
PROBLEMS FOR SOLUTION 

P 86. Let ÏÏ b e a projectivity on a line in the rea l pro
jective plane. Show that if a single point P has period n > 1 
under TT, then TT is periodic of period n, and every non-
invariant point has period n. 

John Wilker, University of Toronto 

P 87. Let 0 < a < a < . . . be an infinite sequence of 
——«—• ^ ^ 

integers and let d = [a , . . . , a ] be the least common multiple 
n 1 n 

of a . , . . . , a . Prove that for every e > 0 , 
1 n 

00 

s d" e 

converges. 

P. Erdôs , McMaster University 

P 88. Let G be a graph with n ver t ices and more than 
k k(n-k) + ( ) edges. Prove that G has a subgraph G each 

ver tex of which has valence > k . 

P. Erdos , McMaster University 

P 89. Exercise 2, p. 132, in Distance Geometry by 
L. M. Blumenthal reads: 

Prove that for p = 3, 4, 5, 6, the minimum of the maximum 
angle determined by planar subsets of p points is (p-2)ir/p. 
Show that this formula fails for p = 7. (The problem of deter
mining the desired minimax is unsolved for p > 6. ) 

Find the minimax for p = 7. 

Robert A. Melter, University of Massachusetts 
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P 90» Let log x be the log function iterated s times, 

and let m be the smallest positive integer such that log m > 1. 

Then show that the sum 

00 

* ! T 
k=m k(log k) (log2k) (Iog3k) (log4k) 

is approximately 1,- cor rec t to more than one million decimal 
places! 

John D. Dixon, California Institute of Technology 

SOLUTIONS 

P 75. In a cer ta in isolated community the mar r i age 
contract is for one year only. So great is the satisfaction with 
this a r rangement that each January 1st the entire population, 
consisting of an equal number of men and women, gathers to
gether and m a r r i e s (in pairs) for the coming year . It may happen 
that a couple m a r r y who have been m a r r i e d to each other in the 
past , there being no stigma attached to this . A "marr iage graph" 
may be defined as a biparti te graph whose two ver tex sets cor
respond to the men and women and in which two ver t ices a re 
joined by an edge if and only if the corresponding people have 
been m a r r i e d to each other at least once. 

What a re necessa ry and sufficient conditions for a bipart i te 
graph G to be a "mar r iage graph" of some such community for 
a period of n yea r s during which the population remains fixed? 

J. W, Moon, University College, London 

Solution by the proposer . 

Let the bipart i te graph G be such a "mar r i age graph"; 
then the degree X(x) of each ver tex x can be at most n, the 
number of yea r s involved. For any subset M of one of the 
ve r tex sets of G denote by M the complement of M in that 
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ver tex set, by Mf the set of ver t ices joined by an edge to at 
least one element of M, and_by c(M' , M) the number of edges 
joining ver t ices of Mf and M. Since there are n | M | m a r 
riages between members of M1 and M and at least c(Mf , M) 
between members of Mf and M it follows that 

(1) c(Mf ,M) + n | M | < n|M f | , 

the total number of mar r i ages involving members of M1 . 

Now let G be a bipartite graph no ver tex of which has 
degree greater than n and which satisfies (1) for all subsets 
M. We will presently show that this implies that it is possible 
to assign a positive integer to each edge in G so that the sum 
of the integers assigned to the edges incident to any ver tex 
equals n. When this is done add new edges joining ver t ices 
already joined until the number of edges joining any two ver t ices 
equals the integer assigned to the edge originally joining them. 
The resulting bipartite graph is regular of degree n and hence 
its edges may be coloured with n colours in such a way that 
no two edges with the same colour have a ver tex in common. 
This will suffice to show that G is a "marr iage graph", since 
the edges of the if th colour can be interpreted.a s representing 
the mar r i ages of the i1 th year , for i = i , 2 , . . . , n . 

It remains to prove the above asser t ion regarding the 
positive integers . Let X and Y be the two ver tex sets of G. 
From (1) it follows that X and Y have the same number of 
e lements . Form a t ranspor t network from G by adding a 
source z which is connected with ver tex x by an edge of 
capacity n-X(x) for each x in X, and a sink z1 which is 
connected with ver tex y by an edge of capacity n-X(y) for 
each y in Y. Let each of the edges originally in G have 
capacity n. From the saturation theorem for network flows 
it follows that there will exist a flow from z to zf which will 
saturate the ingoing and outgoing edges if for each subset M 
of Y the maximum amount F(M) of mater ia l that can flow 
into M is not less than the demand d(M) of M. It is not 
difficult to see that 

d(M) = 2(n-X(y)) = n | M | - 2X(y) 

and 
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F(M) = 2(n-X(x)) = n|Mf | - c(M»,M) - SX(y) , 

where the sums are over all x in M1 and y in M. The 
fact that G satisfies (1) implies that F(M) > d(M) for all sach 
M and hence the required flow exis ts . This flow defines non-
negative integers which may be assigned to the edges in G so 
that the sum of the integers assigned to the edges incident to any 
ver tex equals n minus the degree of the ver tex. Adding one to 
each of these integers gives the positive integers with the proper
ties originally described and completes the solution of the probLem. 

P 76. If H is a normal subgroup of a group G then» 
in par t icular , 

(1) H commutes with every subgroup K of G, i . e . 
HK = KH ; 

(2) H is subnormal in G» i . e . there exists a normal 
ser ies from G to H. 

Thus these two proper t ies a re each generalisations of the 
property of being normal . Show that for any finite group G, 
any subgroup H which has property (1) also has property (2). 

J . D. Dixon, California Inst, of Technology 

Solution by Mrs . £ . Rowlinson, McGill University. 

We prove (2) under the weakened assumptions 

(i) [G:H] < « , and 

(ii) Hg H = H Hg for all g c G. 

Since [G:H] < oo we can form a normal ser ies 
G = N D> . . . O N where N = N, } H and N contains no 

1 k k — 
proper normal subgroup containing H ; we will prove that 
N = H, thus showing that H is subnormal in G. 

L»et the complete set of conjugate subgroups of H in N 
n n 

be H, H , - . - f H r . Since RnH = H if for all n e N, 
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Hn Hn = Hn H n for all n. n1 € N. The complex 
n 2 n r 

H = H H . . . H is therefore a group; moreover H <3N. 
0 o — 

n2 n 1 
But H C H , and so H = N. Let H = H H . . . H r " ; 

— o o 1 
n 

this is also a group, and H.H =H = N. Thus, since 
1 1 o 

n * N, there a re elements h and h in H, such that 
r 1 Z 1 

-1 n 
h n h n - n . Therefore n € H , H =H , and 

1 r 2 r r r i l l 
n 2 n 2 

H = H = N. Similarly, let H = H H . . . H r ° ; 
1 o 2 n 1 

H H r " =H, = N, thus n c H , and so H = HA s H = N. 
2 2 1 r - 1 2 2 1 o 

Continuing we obtain H = H = . . . = H =N, as required. 

Also solved by T. Hawkes, C.G. Thomas, H. Simon, 
and the proposer . Professor Thomas pointed out that the 
original problem follows from resul ts of Ore [Duke Math. J. , 
5(1939), 431-460], and that a generalization of these ideas is 
given by Kegel [Math. Zeit. , 78(1962), 205-221]. 

P 77. Prove that n > 3 lines in the projective plane, 
no three concurrent , determine at least n t r iangles . 

Leo Moser, universi ty of Alberta, Edmonton 

Solution by B. Grunbaum, University of Je rusa lem. 

Using the notion of convexity, we prove the stronger 
statement: în any general configuration of n > 3 lines in the 
projective plane, every line is (edge) incident to at least 3 
t r iangles . 

Without loss of generality assume n > 4. Take any of 
the lines as the line at infinity of a Euclidean plane, and 
consider the (n- l)(n-2)/2 intersections of the remaining l ines. 
JLet C be the convex hull of this point-set. Then C has at 
least 3 ver t i ces . Obviously, to each ver tex of C corresponds 
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exactly one triangle in the configuration of lines (formed by the 
two lines through the vertex and the line at infinity). 

There need be no more than n t r iangles ; this may be 
shown by different examples. The following shows also that 
one may find, for each n, n lines in general position such 
that each of the regions determined by them has at most 5 sides. 

We construct , by induction, a family of n such lines 
with the additional property (which is probably automatically 
satisfied, but let us require it anyway) that a tr iangle is edge 
incident to a quadrangle. (The case n =4 is t r ivial . ) If n 
such lines a re given, take a point in the common edge of the 
tr iangle and the quadrangle, and through it a line sufficiently 
close to the ca r r i e r - l i ne of the edge. The triangle then yields 
a tr iangle and a quadrangle, the quadrangle a triangle and a 
pentagon, and our line cuts off a quadrangle from each of the 
remaining (n-2) regions through which it pa s se s . 
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