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Abstract

Let /(/) ~ 2 r (ancos nt + bnsin nt) = 2 ?An(t), 0(/) = <j>(x, t) = \{f(x + ,) + / ( * - 0} ,
and /(M>) = exp{H>(log w)""} p ^ 0, w |S ,4 > 1.

In 1951 Mohanty proved the following theorem:
Ift~l<p(t)eBV(O, n), 8 > 0, rte/i 2/fn(*) e | R, l(w), 1 | , for p = 1 + l/<5.
In this paper a general theorem on summability | R,l (w), 1 | of 2 An(x) has been given which

improves upon Mohanty's result in different ways (see Corollaries 1, 2 and 3) and it is also shown
that some of the results of this note are the best possible.

1. Definitions and notations

Let X = A(w) be continuous, differentiable and monotonic increasing in
(C, oo), where C is some positive number, and A(w) -» oo as w -» oo. An infinite
series 2 an is said to be summable | R, X, r | , r > 0, and we write 2 an e | R, X, r |,
if

J' 2 {X(W) - X{n)}r-lX{n)an dw < oo

where,4 is a finite positive number(Obrechkoff (1928) and (1929), Mohanty(1951)).
Let f(t)eL( — n,n) and be a 27t-periodic function. Without any loss of

generality we may assume that the constant term of the Fourier series of f(t) is
zero, so that

OO 00

f(i) ~ 2 (ancosnt + bnsinnt) = 2 An{i).
I I

We use the following notations:

0(0 = i{/(*+0+/(*-*)},
l(w) = exp{w/(logw)"}, /J ^ 0, w ^ A > 1,
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g(t)eL( — n,n), an even and 2n-periodic function and

g(t) ~ \d0 + X dncosnt,
1

y(w) = (logw)",

e = {sn} a sequence of numbers,

F(w,t,l,g,e) = ( ^ ~ V ! Z (l(w) ~ X(n)y-1X(n)sn f g(u)coSnudu,
\ *• \w) 1 n<w Jo

K, an absolute constant, not necessarily the same at each occurrence.

2. Introduction

Mohanty (1951) proved the following theorem concerning summability
| R, l(w), 1 | of a Fourier series at a point.

Theorem A: If rs<t>(t)eBV(0,n), 8 > 0, then I An(x)e |R,l{w), 11, for
P = 1 + l/<5.

Elsewhere (Dikshit (1965a)) the following theorem also has been given in
this direction.

Theorem B: There exists a function/(0 such that (j>(i)logklt e BV(0, n) but
the series X An(x) $ \ R, l(w), 11, for p = 1.

The object of this paper is to further investigate the summability | R, l(w), 11
of Fourier series. We first prove a general theorem and then deduce as corollaries
some results which improve upon Mohanty's theorem in two ways. Firstly, we
relax the condition on the function <f>{i) and get the same conclusion as in Theorem
A (Corollary 1). Secondly, we extend the scope of summability in the sense that /?
may be taken to be any non-negative number, that is, it need not be only greater
than 1 (Corollaries 1, 2, and 3), and in the case p > 1, we have a much stronger
result.

It may be remarked that when /? g 0, the summability | R, l(w), 11 becomes
ineffective in the sense that it sums only absolutely convergent series (see Mohanty
(1951), and Dikshit (I960)).

We have further shown that some of our results are the best possible in a
certain sense: t] > 0 in Corollary 2 (and 3) may not be replaced by t\ = 0 or, the
case p = 1/5, 0 < 8 < 1, of Corollary 1 cannot be extended to cover the case
3=1.

For some further existing results on summability | R, l(w), 11 of Fourier series,
a reference may also be made to an earlier paper by the author (Dikshit (1965)).

We prove the following theorem:

T H E O R E M : Let 8 ^ 0, p ^ 0 and a. be ( i ) (8p - 1) when p>0,0<8<l,

( i i ) a number < — 1, when 8P = 0 and ( i i i ) any number < P — 1, when 8^.1.
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Ifr*<l>(t)eBV(O,it), then I An(x)(logn)'e |*,exp{w/(logw)'},l|.

3. Lemmas

We shall make use of the following lemmas towards the proof of our theorem.

LEMMA 1. (Tatchell (1953)). Necessary and sufficient conditions for

a/x) = r h(X,
Jo

be defined and e L[0, oo) whenever s(t) e BV[0, oo) are that
(i) h(x, t) be a function of t continuous and bounded on [0, oo) whenever

x ^ 0,
(ii) h(x, t) be a function of x measurable on [0, oo) whenever t ^ 0, and
(iii) there be real K, independent of t, such that

f \h(x,t)\dx ̂  K,
Jo

whenever t >: 0.

LEMMA 2. Let g(t)eL( — n,n) be an even periodic function such that
I dnene\R,X,r\, r > 0. / / {fir(0}"VO)eJ5F(0, n), then in order that
£ An(x)en e | R, A, r | , it is sufficient that

/ • OO

I \F(w,t,X,g,e)\dw

be uniformly bounded in tfor 0 ^ t ^ n.

PROOF: We have

= (j>(t)cosntdt
Jo

r /•» "lit /« * r ,-t -i

= s ( 0 g(u)cosnudu \ — I I I g{u)cosnudu \ds(i)
I Jo Jo Jo LJo J

where 5(0 =
Therefore X i ^ K e I/?,A,r I if

f T ^ v ) } I ? (A(W) " X(n)Y~ ̂ " ^ £ [ J 0(M)COS "" d" ] rfs(01dw < K'
that is, by Lemma 1,
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/ • CO

\F(w,t,l,g,e)\dw
JA

is uniformly bounded in t for 0 ^ t ^ n.

LEMMA 3. / / g(t) = |t|*, te\_-n,n\, 8 > 0, then dn = O(n~") whers
8' = min(l + 8,2).

The case 0 < 8 < 1 is due to Mohanty (1951), and the general case is
proved similarly.

4. Proof of the Theorem

It is evident that it is enough to consider for 0 ^ 5 ^ 1. After Lemmas 2 and
3, it is sufficient to show that

' (w) !„<

uniformly in t, 0 ^ f ^ TT.

As wacos nu du = + 1 uacos nu rfu
Jo L Jo Ji/nJ

= Kli + 72, say.

Since l(w)y(w)jw1+s is a logarithmico-exponential function which is ultimately
increasing, we have

fwKxMx)
1 ^ "

This also terminates the proof of the theorem for the case 8 = 0, and hence also
for the case 8fi = 0.

For 8P > 0

\JA h
'(vv) sinnf

dw

IK) n<w «

= 73 + / 4 , say,

where T = expCf"1^).

https://doi.org/10.1017/S1446788700023570 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023570


[5] Riesz summability of Fourier series 101

Now

A I (W) JA

JA x Jx I2(w) w

Hence to complete the proof of the theorem it is sufficient to show that / 4 is
uniformly bounded in t, 0 < t g n.

As l(n)y(n)ln is increasing for n _ n0, n0 a finite number, by Abel's Lemma

-^i £ Kl(w)y(W)l(wt).
fl I

Therefore,

r i

Jt w

J» w

^ K2,

and the proof is completed.

4.1. The following results are obtained as special cases of our theorem.

COROLLARY 1: Let 0 < d ^ 1 and rd(j)(t)eBV(0,ii). Then

Z An(x) e | R, exp{w/(log w /} , 11,

where p ^ l/d, 6 ^ 1, and P > 1 w/ien (5 = 1.

The inequality in '/? = 1/^' is an outcome of the 'second theorem of consis-
tency' for absolute Riesz summability (see Dikshit (1958)).

COROLLARY 2: IfTl4>(t)eBV(0,it), then

1 4,(x)/(logn)»e |/?,exp{w/logw},l|, for n > 0.
2

COROLLARY 3: / / <f>(t)eBV(0,n), then I ^= 2^n(x)/(logn)1 +^, ^ > 0, is
absolutely convergent.

The result in Corollary 3 was first given by Cheng (1948) (see also Dikshit

(1961)).

4.2 P = l/<5 in Corollary 1 may not be extended to cover the case 5 = 1 , that

is, n > 0 of Corollary 2 may not be replaced by n = 0. For, consider
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' 0 , when te[-rc/2,re/2]

<K0 - fit) =

so that

- , when |(|e(7r/2,n],

n - (-l)"cos nt
4 + .£ 12^1)-

Here r ' 0 ( 0 e BF(0,7t), for each 8 e ( - oo, oo), but

2 T ^ r r T i s|K,exp{w/logw},l|,

for otherwise, by virtue of a summability factor theorem (Dikshit (1958)), we get

i.e. the series is absolutely convergent.
This example also shows that t] > 0 of Corollary 3 may not be dropped even

if '<j>(i)eBV(0,ii)' is replaced by

T'<l>(t)eBV(0,n), 8 > 0'.
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