There exists a closure compact open neighborhood U of wo
in R such that R* — T DW and £""(2) = g°(wy) N< © on R—U. By Harnack’s
inequality, there exists a neighborhood V of w, such that ¥V € U and

g% (wo) < &5 (w) < cg®(wo)
for any w in V and z in R— U, where ¢=1+¢/N. Hence
| g%(w) — & (wo) | <e

for any w in V and z in R— U. Since g?(w) — g?(w,) is continuous in p on
R* for any fixed w in V and R— U is dense in R*— U, we have

|&?(w) — g?(wo) |< e
for any w in V and p in R*— U. Thus for any (p, w) in Wx V,
[£°(p) — g (p) | < | g (w) = gP(wo) | + | g% (wo) — g?(wy)| <2,

which shows that g”(p) = g?(w) is continuous in (p, w) at (po, wo). Q.E.D.

https://doi.org/10.1017/5S0027763000011417 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011417

220 MITSURU NAKAI

LemMma 2.1.2. Given a point p in Iy (resp. I — I'y) and an arbitrary neighbor-
hood U of p. Then there exists a decreasing sequence (Vn)u-1 of neighborhoods
of p such that VaC U and N 7-.(V4aNR) =¢ and limy supwev,~zlg?(z) — g°(2)|
=0 uniformly in z on each compact subset of R. Hence in particular, g°(z)

is positive harmonic (resp. identically zero) on R.

Proof. Take a countable dense subset (zm)m-1 of R. By induction, we can
find sequences (U, #)n-1 (m=1,2,...) of neighborhoods of » such that

UDUpm,n D Um,n+1, Un+1,n

and N7.(RNUy,x) =¢ and lim,Supwev,,nnrl&™(w) —g*(p)| =0. This is
possible, since g°(q) is continuous in ¢ at p for each m=1,2,.... Set V,
=Upn Then lim,supwer,~rig(w) —g*(p)| =0 for any z=2m (m=1,2,...).
Since (zm)m-1 is dense in R, by Lemma 2.1.2, lim, supwer,~z|2*(w) — g%@) | =
0 holds for any z in R. As g*(w) = g“(2) is harmonic in z on R except w, so
lim, supwer,~z1€”(2) — g?(2) | =0 holds for z uniformly on each compact subset
of R.

LEMMA 2.1.3. For any fixed p in R*, Dr(g?(z2) N¢)<2rc (¢>0).

Proof. This is clear if » belongs to R* —T,. Hence we have only to treat
the case where p belongs to I,, By Lemma 2.1.2, we can find a sequence

(wn)n=1 of points in R which do not accumulate in R such that

g?(2) = C-limn g”"(2)
on R. Then
lim, | grad(g“"(z) N¢) |* = |grad(g?(z) N¢) |

at each point of R except the set (z€ R; g?(z) =¢) for each fixed local para-

meter. Hence by Fatou’s lemma and D(g”"(z) N¢) =2mc, we get
Dr(g?(2) N¢)<lim inf, Dr(g¥*(2) N¢) =2xc (c>o0).

2.2. From Lemma 2.1.3, it follows that g?(z) is quasi Dirichlet finite on
R for any fixed p in R* and so g?(z) is continuous on R* by Lemma 1.3.1. Hence

we can give the following

DeriNITION. The Green kernel g(p, q) on R* is given as the function of (P, q)
in R* x R* by the following double limit :

g(]b. Q) = limxsz»p“imRaw—)qgw(z) ).
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ProposiTioN 1. The Green kernel g(p, q) on R* possesses the following pro-
perties:

(g.1) g(z, w) =g"(2) for (z,w) in RXR;

(g.2) gz, p) =g(p,2) for zin R and p in R*;

(g.3) g(p, Q) is continuous in p on R* for fixed q in R*;

(g.4) gz, p) is continuous in (z,p) om RXR* and finitely continuous in
(2,$) on RXTI;

(g.5) g(z, ) is harmonic in z on R — (p) for fixed p in R*;

(g.6) gz, p)>0 (resp. =0) on R if pRUI, (resp. I'=1)

(g.7) Dgrlglz, p) Nc) <2nc for any fixed p in R* and ¢>0;

(g.8) if q is fixed in IWU R, then g(p, q) >0 for any p in [ZUR;

(g.9) if q is fixed in R*, then g(p, q@) =0 for p in A.

Proof. The properties (g.1)-(g.7) are easy consequences of the definition
of g(p, q) and Lemmas 2.1.1, 2, 3. To prove (g.8), we have only to treat the
case where gl and p=I,. We take a normal exhaustion (Rn)5-o of R and
we fix a point w in R, Since g(z, q) (¢ =TI) is a positive harmonic function
in z on R by (g.5) and (g.6), we can find a positive number a such that

ag(z, q) = g"(2)

on 2R, As ag(z, q) =g7(2) on Ry — Ry, 50 ag(z, q) =g"(2) on R — R,. By letting
z->pelp we have

ag(p, q) =g"(p) >0.

Finally, we prove (g.9). To avoid the trivial case, we assume that g&/r%.
By Lemma 2.1.2, we can find a sequence (wn)s-; of points in R which do not
accumulate in R such that g(z, w.) converges to g(z, ¢) in C-topology on R.
Hence for any ¢>0,

g(z,9) Nc=B-lim, gz, ws) Nc

and since g(z, q) and g(z, w,) are harmoinc on any compact subset K of R
for sufficiently large », we get (cf. p. 73, Satz 7.4 in [1])

lims Dx(g(2, @) Nc— glz, wa) Nc) =0

and by (g.7),

D(glz,wa)Ne)<2rnc (n=1,2,...).
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As glz, wn) Nce M (R), so by Lemma 1.4.1, g(z, g) NcEM.(R), or g(p,q) N¢
=01in p on 4. Thus g(p, q) =0 for p in 4. Q.E.D.

Remark. Notice that we do not claim the general symmetricity of g:
g(p, q) =glq, p). We also do not claim the continuity of g(p, q) in g at I, for
fixed p in I.

It follow from (g.5) and (g.9) that g(z, p) (p=I,) is a singular positive
harmonic function, i.e. the greates harmonic minorant of g(z, p) N¢ is identi-
cally zero. In fact, let #(2z) be harmonic on R with 0<u(z)<g(z, p) Nc on R.
Then by (g.9), 0 < lim SUPrsz-e#(2) < liMrszHe8(2, ) Nc = g(g, ) Nc=0 for any
q in 4. Hence by Lemma 1.2.4, #(z) =0 on R.

IIT. Quantities concerning Green kernel

3.1. Let 2 be an arbitrary non-empty set and K be a mapping of 2 x 2
into [¢, ©] (¢> — ). For each set X in 2, we set

1, 0,7
(’2') (X5 @ K) =infs, ... pex 3} K(pib))

when X0 and ©,(X, @, K)= o when X=#0. Let py, ..., pn+: be arbitrary
points in X. Then

1, 00, N1 k-1 n+1 1, ..., n+1
> K(pi pj) = 20K (pi, o)+ 2 Kipw, pi)+ 21 K(pi, p;)
1<y =1 J=k+1 I<ji i, j¥k
and so
1, .., n n+1

N ' K(pi, _bf)zg K(pi, pr) +

i<y

3 Kpu )+ () enl X5 0, B

(k=1,2,...,n+1).

Summing up these n+ 1 inequality, we get

1, ...,n+l 1, ...,n+1
(n+1) X Kpi,p)=2 2 K(p,-,ﬁj)+(n+1)(’2')rn(X; 2, K)
or
1, .e. , 041 n
(n=-1"3 Ky, p)= e+ 1(5) el X5 2, K.
i<j

Hence we get (n—l)(n-;l)rnn(X; 2,K)=(n+1) (721) ™(X; 2, K), or

te(X; 2 K)=tn(X; 8, K) (n=1,2,...).
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Hence we can define
o(X; 2, K) =limsse ta(X; 2, K).

This is called the transfinite diameter of X with respect to (2, K). Similarly

we set
ﬂPn(X; .Q, K) = SUPp,, ... ,pnex(infpexg K(p, p;))
when X= 0 aud o.(X; 2, K) = ©« when X=0. Let py, ... ,Pn+m be arbitrary

points in X. Then

nt+m n m

Zl} K(p, pi) = g}K(P, bi)+ 21K<p, »i)

and so

m

infpexé K(p, pi)= inf,,exj;; K(p, pi) +infpex > K(p, 5.

=n+l
Hence
(m+m)onim(X; 2, K) =noa(X; 2, K) + mon(X; 2, K).

It is well known that for a sequence (ax)7-: of points in ( — o, o) such that

@nim=an+ am, lim, n 'a, exists. Hence we can define
o(X; 9, K) =limpsepa(X; 2, K).

This is called the modified Tchebycheff’s constant of X with respect to (2, K).

Concerning these two quautities r and p, we have
ProrposiTiON 2, o(X; 2, K)>(X; 2, K).

Proof. Let n>1 be an arbitrary positive integer. We set r:= (n—1)"" and

choose n points pu, Pn-1, - - ., D2, 1 in X satisfying
3.1.1) > B (Pn-iy ) <infpex Z‘._“K(p,p,-)+r (i=1,2, ..., n—1).
Jj=n—i+ Jj=n—1t

We choose these n points inductively as follows. Let p, be an arbitrary point
in X. Assume that pu, Pn-1, . . ., Pu-i+1 (i< 7 —1) have been already chosen.

Consider

fp)= 3 Kb

J=n=%
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on X. Then, since infpexf(p)=ic> — «, we can find a point p,-; in X such
that f(pu-i) <infpexf(p) + 7. This is nothing but (3.1.1) and the induction is
completed. By the definition of p;(X; £, K), we get

infpex 3 K(p,5) il X; @, KO).
Hence by (3.1.1), we get
F"i_iHK(Pn—i,Pj)Sim(X; 2,K+r (=12 ...,n-1).
Summing up these n — 1 inequalities, we get
l'gnK(pi,pj)sgim(X; 2, K)+(n-1)r

and so by the definition of 7,(X; %, K), we get

n=1
(5) enXs 0, B < Do X5 0, K0 +1

or
n-1
il X; 2, K)
(3.1.2) (X O, K)y< = F
GG
\2 2

As limiso 0i(X; 2, K) =po(X; 2, K), so we can easily see that

n—1
Dipi(X; 2, K)
limp,»t - =p(X; 2 K).

n
(2)
Hence by making 7,/ « in (3.1.2), we get «(X; 2, K) < o(X; 2, K).

3.2. Let R be a hyperbolic Riemann surface and R* be its Royden’s com-
pactification and g(p, g) be the Green kernel on R*. For the sake of simplicity,

we set, for X in R¥,

T X) =X RY 2), <(X)=1(X; R% g
and similarly

(X)) =ps(X; R, 2), o(X)=p(X; R*. g)

and we simply say that r(X) (resp. p(X)) the transfinite diameter (resp. modi-
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fied Tchebycheff's constant) of X in R*. From the considerations in Section
3.1, we see that

7(X) = limase (X)), o(X) = liMusw on( X)
and
o> p(X)=(X)=0.

3.3. In this section, we state two lemmas concerning Green potentials on
hyperbolic Riemann surface. They are well known and contained in the general
potential theory on compact metrizable space with positive symmetric kernel
(see for example, Ninomiya [11]). But for the sake of completeness, we give
proofs for two lemmas following Constantinescu-Cornea’s book [1].

Let « be a positive regular Borel measure on R and S, be the support of
u#. The Green potential g.(z) is defined by

g =\gzpap Ger.

If gu(z) < « for a point z in R, then g.(z)>0 and g.(2) is harmonic in R — S,
and g,(z) is superharmonic in R (p. 34 in [1]).

A set A in R with ACR is said to be polar if there exists a positive super-
harmonic function on R which is infinite on A. A property is said to hold
quasi everywhere if it holds except a polar set.

The energy || u|l* (resp. mutual energy <u, »>) of a measure z (resp. mea-
sures z and p) is defined by

P = {§ 22 w) du(2)d(w0) resp. <, »> = | 2(z, w)dn(2dv(w)).

For a set X in R, we denote by mx the totality of unit positive regular Borel
measures # on R with S,.CX. We put

7(X) = infuemy |l ulP

when X=0 and y(X)= o~ when X=0. We say that 1/7(X) is the capacity

of X induced by energy integral when X is compact. Then we have

LemmMmaA 3.3.1. Let F be a compact set in R consisting of a finite number
of analytic arcs. Then there exists a unique measure 1 in mp such that v(F) =
ol < o and g.,(2)<r(F) on R.and g.(z) =v(F) on F. Moreover g,, belongs
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to Ms(R) and Dz(gu,(2)) =2xr(F).

Proof. Let (Rx)%-o be a normal exhaustion of R with RyD>F. By Lemma
1.4.3, there exists a function w in M(R) such that w=1 on F and w=0 on 4
and w is harmonic in R — F. Hence w & M:(R) and so we can find ¢, € My(R)
such that w = BD-lim,¢, on R. If we put F the sum of arcs F with positive
direction and arcs F with negative direction, then we get

D(Spn, u)) = S;¢n*dw
and it implies, by making % o,

(3.3.1) D(w)=Sﬁ*dw=S *dw.

ORg

By Frostman’s theorem (p. 40 in [1]), there exists a unique positive regular
Borel measure u; with Sp, CF such that g,(2)<1 on R and g,,(2) =1 quasi
everywhere on F and g,,(z)<w(z) on R. Let s(z) be a positive superharmonic
function on R with s(z) = < on (z€ F; g.,(2) <1). Then since

lim infrozo (g, (2) +es(z) — w(z))=0

for any & in FU dand ¢>0, by Lemma 1.2. 4, g,,(2) + es(2)=w(z) on R. Hence
gu,(2)=w(z) on R quasi everywhere. As a polar set is measure zero (i.e. the
Lebesgue measure of the intersection of polar set with any parameter neighbot-
hood is zero) (p. 31 in [1]), so gu(z2)=w(z) almost everywhere on R and so

gv,(2)=w(2) everywhere on R (p. 13 in [1]). Hence

w(z) = gﬂx(z)

on, R, ie. g, (2)<1 on R and g,,(2) =1 on F. From this, it is clear that u(F)
>0. Let u=my. Then by energy principle (p. 46 in [1]),

1= (Ja0* = (gudw)® = <y, w*< NanlP -l al?

or
Nl = 170 s P,

On the other hand,

w(F) = Sd/-u = Sgu,dm =P
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Hence, if we put uo = ui/m(F), then p € me and

Nl = s I/ i (B = | e P/ sl = /0 P

Thus |z’ =llulf for any x&me and 7(F) =l = 1/p(F) < . Hence gy,(2)
=71(F)g.(z) fulfils the properties that g,,(z) < y(F) on R and g,(z) =7r(F) on F.
The unicity follows again from Frostman’s theorem (p. 40 in [1]).

Notice that gy, = r(F)we M\(R). Thus by (3.3.1)

— 2, * _ Dk
Dalgu) = ()| *dw=1(F) *ag,
=B *dg(e, p))du(p),
F JoR,
Since p varies in R, in the last term of the above, it is easy to see that

ﬂ *dg(z, p) =2 .
JoaR,

Hence by noticing u(F) =1, we finally obtain
Dx(g,,) =2 nr(F). QE.D.
LemMa 3.3.2. Let F be as in Lemma 3.3.1. Then v(F) =t(F) = o(F).*
Proof. For each n, we can find points pi”, . .., p4" in F such that

n byt (n) (1)
(2)Dn(F)2 > g™, ) —1/n.
z<j

Let un be defined by u.(pi”)=1/n (i=1,..., n) and ,un(R—-iL_Jl(ﬁﬁ"’))=0.

Then u, belongs to mpr. Then there exists a subsequence (s )r=1 Of (n)n=1
such that

limbs| S, = | fdu

for every finitely continuous function f on F (p. 9 in [1]). Clearly p < ms.

Let ¢>0. Then by Stone-Weierstrass’ theorem, there exists a function
o(z,w) = Z‘iajfj(z)h,-(w),
=

where a; are real numbers and f; and h; are finitely continuous functions on
F, such that

3 It is well known that this is true for any compact set F in R.
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lg(z, w) Ne—0n(z, w)|<1/n
on F. Then

1 Loees

ny .
n(F) +1/me> s 3 g(p}""’,p}""’)zss(gnwdunkdunk—”i

ESS(P”dﬂ”kdﬂnk - % - hc_k

Since Sg Pnlpimpin, = 2] a;* Sfjdunk' Shjdﬂnk - Zajgfjdu. S hidp = SS Ondpdp (B~
), we obtain by making k- oo,

2

«Pz\{dpan- L= ([ gnordudn-2

By making #n /" o, t(F)> gS(gﬂ ¢)dpdp. Again by making ¢/ o, t(F)=|ulf.
Thus we get ©(F) = 7(F).

By Proposition 2, o(F)>t(F). Hence if we prove r(F)=po(F), then the
proof of Lemma 2 is completed. Let uo be as in Lemma 3.3.1 and p;, .

L

Dn be arbitrary points in F. Then

W)= 250 2,00 = L[ S3a(a p0) dint) = L infyer 33205, 2.
i=1 i=1 i=1

Hence
r(F) = - supp, .., suen (infper 33808, ) = oa(F).

Thus by making 7, «, we get 7(F)= o(F),

3.4. Asume that I, 0. Fix a point z in R and (7,)%-, be a sequence of
positive numbers such that

Pn>> nt1, limyow?sr =0

and the level curve (z€ R; g(z, 2z)) =7x) consists of a countable number of
analytic Jordan curves not ending in R. Moreover we may assume that the
set

U,=(zeR; g(z, 20)>7x)
is not relatively compact in R. We set

rn=vnﬂr.
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Then I'n=\UT7. Let (Rs)n-1 be a normal exhaustion of R such that z, € R;.

n=1

We set
Fn,m= (771 n aRm-

LemMa 3.4.1. The set U, is a subdomain in R and UN 4= 0.

Proof. Since g(p,20) =0 (pe ), UsN4=40. Assume, contrary to our as-
sertion, that there exists a component G of U, with z&G. Then g(z, z0) is
the bounded harmonic function on G with g(z, zo) =7, on 9G. Then by Lemma

1.2.4, since GN4=4, gz, 2,) =7. on G. This is a contradiction. Q.E.D.

LemMa 3.4.2. There exists a unique positive harmonic function wnm Oon
Un+_— R such that wn,m=0 0% 0Un+1 — R and wp,m=1 on Fui1,m. Moreover,

Wa,m 15 continuous on Uns1— Rm and there exists a constant o, >0 such that
Wn,m(P) =0n for any pl'y, (m=1,2,...).

Proof. Let k>m+1 and u, be harmonic in Ry N Up+; — R, with boundary
value #r =1 on Fpiy,m and ue=0 on Fuii,e U (3(Re N Unsy) — Rm). Since ur <
Uk+p, Wn,m=limpue is a positive harmonic function on Ux+, — R, with boundary
value wp,m=1 on Fpii,m and wn,m=0 on dUx+1 — Rm. The unicity of such a
Wn,m follows from Lemma 1.2.4. We get

Drynvass ~Fmes (22) =§ o wedun.
RBp+10Un+y
As up is harmonic on ORm:i NUnsy and converges uniformly to wa,m on

ORm+1 N Ups+s, s0 We get

0< llmkj‘ ur *duk = s Wn, m *dwn, m< 00,

Ry r1 U+ Ry +,"Unt1

Hence by Fatou’s lemma,
D s (W, ) < it 105 Dyt~ Fes () = | g 0m it <

On the other hand, let ¥ be harmonic in Rp+1 N Un+1 — Rm with boundary value
V= Wn,m ON Fnir,mer and v =0 on 9(Rm+1 N Up+1 — Rm) — Fur1,m+1. Then clearly
Dazpiratni-En(0) < 0. Let

Wa,m  On RN Upsi— Rome1s

f=9 v on Ru+1NUns1— Rm;
0 on R— (RN Uni1— Rm).
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Then f is bounded continuous a.c.T function on R and Dz(f) = Dg,s,n0nes-rn(?)
+ Dypir=Fpsi(Wn,m) < . Hence.f€ M(R) and so f is continuous on R*. In
particular, wx,m is continuous on Un+1— Rm+i and so Un+v1— Rm.

Next let Ry=(z€ R; glz, 20) >b) be contained in R;N Ux+; with its closure.
Put

82, 20) = Tni1 |

w(z) = b—7ns1

Then w(z)>0 on Uny; and w(z) =0 on 9Uy»4; and w(z) <1 on Uns:— Ko, Hence
Wam—w=1—w>0 on Fnr1,m and wn,m—w =0 on 0Un+; — Rm. From this, by
Lemma 4, we get

wn,m(2) Zw(z) on Up+1— Rm.

Let p be in I'y. Then

gﬁ;@)_“ﬁ!> ,r”—,rl!ilzon>0 (m=1,2,...).

w"'”'(p) = b—7nn = b—7nn
The unicity of such a wu,m follows from Lemma 1.2.4. Q.E.D.
LEMMA 3.4.3. (I =anet(Fnsrm) (m=1,2, ...).

Proof. Let k be an arbitrary positive integer larger than 4 and py, ps, . . .,
pr be in I',, We choose & points zy, 23, . . . , 2r in Fp+1,m inductively as follows.
Let

u:(2) =§g(z, i)

and z; be in Fyu+y,m such that
u(z1) = minzstr,,+,,mu1(2).
Since #(2) >0 on R, #1(z) — #1(2) wn, m(2) =0 on 3(Un+1— Rm), where wn,m is
as in Lemma 3.4.2, and so by Lemma 1.2.4, 2:(2) = w1(2)wn,m(z) on Up+y— Rm
and so on Uu+ — Rm. Hence in particular,
wi (1) = wi(2)Wn, m P1) = onthi(21)

and so
k

k 2, ...,k 2, ...,k
on 238(21, p0) + %g(p,-,p»s 2 gpu i)+ 2 80 05)

i=2 <j

1,...,n
and hence by putting a= > g(p; p;), we get

i<y
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13 2,...,k
(3.4.1) O'nzzg(pri)‘*“ ?_,‘j gpi, p;) < a.
1= <,

Next we choose 2z, . . . , Zu—2 in Fpi1,m satisfying

i<j i=1j=v+

1.y v ook VL, ek
(3.4.2) ar > g(2i, 2) +on>) Azlg(Zi,Pj)"i‘ ‘E g(pi, pi)<a
<i
(»=2,8,...,k=2).

First let
k
u2(2) = ng(z, D)+ anglzs, 2)
=

and z» be in Fy:1,m such that
wi(22) = minzer,.,,,, #(2).

Similarly as above, we have u:($)= 1:(23)wn, m(P) = onta(25) for p in Upss— R
and so

k 13
25 &( Do, Di) + ong(21, Do) = 0n jZag(Zz, D5) +org(z, 2).
= -

From this with (3.4.1), we get

2 k 3,...,k
ong(z1, 22) + 0n 2 Z2g(zi. P+ 2 g(pi,pi)<a.
= i<j

i=1 7

This is nothing but (3.4.2) for » =2. Next assume that z,, . ..,2, (#<k—3)

have been already chosen in Fn.i,m satisfying (3.4.2). Let

k v
wyii(2) = ) 2g(z, Di) + O'ng gz, 2)

J=v+

and z,+; be in Fu+1,m such that
wyi1(2y+1) = minZEFn-H,,mu\Hrl(Z)-

Similarly as before, we have #%,+1($) = #y+1(2v+1)Wa, m( ) = onthy+1(2,+1) for p in

Un+y— Rm and so

k v 3 v
Zzg(ﬂwl,ﬁj) + on zsg(zi, pv+1)20n122g(2v+1, 17,1) + Ui‘{:g(zi’ zV+1)~

I=v+

From this with (3.4.2) for » < k—3, we get

v+1

1, ..., v+l K yv+2,... .,k
a2 gz z) +anZ1 > gla, pi) + g g(ti, pi)<a.
=1 g=vy+2 3

i<y

https://doi.org/10.1017/50027763000011417 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011417

232 MITSURU NAKAI

This is (3.4.2) for » +1. Thus we have constructed the system 2z, . .., 2r-2.
Next let

k-2
ur-1(2) = g(z, pr) + on glg(z;. 2)

and zg-1 be in Fyn4y,m such that
uk—1(2k—1) = minzep,.+,,,,.uk—1(2).

Similarly as before, we get #p-1(p) = sr-1(2k-1) Wn, m(P) = onur-1(zr-1) for p in

Up+1— Rm and so

k-2 k-2
&(Pr-1, Dr) + on %g(zzy Dk-1) = ong(2k-1, Dr) + aﬁ%g(zz'. Z-1).

From this with (3.4.2) for » =k —2, we get

1, ..., k

s , k=1 k-1
(3.4.3) av X gz, zj)+an21g(z;,pk)£a

i<j

Finally let
k-1
u(2) = on 2, 8(25, 2)
i=1

and zr be in Fu+1,m such that
ur(zp) = Minzer,., ,, #r(2).

Similarly as before, we have ur(p) = ur(28)wn, m(D) = on ur(zr) for p in Unpsy— Ry

and so
k-1 k=1
dn gg(zi» pk) = O'f; Zlg(Z;', 2k ).

From this with (3.4.3), we get

1, ...,

on 2

i1<j

k
gz, 2) < a.
Hence by the definition of ti(Fn+1m), we get
2 k 1, ...,k
0‘,,(2> Tk(Fn+1,m) < E g(php])
Since py, . . ., pr are arbitrary in Iy, so

6.’.(’5) h(Fnsy,m) < <§) (')
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or o \tk(Fns1,m) < we(I'n). Hence by making £/, we finally get
a?.T(Fnﬂ,m) Sf(rn)-

LemMA 3.4.4. limmyeor(Fa,m) = .

Proof. Let un,mbe as in Lemma 3.3.1 for Fu,m. Then D(gy, ) =2n1(Fa,m).
Put wm =gy, ,,/T(Fn,m). Then wume My(R) and #n =1 on Fum and harmonic
in R— Fyu,m and

D(um) =2 ﬂ/T(Fn,m).

By Lemmas 1.2.1 and 2, there exists f in M(R) such that f=1 on U, — Rm
and 0 on 4. Hence by Lemma 1.4.2, there exists v, M(R) such that vm=1
on Up—Rm and v,,=0 on 4 and v, is harmonic in R — (Us— Rn). Then by

applying Lemma 1.4.2 for K = F, ., we get
D(sm) < D(vm).
Again by applying Lemma 1.4.2 for K= Fp,m+p and v, and vy,
Dr(vm = vms+p) = Dr(vm) = De(vmsp).

Hence (vm)m-1is D-convergent. By Lemma 1.2.4, s> vm+p on R and so v =
limmv, is a harmonic function on R and so v = BD-limmv,,. Thus v M(R)
or v is continuous on R* and 0 <v < vy, implies v=0 on 4. Hence by Lemma
1.2.4, v=0 on R. Thus BD-lim v,,=0. From this,

0 < lim supm D (#%y) < limg D(vm) = 0.
Therefore, we obtain
lim infny(Fp,m) =limm2 7/ D(s) = o, Q.E.D.
ProrosiTION 3. o(In) =0 (n=1,2,...).

Proof. By Proposition 2 in Section 3.1 and Lemmas 3.3.2 and 3.4.3, we
get the relation

(') =7(Ip) = ont(Fpm) = OﬁT(Fn,m).
Hence by Lemma 3.4.4, we get, by making m /" «, o(Iy) = . QE.D.

IV. Proofs of Theorems 1 and 2

4.1. By Proposition 3, p(I') = . Since p(I's) =limmem(I»), we can find
an increasing sequence (m)%-:1 of positive integers such that
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om(Tn) >2F (B=1,2,...).

By the definition of pm,(I'x), we can find m points p*; (i=1,2, ... ,m) in
I, such that

mic
infper, 21 g(p, pimy > 2%my,
Then the function
mg
en1(p) =27""'mi g (B, 27D

is continuous on R* and harmonic on R and e, x(#) >1/2 for any p in I's. Since
&(z0,q) is finitely continuous in g on I, g(z), ) < co< o for any ¢ in I. Hence
enk(2) < co/2¥** and so

en(2) = gen,k(z)

N
is a positive harmonic function on R. Let p&TI's. As En(2)>k§:_|:en,k(2) on R

for any positive integer N. Hence

y N
lim infrszopen(2) =) en k(p) > -5
k=1

Next by making N/ «, we get
limpszpen(z) = o (peTly).
Now we put, by noticing e,(z)<c (n=1,2, ...),
e(z) = %2’”en(z)
on R. Then e(z) is a positive harmonic function on R. Let pIi. Then pe
I'» for some n. Since e(z) >27"e,(z) on R, we get
lim infrozope(2) =277 limgszopen(z) = .

Hence we have
(4.1.1) limgszape(z) = 0 (peT).

4.2, we denote by e(p € R*) the unit positive regular Borel measure such

that es(p) =1 and e,(R*— (p)) =0. We set

> e PR
p=20 20 2027 e
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Then 4 is a unit positive regular Borel measure on R* with S.Cl, and
#(R*—Ty) =0 such that

e(z2) =L g(z, q)du(q).

Clearly, we can write
"= E g

where (¢g:)%, is the sequence of points in Iy which is a rearangement of (pi')),

and where ()i, is the sequence of positive numbers such that 3¢ =1 which

i=1

-n-k-1

is given by ¢, =2 my' with gi =Py’

We shall prove that this # is required measure in Theorem 2. Clearly s
satisfies (4) and (5). Notice that
e(z) = ‘E tig(z, gi).
=1

4.3. Now we show that D(e(z)N¢)<2nc (¢>0) and e(z) is continuous
on R* and e(p) =0 on 4 and e(p) = = on Iy, ie. u satisfies (6), (7), (8) and
(9) in Theorem 2.

Let » be an arbitrary but fixed positive integer. We set

%(2) =i.:tfg(z, a)

and
dy(z) = *dx(z).

Then we can use x+ 4y as local parameter at each point of R except at most
a countable number of isolated points in R where dx(z) =0. We put

L(vc)=21 . | *dg(z, gi) |,
where a« >0 and we assume that de=0 on (z; x(z) =a). As we have
— SR ;
Lla) = Sx=¢(§|5;cg(z, @) )dy,

so by Schwarz’s inequality, we obtain

(L(a))*< (S (é}l.a%g(z, qi) |2)dy)-nsx=ady

xX=a ‘i=1

S(S (23| grad g(z, ¢:) *dy) "L *dx.

X=a =1
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Notice that except at most a countable number of « >0, dx=0 on (z; x(z) = a).
By (g.3), (g.7) and (g.9) in Proposition 1, x#(2) is contiunous on R* and
vanishes on 4 and x(z) Nce M(R) (¢>0). Applying (1.4.2) in Lemma 1.4.3
for K=(peR*; x(p) =a) and (x(2) Na)/a, we get

«*Dp(xNa) = Da((xN )/a) = | *d(x/a) < .
Hence we have

(4.3.1) Du(xN a) =aS *dx < oo,

x=a

Thus if ¢ <a <c¢', where dx=0 on (2; x(2) =¢'), then

5 *dx =a 'Dr(x Na) < ¢ 'Da(xN¢') < o,
X=a

Therefore, we get

n

(L(a))* < nc™'Dr(x N c')f >llgrad g(z, g) ’dy,

X=at=1

if c<a<c. Hence
(4.3.2) [ @ear<ne'Daxnen - 31D(glz 0) Nt < o
c=x=c’ i=1
Here we used (g.7) in Proposition 1 and the fact that
c’ n
S daf_g (2|gradg(z. ai) Iz)dy
c X=a ‘i=1
= EH |grad g(z, ) | dxdy
{=1 c=x=cl
gi}“ |grad g(z, @;) > dxdy.
=1V x=c’
As g(z.g) <c'ti' on (zeR; x(2) <) (i=1,2,..., n), so
H | grad g(z, ¢) I?dxdy<Dr(g(z, g) Nc'ti") <2 nc'ti’.
Vx=c’
Hence we get (4.3.2). From (4.3.2), we get L(a) < « or
(4.3.3) [ la*ez a)i<o  G=12,...,m

o

for almost every c<a<c¢' and so for almost every a>0. For the sake of

simplicity, we say that a« >0 is regular for %(z) if dx*0 on (z€R; x(2) = a)
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and (4.3.3) holds. We notice that the totality of regular positive numbers
are dense in the totality of positive numbers.
Now let ¢>0 be regular for x(z). Then by (4.3.1) and (4.3.3), we get

(4.3.4) Da(xne)=cl *av=c3it{ *daz a0,
x=c i= xX=C

Let a>cti' and g(z,q:) %0 on (z€ R; g(2, g¢i) = ). Then the interior of K' =
(pe R*; x(p)=c) contains K= (p e R*; glp, ¢;) =a). Since

S |*dg(z, gi)]| < =
x=c

by (4.3.3), we can apply (1.4.2) and (1.4.3) in Lemma 1.4.3 for K and X'
and (g(z, ¢;) Na/a) and so we get

| fda gz a0) = *ala gz a0 = *da'glz a))
= Dr_x(ag(2, ;) = Dela™(g(z, g) Na))

or
Sx=c*dg(2, g)=a 'De(g(z,g) Na)<a'*2rna =2m.
Hence by (4.3.4), we obtain
Dr(xN¢)=¢ gtfjx=c*dg(z, qi) =2 mg t; <2 me,
ie.
(4.3.5) DR((‘EIItig(Z, g))Ne)<2rme (n=1,2,...)

As (d((z;tig(z, @) Nc))n-1 converges to d(e(z)Nc) on R except the set

(z; e(z) =c¢) for each local parameter z on R, so by Fatou’s lemma,
(4.3.6) Dgle(z) Nc) <2me.

If ¢>0 is not regular for x(z), we choose regular c¢,>0 for x(z) such that
¢n ¢, then Dgr(e(2) N¢)< Dzr(e(2) Necn) < 27mca. Hence by making n oo, we
get (4.3.6) for any ¢>0. This is (6) in Theorem 2. From this, by Lemma
1.3.1, e(z) is continuous on R* which is (7) in Theorem 2. From (4.1.1),
e(p) = » on I, which is (8). Clearly
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Dx((:Elt,‘g(z, g Nec—e(z)Ne)>0 (n- )

for any compact K in R (cf. p. 78, Satz 7.4 in [11). Hence by Lemma 1.4.1
with (4.3.6), e(z) € Ma(R), or e(p) =0 on 4, which is (9) in Theorem 2. Thus
we proved Theorem 2 completely.

4.4. Theorem 1 follows immeadiately from Theorem 2. In fact, assume
that (zx)n-1€ Z(R). We show that lim,,«g.(z,) = . If this is not true,

then we can find a subsequence (wx»)n-1 of (2,)5-; such that
0<limuso gu(wn) =b< oo,

Clearly (wn)n-1€ Z(R). Let p, be an accumulation point of (wx)s-:,. Then
since

lim infye @(wn, 20) >0,

we conclude that po=T,. Let 4= (1) be the totality of neighborhoods of p, in
R* Then T=4x(1,2,3,...) is a directed set if we define that ¢= (4, n)>
t = (2, n) if AcA’ and n=>n'. For each t= (4, n), (w)21N (A —R)x0. We
choose a point w: in (w,)o-; N (X — R,). Then clearly limserw: = po. Moreover,
let [#]1 =# if t = (4, n). Then limies[#]= . Hence by limu.gulw,) =5, we
get limser g.(we) =b< . On the other hand, since g, is continuous on R* and

g.= o on Iy we get
oo = gyl po) = 1im;ergu(w¢) =b< o,

which is clearly a contradiction and so g, satisfies (1) in Theorem 1. Since
D(g.N¢c) <2 ne, g, also satisfies (2) in Theorem 1.

Finally we show that g, is singular, which is (3) in Theorem 1. Let ¢>0
and 2 be a non-negative harmonic function on R with 2 <g.,Nc on R. Since

&.=0 on 4, we get
limRBz-)qh(z) =0

for any ¢ in 4. Hence by Lemma 1.2.4, h(2) =0 on R. Thus the greatest
harmonic minorant of g, Nc¢ is identically zero and so g, is singular.

Thus # =g, is the required function in Theorem 1. This completes the
proof of Theorem 1.
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