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Supersymmetry: boson–fermion
unification
The previous chapters, and foremost Chapter 8, show that the development of fundamental physics
is inherently based on the idea of unification, and in three related but distinct ways [☞ Conclu-
sion 8.1 on p. 300]. However, one aspect remains in which the objects in fundamental physics, as
discussed so far, remain separated:

1. The basic building blocks of matter – quarks and leptons – have spin 1
2 h̄ and so are fermions:

they are subject to Pauli’s exclusion principle (no two fermions can coexist in the same state)
and an ensemble of fermions obeys the Fermi–Dirac statistics.

2. Interaction mediators – gauge and Higgs1 fields – have integral spin and so are bosons:
not subject to Pauli’s exclusion principle, their ensemble obeys the Bose–Einstein statistics;
infinitely many bosons in the same state form a Bose condensate.

Digression 10.1 The following parallel practically suggests itself:

1. Subject to Pauli’s exclusion principle, two fermions cannot be simultaneously
in the same quantum state, i.e., “in the same place” in the Hilbert space – just
as in classical physics two material objects cannot be simultaneously in the
same place in the real space.

2. Not subject to Pauli’s exclusion principle, two bosons can be simultaneously
in the same quantum state, i.e., “in the same place” in the Hilbert space – just
as in classical physics two interaction fields can be simultaneously in the same
place in the real space.

Also, matter (substance) elementary particles are fermions, and mediating elementary
particles of interaction fields are bosons [☞ Table 2.3 on p. 67]. As if, by extending clas-
sical physics into quantum, we transported the “events” of physics from spacetime into
the Hilbert space.

1 Recall Conclusion 7.4 on p. 265: Higgs bosons mediate the interaction of other particles with the true vacuum.

https://doi.org/10.1017/9781009291507.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.014


358 Supersymmetry: boson–fermion unification

This chapter offers a brief review of the only possible way to bridge this last divide: the sym-
metry transformations that change bosons into fermions and back. The so-extended symmetries of
spacetime are called supersymmetries.

The mathematical structure of supersymmetry is a kind of superalgebras, i.e., of supergroups,
which are abstract algebraic structures that mathematicians have studied since the 1960s. The
special property of supersymmetries among superalgebras is that they contain the Poincaré alge-
bra (i.e., group) in flat spacetime, as well as the corresponding generalization for anti de Sitter
spacetime2 or with so-called conformal symmetry. In 1971, Yuri A. Gol’fand and Evgeny Likhtman
discovered that supersymmetry [☞ Section 10.3] helps in dealing with divergences and renormal-
ization computations in field theory. Besides the conceptual importance, the aim of this chapter
is then also to show this practical aspect of supersymmetry application. The interested Reader is,
besides texts and monographs in physics [189, 387, 562, 560, 129, 76, 344, 308, 556, 516, 8] and
mathematics [178, 125, 535, 461], also directed to the on-line sources [144, 351, 356, 60, 19];
finally, Refs. [115, 186] give a detailed review of the effects and application of supersymmetry in
quantum mechanics.

— ❦ —

Supersymmetry that will be considered here is a global, i.e., rigid symmetry: the symmetry transfor-
mation parameters [☞ definition (10.62)] are constants over all spacetime. Of course, there also
exists a gauge generalization of supersymmetry, where the supersymmetry transformation param-
eters are free functions over spacetime, in perfect analogy with the procedure in Section 5.1. Such
a gauge, i.e., local supersymmetry, turns out necessarily to include gravitation, as well as interac-
tions that are mediated by spin- 3

2 gravitinos, the superpartners of spin-2 gravitons. The structure
of these models is a fascinating unification of gravitation and the gravitons with particles of lower
spin – including gauge 4-vectors, Dirac fermions and scalars, but is also technically much more
demanding than the material covered so far, so the interested Reader is directed to the abundant
literature, and especially to the textbooks [189, 562, 560, 76]. Besides, it turns out that these
“supergravity” models are – by themselves – neither renormalizable nor can they include all the
delicate details of the Standard Model without extension within superstring theory, which will be
reviewed in Chapter 11.

10.1 The linear harmonic oscillator and its extensions
Before delving into a review of concrete applications of supersymmetry in field theory and elemen-
tary particle physics, consider the appearance of supersymmetry in one of the simplest and most
familiar quantum-mechanical systems, in the supersymmetric extension of the linear harmonic
oscillator.

10.1.1 The harmonic oscillator
The linear harmonic oscillator is very well known and studied in full within every quantum me-
chanics course, so we recall only the basic relations, to set up the notation. With the standard
notation

[A, B] := AB−BA and {A, B} := AB+BA, (10.1)

2 The generalization of empty spacetime when the cosmological constant is positive (as is the case with the real spacetime
in which we live) is called de Sitter geometry, whereas the empty spacetime with a negative cosmological constant is
called anti de Sitter geometry [☞ relations (9.81)]. Supersymmetry turns out not to be definable in spacetimes with
de Sitter geometry (Λ > 0). Thus, the value of the cosmological constant is an indirect measure of supersymmetry
breaking, if the fundamental description of Nature indeed is supersymmetric.
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10.1 The linear harmonic oscillator and its extensions 359

in the “excitation representation,” we have

HLHO := 1
2 h̄ω{a†, a} = h̄ω(a†a + 1

2 ), [a, a†] = 1; (10.2a)

HLHO =
{
|n〉 : 〈n|n′〉 = δn,n′ , ∑

n
|n〉〈n| = 1, n, n′ ∈ 0, 1, 2, . . .

}
, (10.2b)

a|n〉 =
√

n|n−1〉, a†|n〉 =
√

n + 1|n + 1〉, (10.2c)

as well as
HLHO|n〉 = En|n〉, En = h̄ω(n + 1

2 ). (10.2d)

The ground state, |0〉 is characterized by the fact that

|0〉 : a|0〉 = 0 and E0 = 1
2 h̄ω �= 0. (10.3)

The Hilbert space (10.2b) is sketched in Figure 10.1(a), on p. 362. Since every observable physical
quantity F̃ for the linear harmonic oscillator may be expressed as a function of operators a, a†,
[ ✎why?] the relations (10.2a) and (10.2c) suffice to compute every matrix element 〈n′|F̃ |n〉:

F̃ =
∞

∑
p,q=0

cp,q(a†)p(a)q, 〈n′|(a†)p(a)q|n〉 =
{

Np,q δn′−p,n−q, q � n and p � n′,
0 otherwise,

(10.4a)

Np,q =
√

n(n−1) · · · (n−q+1)︸ ︷︷ ︸
q

(n−q+1)(n−q+2) · · · (n−q+p)︸ ︷︷ ︸
p

. (10.4b)

The linear harmonic oscillator is said to be completely solved.

10.1.2 The fermionic extension
Now extend the oscillator (10.2) with a degree of freedom represented by the operators b, b†,
which obey

{b, b†} = 1 and {b, b} = 0 = {b†, b†} ⇒ b2 = 0 = b†2, (10.5)

[a, b] = 0, [a, b†] = 0, [a†, b] = 0, [a†, b†] = 0, (10.6)

and where the Hamiltonian for the extended system is

HLHO+ = 1
2 h̄ω{a†, a} + 1

2 h̄ω̃[b†, b] = h̄
(
ω a†a + ω̃ b†b

)
+ 1

2 h̄(ω− ω̃). (10.7)

Just as in the well-known algebraic analysis of the linear harmonic oscillator, suppose that
the operator b†b (as it occurs in the Hamiltonian) has eigenstates

b†b |ν〉 f = ν|ν〉 f . (10.8)

Then,

b†b
(
b†|ν〉 f

)
= b†(1 − b†b)|ν〉 f =

{ b†(1 − ν)|ν〉 f = (1 − ν)
(
b†|ν〉 f

)
,

b†|ν〉 f − b†2 b|ν〉 f =
(
b†|ν〉 f

)
, b†2 ≡ 0,

(10.9)

computed in two different ways, produces the relation (1−ν)b†|ν〉 f = b†|ν〉 f . That is, ν b†|ν〉 f = 0,
so that

either b†|ν〉 f ≡ 0, or ν = 0 and b†|0〉 f ∝ |1〉 f . (10.10)
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360 Supersymmetry: boson–fermion unification

Similarly,

b†b
(
b|ν〉 f

)
=

{
b†b2 b|n〉 f ≡ 0, b2 ≡ 0,

(1 − bb†)b|ν〉 f = b(1 − b†b)|ν〉 f = b(1 − ν)|ν〉 f = (1 − ν)
(
b|ν〉 f

)
,

(10.11)

computed in two different ways, produces the relation (1−ν)b|ν〉 f = 0. Thus,

either b|ν〉 f ≡ 0, or ν = 1 and b|1〉 f ∝ |0〉 f . (10.12)

Consistently with these results, we have that

b|0〉 f ≡ 0, b†|0〉 f = |1〉 f , b|1〉 f = |0〉 f , b†|1〉 f ≡ 0. (10.13)

We define for the extended system:

|n, ν〉 := |n〉⊗|ν〉 f , n = 0, 1, 2, 3, . . . , ν = 0, 1, (10.14a)

which defines the b, b†-extended Hilbert space:

HLHO+ :=
{
|n, ν〉 : 〈n, ν|m, μ〉 = δn,mδν,μ, ∑

n,ν
|n, ν〉〈n, ν| = 1

}
, (10.14b)

where n, n′ = 0, 1, 2, 3 . . . and ν, ν′ = 0, 1, and where the energy levels are given as

HLHO+ |n, ν〉 = En,ν|n, ν〉, En,ν = h̄
[
ω(n + 1

2 ) + ω̃(ν− 1
2 )
]
. (10.14c)

The energy of the ground state, |0, 0〉, is

E0,0 = 1
2 h̄(ω− ω̃). (10.15)

Since n = 0, 1, 2, 3 . . . , it follows that the a†-excitations of the familiar linear harmonic oscillator
are not limited by Pauli’s exclusion principle, and so are identified as bosonic excitations/particles.
Since ν = 0, 1, it follows that the (single possible) b†-excitation does obey Pauli’s exclusion princi-
ple, and so is identified as a fermionic excitation/particle with which the linear harmonic oscillator
is extended.

The Hilbert space of this fermion-extended linear harmonic oscillator is sketched in Fig-
ure 10.1(b), where the white nodes represent bosonic states and the black ones are fermionic
states. In that figure, ω̃ is chosen to be equal to 4

5ω, so that the difference in the energies of the
ground state and the first fermionic excitation, |0, 1〉, is 4

5 of the energy gap between the ground
state and the first bosonic excitation, |1, 0〉.

Digression 10.2 By the way, there exist two distinct conventions for Hermitian conjuga-
tion:

1. the physicists’ rule [189, 76], where (XY)† = Y†X† regardless whether “X”
and “Y” are commuting or anticommuting objects;

2. the mathematicians’ rule [178, 124], where (XY)† = (−1)π(X)π(Y)Y†X† and
where π(X) = 0 for commuting X and π(X) = 1 for anticommuting X.
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10.1 The linear harmonic oscillator and its extensions 361

These rules coincide except for anticommuting (fermionic) objects, χψ = −ψχ:

physicists’ rule: (ψχ)† = +χ†ψ†, = −ψ†χ†, (10.16a)

mathematicians’ rule: (ψχ)† = −χ†ψ†, = +ψ†χ†. (10.16b)

The product of two real fermions is imaginary by the physicists’ rule, but real by the
mathematicians’ rule. Herein, we adopt the physicists’ practice and rule.

10.1.3 The supersymmetric oscillator
With the operators a, a†, b and b†, we define the bilinear operators (b†a) and (a†b), for which we
compute

[HLHO+ , b†a] = h̄(ω̃−ω)b†a, [HLHO+ , a†b] = h̄(ω− ω̃)a†b, (10.17)

{a†b, b†a} = a†a + b†b. (10.18)

This shows that the choice ω̃ → ω gives a special case, where the operators

H := h̄ω(a†a + b†b), Q :=
√

2h̄ω a†b, Q† :=
√

2h̄ω b†a, (10.19)

define the so-called supersymmetry algebra, for which

{Q†, Q} = 2H, [H, Q] = 0 = [H, Q†] (10.20)

are the defining relations. The last two relations show that the operators Q and Q† generate sym-
metries of this specially tuned (ω̃ → ω) fermion-extended oscillator. The first relation identifies
the operators Q and Q† as square-roots of this specially tuned fermion-extended Hamiltonian H.

Finally, we compute

Q†|n+1, 0〉 =
√

2h̄ω(n+1)|n, 1〉, and Q|n, 1〉 =
√

2h̄ω(n+1)|n+1, 0〉, (10.21)
1
2

{
Q†, Q

}|n, ν〉 = H|n, ν〉 = h̄ω(n+ν)|n, ν〉, (10.22)

so that

En,ν = h̄ω(n+ν). (10.23)

Thus, for every n = 0, 1, 2, 3 . . . , the states |n+1, 0〉 and |n, 1〉 form a degenerate pair of states that
the operators Q and Q† map one into another, as is shown in Figure 10.1(c).

It is now clear that the ground state, |0, 0〉, is the only non-degenerate state and that it has a
vanishing energy; the spectrum in Figure 10.1(c) fully exhausts the Hilbert space (10.14b) for this
specially tuned (ω̃ = ω) extended harmonic oscillator. The action of the operators Q, Q† on the
Hilbert space (10.14b) is manifestly a symmetry. With respect to this symmetry, only the ground
state |0, 0〉 is invariant, while for every n = 1, 2, 3 . . . ,

(|n+1, 0〉; |n, 1〉) is a boson–fermion pair of
superpartner states, a so-called supermultiplet.

Definition 10.1 A symmetry is called supersymmetry if (1) it maps bosonic states into
fermionic ones and vice versa, and (2) it is generated by operators Q and Q† the anticom-
mutator of which contains the Hamiltonian H of the system.
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Figure 10.1 A sketch of Hilbert spaces: (a) the linear harmonic oscillator, (b) its fermionic extension
with ω̃ ≈ 4

5ω, (c) its supersymmetric fermionic extension.

Digression 10.3 The dimensions (units) of the quantum-mechanical supersymmetry
generator follow directly from relations (10.20), and are given as [Q] =

√
ML
T .

The system described by the creation and annihilation operators, a†, b† and a, b respectively,
for which the (anti)commutation relations (10.2a) and (10.5)–(10.6) hold and the Hamiltonian is
specified by the first of equations (10.19), is the supersymmetric harmonic oscillator. In the general
case the states are represented by wave-functions, which are functions of time and of the general
form:

φ(t) := ∑n φn(t)|n, 0〉, and ψ(t) := ∑n ψn(t)|n−1, 1〉,
= ∑n φn(t) (a†)n√

n!
|0, 0〉, = ∑n ψn(t) (a†)n−1b†√

(n−1)!
|0, 0〉, (10.24)

where φ(t) is a bosonic state and ψ(t) a fermionic one. Let B and F be the vector spaces spanned
by bosonic and fermionic wave-functions, respectively. Then the operators Q and Q† map

Q ⊕ Q† : B :=
{

∑
n
φn(t)|n, 0〉

}
 F :=

{
∑
n
ψn(t)|n−1, 1〉

}
, (10.25)

except for the ground state, |0, 0〉, which both Q and Q† annihilate. The ground state thus forms the
kernel of the supersymmetry mapping (10.25) [☞ the lexicon entry for “kernel,” in Appendix B.1].
Since the mapping Q ⊕ Q† acts both ways, the kernel could – in general – have both a bosonic and
a fermionic component, so the precise statement is that{

φ0(t)|0, 0〉} = ker(Q ⊕ Q†) ∩B. (10.26)

The function φ0(t)|0, 0〉, as a special mode in the expansion (10.24), is often referred to as the
“zero mode.”

In the general supersymmetric case3 it is possible that the mapping (10.25) has both bosonic
and fermionic components in the kernel, i.e., it is possible that there exist nB bosonic and nF

fermionic states that are annihilated by both Q and Q†. With such a generalization in mind, we
have:

3 A quantum-mechanical system with the general Hamiltonian for which there exist adequately general operators Q and
Q† so that the relations (10.20) hold is supersymmetric [☞ Refs. [115, 186] for a classification and examples].
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10.1 The linear harmonic oscillator and its extensions 363

Definition 10.2 (the Witten index) For a quantum-mechanical system with a Hamiltonian H
and a Hermitian-conjugate pair of operators (Q, Q†) that satisfy the relations (10.20), define

ιW := nB − nF (the Witten index), (10.27)

nB = dim
(

ker(Q ⊕ Q†) ∩B
)

, nF = dim
(

ker(Q ⊕ Q†) ∩F
)

, (10.28)

where B and F are the vector spaces of bosonic and fermionic states, so that the Hilbert
space of the system is H = B ⊕F , and (Q ⊕ Q†) : B  F .

In 1981, Edward Witten showed that this index – by definition integral – can change only with
radical changes in the Hamiltonian, such as the radical change in the potential from the harmonic
1
2 mφ2 to the anharmonic 1

4λφ
4. For example, if the potential is given as

V(φ) = 1
2

(
mφ+ λφ2)2, with |m|, |λ|<∞, (10.29)

the Witten index continues to have the constant value (ιW = 2) for arbitrary finite values of the
parameter m while λ �= 0. The value of the index changes discontinuously (into ιW = 1) in the
parameter subspace where λ = 0. The Witten index is similarly constant with almost all continuous
changes in parameters such as the parameters in the Lagrangian density (7.9). Using this stability,
Witten proved the theorem within field theory [573]:

Theorem 10.1 (Witten) Supersymmetry may be broken spontaneously only if ιW = 0. Con-
versely, supersymmetry must remain an exact symmetry while ιW �= 0.

This theorem then automatically also holds within quantum mechanics (adequate for this section),
and within statistical physics.

That is, the Witten index ιW is an obstruction for supersymmetry breaking. By definition in-
tegral, ιW cannot change continuously with continuous changes in parameters and so can change
only abruptly. This property makes the Witten index one of the first examples of quasi-topological
invariants in physics, after Dirac’s quantization of the magnetic monopole (5.98) charges. How-
ever, the relationship between the Witten index and (super)symmetry breaking is definitely the
first example where such an invariant plays the role of an obstruction for a physical process such
as the breaking of a symmetry and the accompanying phase transition.

Digression 10.4 It proves useful to list the parameters of a model, then designate the sub-
spaces of this parameter space according to the values of the Witten index; this produces
the first, rough sketch of the phase diagram for the system.

If the parameter space has at least two subspaces (two phases), each labeled by “its”
value of the Witten index, then a change of the parameters that moves from one into the
other subspace describes a phase transition. In a phase transition, the Hilbert space of
the model changes radically: if we treat the potential (10.29) quantum mechanically, so
φ = φ(t), the radical change is seen from the fact that:

1. For λ �= 0, the Hilbert space Hλ �=0 consists of wave-functions that must decay
asymptotically as exp{−α|φ|3}, for φ→ ±∞ and a suitable α > 0.

2. For λ = 0, the Hilbert space Hλ=0 consists of wave-functions that must decay
asymptotically as exp{−β|φ|2}, for φ→ ±∞ and a suitable β > 0.
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Since exp{−α|φ|3} decays faster than exp{−β|φ|2}, then Hλ �=0 �Hλ=0, and the Hilbert
space over the generic part of the parameter space (where λ �= 0) is thus more limited
than the Hilbert space over the special subspace where λ = 0, and where the Hilbert
space is strictly larger.

10.1.4 Exercises for Section 10.1

✎ 10.1.1 Compute the results (10.4).

✎ 10.1.2 Find an alternative to equation (10.13), or prove that this is the only possibility.

✎ 10.1.3 Using the definitions (10.19), compute equations (10.20).

✎ 10.1.4 Compute equation (10.23).

✎ 10.1.5 Verify (or disprove) the claims made in Digression 10.4.

10.2 Supersymmetry in descriptions of Nature
The previous section introduced and defined supersymmetry as a symmetry of a very simple model,
which may perhaps appear to be an artificial toy, an abstract example that is not applicable in the
“real world.” However, the early history of the discovery and application of supersymmetry is a
meandering and branching story that indicates both a wide applicability, as well as the fact that
many ideas in physics are conceived of in one area, but are then applied more successfully and
notably in another area. Something like that was already seen in the telegraphic review of the
discovery of spontaneous symmetry breaking, on p. 252.

10.2.1 Applications of supersymmetry
While supersymmetry in fundamental physics is still awaiting experimental confirmation [182],
this fermion–boson symmetry has found rather successful applications elsewhere. In fact, novel
applications of supersymmetry are still being discovered, so that this review is, at best, a starting
point for the interested Reader.

Supersymmetry and hadrons Already in 1966–8, Hironari Miyazawa had discovered the (approx-
imate) boson–fermion symmetry as a formal mapping between mesons (bosons) and baryons
(fermions). Miyazawa’s approach required the use of the su(6|21) superalgebra, which was a very
unfamiliar structure at the time, and this phenomenological approach did not gain much accep-
tance. Recall Pauli’s denigrating stance towards group theory and its methods [☞ p. 150], which
remained well-entrenched until Gell-Mann and Ne’emann used SU(3) f in hadron classification –
seven or eight years after Miyazawa! Much later, it turned out [☞ e.g., Ref. [100]] that Miyzawa’s
approach together with the quark model (which was accepted only several years after Miyazawa’s
work) yields quite good results, and is useful in hadron phenomenology.

Supersymmetry and strings In 1971, Jean-Loup Gervais and Bunji Sakita [549] discovered the
boson–fermion symmetry in fermionic string theories, which is actually a superconformal sym-
metry – a combination of supersymmetry and conformal symmetry. At the time, string theory
competed with the quark model in attempting to describe hadrons and strong interactions. As the
quark model soon (1973–4) proved to be superior in describing hadrons and strong interactions,
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10.2 Supersymmetry in descriptions of Nature 365

this application of supersymmetry also fell by the wayside until 1984, when (super)string theory
was revived as a theory of fundamental physics, and not of hadronic bound states [☞ Chapter 11].
Supersymmetry and field theory In the same year, 1971, Yuri A. Gol’fand and Evgeny Likhtman dis-
covered that the use of supersymmetry in field theory removes a large number of divergent results
and markedly simplifies (and sometimes even trivializes) the problem of renormalization [☞ Sec-
tions 5.3.3 and 6.2.4]. Similar conclusions were soon – and independently – published by Dmytro
V. Volkov and V. P. Akulov, in 1972, as well as Julius Wess and Bruno Zumino in 1974. Also in 1974,
Abdus Salam and John A. Strathdee introduced the notion of superspace as a supersymmetric exten-
sion of spacetime, and superfield as fields defined over superspace, and which contain both bosonic
and fermionic fields as components. These ideas soon generated significant interest, and in less
than ten years, Marcus Grisaru, S. James Gates, Jr., Martin Roček and Warren Siegel had already
published the first textbook on supersymmetry, superspace, superfields and supergravity [189];
for more details and topically organized original references, see Ref. [76].
Supersymmetry and nuclear structure On the other, phenomenological side, supersymmetry is used
also in the analysis of nuclear structure; see Ref. [364] for experimental confirmation, a recent arti-
cle [185], the review [399] and references therein. Indeed, atomic nuclei of adjacent isotopes and
elements, which differ only in one neutron or proton, may be treated as superpartners: Suppose a
particular atomic nucleus A

ZX has an even atomic number (the number of protons and neutrons to-
gether) and so is a boson. Then the nuclei that have one neutron more or less, A±1

Z X′, or one proton
more or less, A±1

Z±1X′′, are fermions. The formal boson–fermion (supersymmetric) transformations
A+1

Z X′



A−1
Z−1X′′  A

Z X  A+1
Z+1X′′



A−1
Z X′

(10.30)

may all be used to predict the structure and the energy levels of the A±1
Z X′ and A±1

Z±1X′′ nuclei,
starting with the known properties of the A

ZX nucleus. This approximate supersymmetry may even
be used for estimating information about nuclei that in comparison to a well-known A

ZX nucleus
have both an additional proton and an additional neutron, A±2

Z±1X′′′ [401], which fit in the corners of
the diagram (10.30), as well as the so-called hypernuclei, which are short-lived nuclei that captured
a Λ0 baryon [400] and which extend the diagram (10.30) in a third dimension. This application
of supersymmetry is similar to Gell-Mann’s application of SU(3) algebra in classifying hadrons.
Supersymmetry as an approximate, phenomenological symmetry Supersymmetry may be applied
in a similar, approximate and phenomenological fashion wherever bosonic states clearly differ from
fermionic but have (approximately) the same energy [☞ Theorem 10.3 on p. 369 and Eq. (10.20)],
and where the process by which a bosonic state may be transformed into a fermionic one and back
is easy to identify. The simplest example in atomic physics would be the simple ionization of any
neutral atom. Indeed,

1. a neutral atom has A+Z spin- 1
2 particles: Z protons, (A−Z) neutrons and Z electrons;

2. simple ionization removes a single electron, leaving the atom with one fewer electrons.

If A+Z is even, the original neutral atom was a boson, and the once-ionized atom is a fermion,
and vice versa. In any case, the ionization process turns a bosonic state into a fermionic one or the
other way around. The same holds for molecules, and the question is only whether the application
of supersymmetry may help to discover anything new about these relatively well studied systems.
Leaving this to the interested Reader☞ , we return to the supersymmetry in field theory and as a
possible fundamental symmetry.
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366 Supersymmetry: boson–fermion unification

Supersymmetry in lower-dimensional systems By far the majority of the real physical systems ex-
tend through all three dimensions of real space. However, there do exist physical systems that may
be regarded, to a good approximation, as 2-dimensional (such as the monolayer systems in solid
state physics: crystals and materials that consists of mostly a single layer of atoms, molecules or
ions) or even just 1-dimensional (such as the enormously long molecules of DNA in biophysics).

Supersymmetry may, of course, also be discovered in such systems, as is the case with the
monolayer system of graphene, where supersymmetry and the Witten index successfully describe
the appearance of the unconventional quantum Hall effect; see, e.g., the articles [402, 153, 5, 408,
347] as well as the references cited therein.

Three levels of fundamental physics Even in fundamental physics, supersymmetry [☞ Defini-
tion 10.1 on p. 361] may occur in either of the three very different (albeit closely related) levels;
see also Section 11.2 for a slightly different layering of the (super)string theoretical system, and
so also the layered appearance and application of supersymmetry. These are:

1. The description of the physical system itself – whether in the classical Hamiltonian
formalism, or in the formalism of quantum mechanics or field theory – in the real
(3 + 1)-dimensional spacetime. If supersymmetric, the list of supersymmetry generators
contain the Hamiltonian density for the given physical system, and also the linear mo-
mentum densities. The algebra of operators that are assigned to these physical quantities
is then given by relations that contain the algebra (10.20), but are typically rather more
complicated (10.63).

2. In analyzing any physical system, the dynamics and the evolution in time are important,
and the so-called dimensional reduction to the worldline offers a frequently used approach
to analysis. In this approach, for every physical quantity:4

(a) First neglect the dependence on spatial coordinates, and treat the result as a (relativistic
or non-relativistic, as needed) quantum-mechanical system.

(b) All symmetries of the higher-dimensional theory remain to be symmetries of the dimen-
sionally reduced quantum-mechanical “shadow,” but the dynamics of the 1-dimensional
system – and of the supersymmetry algebra (10.20) or (10.31) too – is simpler to
analyze.

(c) A dynamical solution to the 1-dimensional system and its symmetries (which con-
tain the “shadows” of the Lorentz symmetries of the original higher-dimensional
system) are used to reconstruct a corresponding dynamical solution to the original
higher-dimensional system.

3. In the Schrödinger picture, every quantum description of any model has a Hilbert space
of state functions (or state operators), upon which the Hamiltonian of the system has an
induced action. If the system has a supersymmetry, it then manifests as an (induced) su-
persymmetry in the Hilbert space. Owing to the separate role of time in the Schrödinger
picture, this supersymmetry always has the 1-dimensional algebra (10.31).

Conclusion 10.1 Every supersymmetric model always contains an inherently 1-dimensional
(induced) supersymmetry (10.31) in the Hilbert space, which is physically distinct from
the dimensional reduction in the second item of the above list, even if they turn out to be
mathematically isomorphic. See also Digression 10.1 on p. 357.

4 Although many researchers intuitively use this conceptual approach, to the best of my knowledge, the first formal
description of this conceptual approach to the research program appeared in Ref. [197].
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10.2.2 Additional (super)symmetry
The introductory form of supersymmetry, given in relations (10.20), and Definition 10.1 on p. 361,
suggests some simple generalizations.

On one hand, it is evidently possible to find systems with several pairs of supersymmetry
generators, e.g., proton and neutron ones in supersymmetric models of nuclear structure; see the
diagram (10.30). Denote such replicas by Qi, Q†j, so that the defining relations (10.20) become{

Q†i , Q j
}

= 2δi
j H,

[
H , Qi

]
= 0 =

[
H , Q†j ], i, j = 1, 2, . . . , N. (10.31)

Equivalently, it is possible to introduce a real basis

Qj := Q j + Q†j and QN+j := i
(
Q†j − Q j

)
, j = 1, 2, . . . , N, (10.32a){QI , QJ

}
= 2δI J H,

[
H , QI

]
= 0, I, J = 1, 2, . . . , 2N, (10.32b)

and then generalize to a supersymmetric algebra (10.32b) with an odd number of real gener-
ators QI . In this real (Hermitian) basis, Q 2

I = H holds, and QI may literally be treated as
square-roots of the Hamiltonian. On the other hand, the supersymmetry algebra may be defined
starting with the relations (10.32b), including the case of an odd number of real operators QI . The
supersymmetry (10.31)–(10.32) is referred to as “2N-extended supersymmetry.”

Superalgebras (10.31) and (10.32) may be further extended by adding bosonic operators
(with various possible actions upon the considered physical system), as well as by adding com-
mutation relations among these additional bosonic operators and the operators given by (10.31),
i.e., (10.32). For example, to the relations (10.32b) we may add a matrix of operators Z I J , so that
the relations (10.32b) are replaced with{QI , QJ

}
= 2δI J H + Z I J ,

[
H , QI

]
= 0, I, J = 1, 2, . . . , 2N, (10.33)

where

δI JZ I J = 0,
[QI , Z JK

]
= 0 =

[
H , Z I J

]
,

[
Z I J , ZKL

]
= 0, (10.34)

which represents a central extension of the superalgebra (10.32b). On the other hand, the last
group of commutation relations, [Z I J , ZKL] = 0, may also be replaced by[

Z I J , ZKL
]

= f I J KL
MNZMN , (10.35)

so that the operators Z I J generate some nontrivial Lie algebra [☞ Appendix A]. The physical mean-
ing of some of the operators Z I J may well be spacetime (such as translations, rotations and Lorentz
boosts), in which case at least some of the commutators [H, Z I J ] become non-vanishing. The re-
maining Z I J ’s may generate “internal” symmetries such as the gauge symmetries corresponding to
changes in the phases of complex wave-functions, weak isospin and color in the Standard Model.
In the equations (10.33)–(10.35), it was assumed that [Z I J ] = [H] = ML2

T2 , so that the coeffi-
cients f I J KL

MN must have these same dimensions (units) – or be scaled by an appropriate constant
of such dimensions. In a concrete application, this may well need to be modified by introducing
appropriate constants (h̄, c, etc.) in these equations.

Extending this analysis to include fermionic (super)symmetry operators, and correspondingly
to superalgebras where the binary operation is the supercommutator:

[
X , Y

}
:= X Y − (−1)|X||Y|Y X, |X| =

{
0 if X is a boson,
1 if X is a fermion.

(10.36)
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368 Supersymmetry: boson–fermion unification

The general theory of algebraic structure imposes only the requirement that the various
(anti)commutation relations (10.20)–(10.35) be self-consistent, for which the verification of the
generalization of the Jacobi identities is necessary and sufficient:

0 ≡ [
B1, [B2, B3]

]
+

[
B2, [B3, B1]

]
+

[
B3, [B1, B2]

]
, (10.37a)

0 ≡ [
B1, [B2, F3]

]
+

[
B2, [F3, B1]

]
+

[
F3, [B1, B2]

]
, (10.37b)

0 ≡ {
F1, [F2, B3]

}
+

{
F2, [F1, B3]

}
+

[
B3, {F1, F2}

]
, (10.37c)

0 ≡ [
F1, {F2, F3}

]
+

[
F2, {F3, F1}

]
+

[
F3, {F1, F2}

]
, (10.37d)

where B1, B2, B3 are any three bosonic operators and F1, F2, F3 are any three fermionic operators
from the considered superalgebra.

Digression 10.5 A superalgebra S is the generalization of the algebraic structure of alge-
bra, the elements of which are either even (bosonic) B1, B2, . . . ∈ S0, or odd (fermionic)
F1, F2, . . . ∈ S1. The binary “multiplication” operation is called the “supercommutator,”
denoted [ , }, such that:

[B1, B2} := [B1, B2] ∈ S0, [B1, F1} := [B1, F2] ∈ S1, [F1, F2} := {F1, F2} ∈ S0.
(10.38a)

The supersymmetry algebra is then specified by the defining relations

[Xa, Xb} = i fab
cXc, (10.39)

which define the Killing–Cartan metric tensor:

gab := fac
d fbd

c. (10.40)

For example, in the supersymmetry algebra (10.32b), define X0 = H and X I = QI where I =
1, 2, . . . , 2N. Then

f00
0 = 0 = f00

I , f I J
0 = −iδI J , f0I

J = 0 = f I J
K, (10.41)

so the complete Killing–Cartan metric tensor vanishes identically:

g00 = f00
0 f00

0 + f0K
0 f00

K + f00
L f0L

0 + f0K
L f0L

K= 0, (10.42a)

g0J = f00
0 f J0

0 + f0K
0 f J0

K + f00
L f JL

0 + f0K
L fJL

K = 0, (10.42b)

gI J = f I0
0 f J0

0 + f IK
0 f J0

K + f I0
L f JL

0 + f IK
L f JL

K = 0, (10.42c)

where the only nonzero factors are underlined. This high level of degeneracy prevents an effective
application of standard (Lie-algebraic) methods of classification and study.

Also, representations of supersymmetry algebras are vector spaces of the form B ⊕F , where
B denotes the vector space of bosonic wave-functions and F is the vector space of fermionic
wave-functions, which the supersymmetry transformations map into each other, generalizing the
relation (10.25). Note that H = B ⊕ F is actually a complete Hilbert space for the consid-
ered model, and in supersymmetric theories one automatically and by definition considers the
(super)symmetries of this complete Hilbert space. Automatically, we obtain results of the form

〈b|F|b〉 ≡ 0 ≡ 〈 f |F| f 〉 , 〈 f |B|b〉 ≡ 0 ≡ 〈 f |B| f 〉 , ∀|b〉 ∈ B, ∀| f 〉 ∈ F , (10.43)
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10.3 Supersymmetric field theory 369

where B is any bosonic operator and F any fermionic operator; they are called super-selection
rules and hold in all models with supersymmetry. This result is consistent with the definition of
the “fermionic number,” which is 1 for all fermions (states, functions, operators, . . . ) and 0 for all
bosons. In products, this number is added, and it is defined modulo 2. Thus, e.g.,

F
( 〈b|F|b〉 ) = F

(〈b|) + F
(
F
)
+ F

(|b〉) = 0 + 1 + 0 = 1 �= 0, (10.44a)

F
( 〈 f |F| f 〉 ) = F

(〈 f |) + F
(
F
)
+ F

(| f 〉) = 1 + 1 + 1 = 3 " 1 (mod 2), �= 0, (10.44b)

and so on. It turns out that this “fermionic number” may be defined consistently in spacetimes
of all dimensions, and that it differentiates spinorial from tensorial representations of the Lorentz
group. Also, the Witten index (10.27) may be formally defined as

ιW = Tr
H

[
(−1)F ]. (10.45)

10.2.3 Exercises for Section 10.2

✎ 10.2.1 By explicit computation show that the operators Qi, Q†j and H that satisfy the
algebra (10.33) also satisfy the Jacobi identities (10.37).

✎ 10.2.2 By explicit computation show that the operators Qi, Z I J and H that satisfy the
algebra (10.31) also satisfy the Jacobi identities (10.37).

10.3 Supersymmetric field theory
In the 1960s (before the experimental confirmation and consequent wide acceptance of the quark
model!), many elementary particle physics researchers explored how much and what may all be
proven and established about the behavior of leptons and hadrons – without a detailed knowledge
of their dynamics, i.e., without knowing the “microscopic” theory of these interactions. Also, at-
tempts were made to combine the symmetries of spacetime, such as the rotational (i.e., angular
momentum or spin) SU(2) group of symmetries, with the so-called internal symmetries of ele-
mentary particles, such as isospin and its SU(3) f generalization by Gell-Mann and Ne’emann. The
successful non-relativistic combination SU(2)× SU(3) f ⊂ SU(6) surprisingly turned up the frus-
tration:5 a fully relativistic generalization could not be found, rousing suspicions of a profound
obstruction.

Indeed, in 1965, Lochlainn O’Raifeartaigh published a proof [396, 397] of the theorem that
today bears his name, and which may be paraphrased simply as [344]:

Theorem 10.2 (O’Raifeartaigh) The Hilbert space of the states of a particle with finite and
non-vanishing mass is invariant with respect to the action of the Lie group of trans-
formations that contains the Poincaré group (Lorentz transformations and spacetime
translations).

A sharper version of one key aspect of this theorem was provided by P. Roman and C. J. Koh the
same year [463]:

Theorem 10.3 (Roman–Koh) Distinct particles and states transformed into each other by a
Lie group have the same Lorentz-invariant mass m :=

√
p·p.

Only two years later, Sidney Coleman and Jeffrey Mandula (in 1967) proved the theorem [111]
for all relativistic field theories:

5 This SU(6) is indeed part of Miyazawa’s su(6|21) superalgebra framework mentioned in Section 10.2.1.

https://doi.org/10.1017/9781009291507.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.014


370 Supersymmetry: boson–fermion unification

Theorem 10.4 (Coleman–Mandula) In any model of particles with finite and non-vanishing
masses and which (directly or indirectly) interact with each other, the only permissible
symmetries form the Poincaré group and some Lie group, the elements of which commute
with all of the Poincaré group of symmetries.

It then follows that no (bosonic) symmetry transformation can change the fermionic number of
any state or particle upon which the operator acts, i.e., the fermionic number of the wave-function
that represents this state or particle.

In 1975, Rudolf Haag, Jan Łopuszanski and Martin Sohnius noticed the “hole” in these results:
It was tacitly assumed that the symmetry operators were bosonic, so that the symmetries form a
Lie group, and the group generators satisfy a Lie algebra where the operation of multiplication is a
commutator. The more general algebraic structures defined by bosonic as well as fermionic opera-
tors together are superalgebras, where the binary operation is a supercommutator (10.36). Within
this extension of the Lie algebras, Haag, Łopuszanski and Sohnius proved the theorem [255]:

Theorem 10.5 (Haag–Łopuszanski–Sohnius) In every model with a (1) finite number of dis-
tinct types of particles, (2) each of which has a finite and non-vanishing mass, and (3) with
an asymptotically complete S-matrix,6 the only permissible symmetries form a so-called
supersymmetric extension of the product of the Poincaré group and some Lie group, the el-
ements of which commute with all of the Poincaré group of symmetries [☞ Definition 10.3].

Definition 10.3 The Poincaré algebra, po(1, 3) = spin(1, 3) :+ tr(R1,3), [☞ Section A.5.3] is
generated by Lorentz transformations (A.110) and spacetime translations (A.109), i.e., the
operators Lμν and Pμ, respectively, which satisfy the relations schematically given as [☞ also
the definition (10.64)]

[ L, L′ ] = L,′′ [ L, P ] = P′, [ P, P′ ] = 0. (10.46)

The supersymmetric extension of the Poincaré algebra then has the additional spin- 1
2

generators Q, which satisfy the relations schematically given as

{Q, Q ′} = P ⊕ Z, [L, Q] = 1
2 Q ′, [P, Q] = 0, (10.47a)

[Z, Z ′] = Z,′′ [L, Z] = 0, [Z, P] = 0, [Z, Q] = 0. (10.47b)

The generators Q are called supercharges , and Z are central charges .

Comment 10.1 Theorem 10.5 also guarantees that in all relativistic field theories only the
supersymmetric generators, and exclusively with spin 1

2 , may change the spin (and also the
fermionic number) of the particles upon which they act, and to extend the symmetries into
supersymmetry. Also, it is known that the inclusion of massless particles does not change
the conclusion of the theorem if those particles are Yang–Mills gauge bosons and their
superpartners (gauginos).

Digression 10.6 Without inserting any dimensionful constants such as h̄ or c in the
equations (10.46)–(10.47), the implied dimensions of these field theory supersymmetry
generators Q and central charges Z are [Q] =

√
ML
T and [Z] = ML

T , which differ from
their quantum-mechanical counterparts because of P0 = −H/c; see Digressions 10.3 on
p. 362 and 10.7 on p. 378.

6 The S-matrix by definition maps all possible incoming states of the system into all possible outgoing states.
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10.3.1 Supersymmetry stabilizes the vacuum
Upon review – with the benefit of a century’s worth of hindsight – the need to include quan-
tumness in the description of Nature may be understood as the only universal property that
stabilizes the atoms and so also all the tangible matter [☞ Digression 2.3 on p. 45]. Besides, the
quantumness of physics unifies the concepts (our idealized mnemonic imagery) of particles and
waves [☞ Section 8.1.1 on p. 297].

On the other hand, the need to include (general) relativity in the description of Nature was
seen in Chapters 5, 6 and 9 to be part of a universal gauge principle that connects the existence of
unmeasurable degrees of freedom in the description of Nature with local symmetries, then interac-
tions and curvature of spacetime in which the physical particles move and fields extend. Besides,
the special theory of relativity unifies space and time into spacetime, energy and momentum into
4-momentum, rotations and boosts into the Lorentz group, etc. The general theory of relativity
unifies the notion of gravitation and acceleration, and provides the inherent relation between the
curvature of spacetime and the presence of matter.

On the third hand, already the classical and certainly the quantum field theory indicate that
the precise definition of observable quantities is not infrequently a very delicate task – the naive
expressions even for the energy of empty spacetime not infrequently diverge [☞ Digression 3.13
on p. 123, and Sections 5.3.3 and 6.2.4]. Besides, in interactive field theories that include gravity
even the ground state of a system is not guaranteed to have a non-negative energy, nor in fact is it
guaranteed to have a globally defined energy bounded from below.

Regarding this last issue, supersymmetry helps (which is stated here with no detailed and
mathematically strict justification and proof):

Conclusion 10.2 Supersymmetry offers (as best as known) the only universal mecha-
nism for stabilizing the vacuum: in every system without gravity [☞ Ref. [73] for energy
positivity conditions without supersymmetry],

1. the minimum of energy is zero if and only if the system is supersymmetric;
2. the minimum of energy is positive if the system has a spontaneously broken super-

symmetry.

Comment 10.2 If the description of the system includes the general theory of relativity (to
describe gravity), the energy is not a globally well-defined quantity, and statements of non-
negativity of energy do not have an invariant meaning.

Besides, supersymmetry is the only property that may unify bosons and fermions [☞ Theo-
rems 10.2 on p. 369, and 10.4 on p. 370]. For a compact and comprehensive summary of these
properties, see Table P.1 on p. xiii, i.e., Table 11.1 on p. 409.

Technical advantages of supersymmetry
Even when spontaneously broken, supersymmetry also has two technically very advantageous
consequences:

1. it significantly lessens (or even eliminates) the need for renormalization of parameters in
field theory;

2. it prevents the “mixing” of characteristic energies.

That is, in any model (in field theory without supersymmetry) where in the classical version
there exist two distinct characteristic energies (such as the energy of electro-weak unification,
mW c2 ∼ 102 GeV and the energy of grand unification mX ∼ 1015 GeV), quantum effects “spoil” results
such as masses of the order 102GeV/c2 via renormalization “corrections” of order 1015GeV/c2.
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Since masses are by definition invariant with respect to the action of Lorentz symmetries as
well as all gauge symmetries, no fundamental symmetry principle – except supersymmetry – can
“protect” them from such catastrophic quantum corrections.7 Thus, in models without supersym-
metry we may expect only one (the largest) effective characteristic energy, which in theories with
gravity must be the Planck mass, MP ∼ 1019GeV/c2. All other masses then would have to be a multi-
ple of this big mass and there is no reason for the existence of minuscule dimensionless coefficients
such as [☞ result (7.132b), and Tables 4.1 on p. 152, and C.2 on p. 526]

mνe

MP
� 10−28,

me

MP
∼ 10−23,

mu

MP
∼ 10−22, (10.48)

for them to remain stable with respect to quantum corrections, and much smaller than O(1) num-
bers. It follows that in models without supersymmetry there is neither a fundamental reason for
the masses of the elementary particles to be so many orders of magnitude smaller than the Planck
mass, nor a mechanism that would “protect” such minuscule masses (were we to choose them so
“by hand”) from quantum corrections.

The presence of supersymmetry in any theoretical model (and so too in the Standard Model),
has an important effect on the appearance (and stability with respect to quantum corrections) of
experimentally established minuscule parameters such as (10.48) [189, 562, 560, 76]:

Theorem 10.6 In any supersymmetric model, quantum effects do not change the part of the
Lagrangian density that stems from the so-called superpotential [☞ Section 10.3.2].

Corollary 10.1 Although – all by itself – supersymmetry cannot cause minuscule parameters
such as (10.48), supersymmetry does “protect” them if they enter via Lagrangian terms that
stem from the superpotential, and in particular owing to the shift in the Higgs field in the
process of spontaneous symmetry breaking. In practice, that includes all masses.

This property of supersymmetry is exceptionally advantageous in the technical sense, because of the
fact that most field theory models are analyzed and used in practice within perturbative computa-
tional frameworks described in Procedure 5.1. Renormalization is inherently a feature of iterative
additions of ever higher contributions within a perturbative computational framework. Therefore,
the appearance of divergences, the need for renormalization as well as the property of softening
and limiting this need via supersymmetry is – by definition – a technical and not a conceptual
property. This characterization holds even if some of the “non-perturbative” results and properties
of a particular model are known [☞ Section 6.3], and they are:

1. statements about the existence of alternative vacua which cannot be computed by pertur-
bative methods defined about the usual vacuum, but where the results are again obtained
by some kind of perturbative computation about some such alternative vacuum,

2. general statements about the whole Hilbert space.

— ❦ —

In all Yang–Mills type gauge field theories [☞ Chapters 5 and 6], the divergences can be removed
from precisely defined expressions for measurable physical quantities [☞ Section 3.3.4, especially
the closing part and the discussion about Digression 3.11 on p. 122, to begin with]. In as much
as the renormalization procedure has not satisfied the intuition and conceptual insight of some of
the most influential twentieth-century physicists, the number of live physicists who do not accept

7 The notable exceptions to this reasoning are the “pseudo-Goldstone modes” mentioned in Section 7.2.3.
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renormalization pragmatically as a “procedure that works” is ever smaller [☞ paraphrasing Max
Planck, on p. 124 and Digression 3.11 on p. 122]. However, the renormalization procedure is, indu-
bitably, a technical detail of the current understanding of Nature, and not a fundamental principle
of this (not even the current) understanding.

It should then be clear that the original motivation for supersymmetry stemmed from the
very practical fact, of which Gol’fand and Likhtman discovered the first glimpses in 1971, that
this peculiar type of symmetry automatically removes many of the divergences that occur in field
theory. A detailed analysis of this general procedure is far outside the scope of this book, although
some of the simplest aspects will nevertheless be made visible.

Sections 5.3.3 and 6.2.4 showed concrete (albeit the simplest) Feynman computations with
diagrams where the need for renormalization appears. In the remainder of this section we will
consider one (the simplest) conceptual problem in field theory, and then also the mechanism by
which supersymmetry completely removes this problem.

Vacuum energy
Consider, for example, a scalar field with the Lagrangian density (7.9), where we set for simplicity
λ→ 0:

LKG = 1
2η

μν(∂μφ)(∂νφ) − 1
2

(mc
h̄

)2
φ2 = 1

2c2

.
φ2 − 1

2

[
�∇2 +

(mc
h̄

)2]
φ2. (10.49)

The Euler–Lagrange equation of motion derived from this Lagrangian density is[ 1
c2 ∂

2
t − �∇2 +

(mc
h̄

)2]
φ(x) = 0, (10.50)

the so-called Klein–Gordon equation. If we expand φ(x) in plane waves,

φ(x) = 1
(2π)3/2

∫
d3�k φ�k(x), φ�k(x) := f�k(t) ei�k·�r, (10.51)

the �∇2-term produces the eigenvalue −�k2, and the equation of motion becomes[
∂2

t +
(
�k2c2 + m2c4

h̄2

)]
f�k(t) = 0. (10.52)

The wave-modes φ�k(x) are linearly independent, so every plane wave φ�k(x) behaves as an
independent degree of freedom, “counted” by the vectors�k, and with the dynamics of the harmonic
oscillator with the frequency c

√
�k2 + m2c2

h̄2 . The presence of interactions (as would be produced by
the 1

4λφ
4 term in the Lagrangian density (7.9) and which we have omitted for simplicity) couples

these independent oscillators but does not reduce their number nor does it destroy their linear inde-
pendence. Every such quantum oscillator has its stationary states with energies [☞ relation (3.37)]

En,�k = E�k(n + 1
2 ), E�k := h̄ c

√
�k2 + m2c2

h̄2 =
√

(h̄�k)2c2 + m2c4, (10.53)

and the energy of the entire field (summed over all oscillators, of course) in the ground state is

Evacuum = 1
2

∫
d3�k E�k = 2π

∫ ∞

0
k2dk

√
h̄2k2c2 + m2c4. (10.54)

This evidently diverges ∼ k4 as k → ∞: there are (continuously) infinitely many vectors�k and all
except�k =�0 have a positive magnitude�k2 > 0.

For the free electromagnetic field, the result is virtually identical, only with the ultra-
relativistic expression E�k = |h̄�k|c, since mγ ≡ 0, so the result for Evacuum diverges again.

However, modeling after the supersymmetric harmonic oscillator in Section 10.1.3, we may
construct a supersymmetric model beginning with:
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374 Supersymmetry: boson–fermion unification

1. a pair of fields (10.51) combined into a complex scalar field φ(x);
2. the Lagrangian density of the type (7.19), but with λ→ 0;
3. adding a complex Weyl fermion Ψ+(x) of left chirality [☞ Section 5.2.1 on p. 172] and an

auxiliary complex field F(x);
4. adding Lagrangian (counter)terms that are specially tuned so that:

(a) the Hamilton action for the whole system (φ; Ψ+; F) is invariant with respect to the
linear action of supersymmetry;

(b) the Euler–Lagrange equations of motion form a system of:
i. one differential equation of the second order for the complex field φ(x),

ii. one pair of differential equations of the first order for the two components of the
complex Weyl fermion Ψ+(x) – which also means that one linear combination
of these components is the canonical coordinate while another is the canonically
conjugate momentum,

iii. one non-differential equation or the auxiliary complex field F(x).

The non-differential equation obtained in step 4(b)iii holds point-by-point in all of spacetime sepa-
rately, and so can be used – at least in principle – to substitute its solution back into the Lagrangian
density, whereupon the differential equations in steps 4(b)i and 4(b)ii need to be re-derived from
the so-substituted Lagrangian density. These differential equations of motion, however, express the
values of the fields φ(x) and Ψ+(x) at any one point in spacetime in terms of the values of those
fields at infinitesimally nearby points, and so describe dynamical (continually propagating) fields.
A detailed analysis of the physical degrees of freedom then shows that all states in the Hilbert space
(except for the ground states, with a vanishing energy) occur in boson–fermion pairs, generalizing
the situation shown in Figure 10.1(c), on p. 362.

In so-constructed models the result (10.23) guarantees that the equivalent computation for
the vacuum energy gives Evacuum = 0. This, in fact, is a direct (and so universal) consequence
of the algebra (10.31), and up to a factor c−1 also of the algebra (10.47) [☞ Digression 10.6 on
p. 370], where

∑
i
{Q†i, Qi} = 2NH, since Tr[δi

j] = N, (10.55)

and where it is easy to show that the left-hand side is non-negative. The algebraic details of
all consistent generalizations of supersymmetry – as long as the trace of the coefficient in front
of the Hamiltonian (δi

j) on the right-hand side of equation (10.31) is positive – guarantee the
non-negativity of the Hamiltonian spectrum, so that 〈H 〉 � 0 is a universal result in all (rigidly)
supersymmetric theories.

Supersymmetric states, supersymmetry breaking and details
The states |Ω〉 with vanishing energy, for which 〈Ω|H |Ω〉 = 0, must in turn satisfy

0 = 〈Ω|H|Ω〉 =
〈

Ω
∣∣ 1

N ∑
i

{
Q†i, Qi

}∣∣Ω〉
= 1

N ∑
i

{
〈Ω∣∣Q†i Qi

∣∣Ω〉 + 〈Ω∣∣Qi Q†i∣∣Ω〉
}

= 1
N ∑

i

{∣∣Qi|Ω〉∣∣2 +
∣∣Q†i|Ω〉∣∣2}, (10.56)

which is a sum of non-negative contributions, so each must vanish separately, whereupon

both Qi|Ω〉 = 0 and Q†i|Ω〉 = 0 for all i. (10.57)

From there, it follows that

Uε,ε|Ω〉 = |Ω〉, Uε,ε := exp
{− i(ε·Q + ε†·Q†)

}
, (10.58)
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10.3 Supersymmetric field theory 375

whereby the states |Ω〉 are supersymmetric, i.e., unchanged under the supersymmetry transforma-
tion.

There may exist several supersymmetric states, and even continuously many. In the general
case, when the bosonic (fermionic) states form a space VB (i.e., VF), the Witten index is given by
the relation

ιW := χE(VB) − χE(VF), (10.59)

where χE(X ) is the Euler characteristic of the space X , which reduces to the previous defini-
tion (10.27) since the Euler characteristic of a point equals χE(·) = 1 – and which also holds for
any space that contracts (continuously) to a point, such as Rn and Cn.

From this analysis it follows that the Hilbert space of every supersymmetric model can only
consist of:

1. supersymmetric states (of zero energy, so these are the ground states of the system),
2. supersymmetric boson–fermion pairs of states with positive energy.

In supersymmetric models, every E > 0 energy level must be evenly degenerate. That is, for each
bosonic state, |ba〉 with Ea �= 0, we construct the fermionic state | fa,I〉 := QI |ba〉 and vice versa:

H|ba〉 = Ea|ba〉 ⇒ |ba〉 =
H

Ea
|ba〉 =

QIQI

Ea
|ba〉 =

1
Ea

(QI | fa,I〉
)
, (10.60)

which is evidently possible if and only if Ea �= 0. (It is possible to prove further also that the total
number of bosonic and fermionic states with a given energy Ea �= 0 must be the same [560].)
Thus, only the degeneracy of the ground state(s) (where E = 0) is not determined and only the
ground state(s) may be non-degenerate, and only if the Witten index is nonzero, ιW �= 0.

In supersymmetric models, the Hilbert space is of the form of a direct sum of so-called
“sectors,” of which every one consists of one ground state (with E = 0) and an infinite ladder
of boson–fermion pairs of states (with E > 0), formally obtained by acting with operators of cre-
ation on the given ground state, just as is the case in Figure 10.2(a), and which generalizes the
situation shown in Figure 10.1(c), p. 362.

(a)

E

0
SuSy

(b)

Figure 10.2 A sketch of a sector in the Hilbert space of a supersymmetric system, before (a) and
after (b) spontaneous supersymmetry breaking; ESuSy is the supersymmetry-breaking parameter. For
supersymmetry to be broken, the Witten index must vanish, which means that the ground states must
occur in boson–fermion degenerate pairs.

If there are no supersymmetric (ground) states with E = 0 energy, supersymmetry is broken:
The states in the Hilbert space are formally obtained as a direct sum of sectors, each of which is
obtained by choosing a state with lowest, albeit positive, energy and upon which one acts with
creation operators. These sectors of the Hilbert space in the general case form semi-infinite ladders
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of bosonic and (independently) fermionic states, and those states are not guaranteed to be ordered
in pairs as shown in Figure 10.1 on p. 362, and in Figure 10.2.

Spontaneous supersymmetry breaking If supersymmetry is broken because the system of Euler–
Lagrange equations of motion in the list on p. 374 does not have a solution for which the potential
energy minimum8 equals zero, and Hamilton’s action functional continues to be supersymmetric,
supersymmetry is said to be spontaneously broken. In such cases, every sector of the Hilbert space
looks like a semi-infinite ladder of states, as shown in Figure 10.2(b), and where the difference
between the masses of adjacent bosonic and fermionic states, ESuSy, is the supersymmetry-breaking
parameter; in the limiting case ESuSy → 0, this sector returns from the shape in Figure 10.2(b) into
the shape in Figure 10.2(a). In practice, this case is confirmed by analyzing the subsystem of non-
differential equations in step 4(b)iii on p. 374, and the simplest model (named after the physicist
who discovered this possibility, Lochlainn O’Raifeartaigh) where supersymmetry is spontaneously
broken requires at least three distinct super-multiplets (φa; Ψa

+; Fa) a = 1, 2, 3 [189, 560]; see
Digression 10.11 on p. 385.

Explicit supersymmetry breaking If supersymmetry of the Hamilton action is breaking because of
the occurrence (or addition “by hand”) of a term in the Lagrangian density, supersymmetry is said
to be explicitly broken by that term. The effect of the explicit supersymmetry breaking on the Hilbert
space of course depends on the concrete Lagrangian term that breaks supersymmetry.

— ❦ —

A detailed analysis of the mechanism whereby supersymmetry removes the need for renormalizing
parameters in the Lagrangian density that stem from the superpotential [☞ Section 10.3.2] is far
beyond the scope of this book. However, at least intuitively, the source of this property is seen
from the fact listed in Rule 7 for Feynman calculus with the diagrams in quantum electrodynam-
ics [☞ Procedure 5.2 on p. 193]. That is, each fermionic loop (closed path) in a given Feynman
diagram requires an additional factor of (−1) as compared to an otherwise identical diagram
where that same loop is bosonic. If then the Feynman diagrams Γ and Γ′ differ only by:

1. the loop C ⊂ Γ is a closed path of particle X in the diagram Γ,
2. the loop C ⊂ Γ′ is a closed path of the superpartner of particle X in the diagram Γ′,

the contributions to the amplitude of probability cancel M(Γ) + M(Γ′) = 0.
It remains of course to precisely determine when and in precisely which perturbative cal-

culations do contributions always occur in such canceling pairs. For the details and a precise
formulation of this theorem on non-renormalization in supersymmetric models, the interested
Reader is directed to the standard textbooks [189, 562, 560, 76].

10.3.2 Supersymmetry in 1+3-dimensional spacetime
In spacetime, the Hamiltonian is the time component of the 4-momentum operator, so the rela-
tion (10.33) may be adapted by replacing the operator Z I J with the operators of linear momentum.
Also, since the supersymmetry generators Q I , according to the Haag–Łopuszanski–Sohnius the-
orem, transform as spin- 1

2 representations of the Lorentz group, the index I must count the
components of the corresponding spinor, or several copies of it.

For the purposes of this introductory text, we restrict to simple (unextended) supersymmetry,
the generators of which form a single Dirac spinor. Generalizations are described in the literature;

8 By potential energy we mean the value of the total energy, i.e., Hamiltonian where all derivatives of all fields are set to
zero.
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10.3 Supersymmetric field theory 377

see e.g., Refs. [189, 562, 560, 129, 76, 308, 178, 535, 461, 144, 351, 356, 60, 19, 115, 186] for
starters.

Superalgebra and supersymmetry
We are interested in the Lorentz group in 1+3-dimensional spacetime, with the very convenient
fact (A.5.2) that the algebra of the Lorentz group Spin(1, 3)∼= SL(2; C) is isomorphic with the direct
sum of two copies of the algebra spin(3) = su(2), which is in turn very familiar both from classical
as well as from quantum mechanics as the group of rotations, i.e., spin. It is then convenient to
use the notation that expresses this mathematical structure [☞ Section A.5 to begin with, and the
textbooks [189, 560, 76] for more precise and abundant details].

The 4-component Dirac spinor may be decomposed, in a Lorentz-invariant way, into two
2-component Weyl spinors [☞ Section 5.2.1 on p. 172, Appendix A.6 and especially A.6.2], which
in Weyl’s (chiral) basis of the Dirac matrices (A.132) is

Ψ ≡ Ψ+ + Ψ− = (γγγγ+Ψ) + (γγγγ−Ψ), Ψ+ �→
[
ψα
0

]
and Ψ− �→

[
0
χ.
α

]
, α,

.
α = 1, 2. (10.61)

In simple supersymmetry, the total number of generators, Qα and Q.
α, is minimal and itself

forms a Dirac spinor. The supersymmetry transformation operator, following the definitions (5.20)
and (6.2), then is

Uε,ε := eδQ(ε) = 1 + δQ(ε) + · · · , δQ(ε) := −i
(
ε·Q + ε·Q )

. (10.62)

The defining relations of supersymmetry without any central extension are9{
Qα , Q.

α

}
= −2 σμ

α
.
α

Pμ,
[

Lμν , Qα

]
= ih̄(σσσσμν)αβQβ, (10.63a)[

Lμν , Pρ
]

= ih̄
(
ημρPν − ηνρPμ

)
,

[
Lμν , Q.

α

]
= ih̄(σσσσμν).α

.
βQ .

β
, (10.63b)[

Lμν , Lρσ
]

= ih̄
(
ημρLνσ − ημσLνρ + ηνσLμρ − ηνρLμσ

)
, (10.63c)

with all other (anti)commutators vanishing, and where the matrices σσσσμν are defined in rela-
tions (A.158) [☞ Appendix A.6.2 in more detail]. The generators Pμ and Lμν have the well-known
differential operator representation over spacetime [☞ also relations (A.111)],

Pμ = h̄
i ∂μ and Lμν := h̄

i (ημρxρ∂ν − ηνρxρ∂μ), (10.64)

while Qα and Q.
α are at this point abstract operators. For them to acquire a differential operator

representation, spacetime itself must be extended, and we now turn to this.

Superspace
In 1974, Abdus Salam and John Strathdee postulated superspace, as an extension of spacetime and
in which spacetime is contained as a subspace. Since then, supersymmetry researchers mostly form
two schools: those who fully rely on superspace and the methods of super-functional analysis, and
those who regard superspace as an irrelevant crutch. However, it has been proven recently [282]
that the canonical relation10 [H, t] = ih̄ and self-consistency of the supersymmetry algebra (10.31)
via Jacobi identities (10.37) implies the existence of superspace. Although the very existence of

9 The negative sign in the first of relations (10.63) follows from that in relations (3.35) and (3.38).
10 In spacetime, this is [pμ, xν] = −ih̄δνμ, where the negative sign in the right-hand side stems from the definition (pμ) =

(−E/c ,�p) [☞ the derivation of equation (3.35)], as well as the identification of E → ih̄ ∂
∂t and �p → h̄

i
�∇ in the

coordinate representation. Keep in mind that time t in quantum mechanics and spacetime coordinates xμ in quantum
field theory are not eigenvalues of any Hermitian operators but parameters [☞ Ref. [29] for a detailed discussion in
quantum mechanics].
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superspace does not force us to use it, this will be convenient for the purposes of this book, since it
explicitly represents and effectively uses the unification of bosons and fermions.

The standard superspace is the extension of spacetime that in addition to the four bosonic
coordinates has another four fermionic, anticommuting coordinates:

x �→ (xμ; θα, θ
.
α) = (ct, x1, x2, x3; θ1, θ2, θ

.
1, θ

.
2), {θα, θβ} = 0 = {θα, θ

.
α}. (10.65)

The corresponding derivatives also anticommute:

∂α :=
∂

∂θα
, ∂.α :=

∂

∂θ
.
α

,
{
∂α, ∂β

}
=

{
∂α, ∂ .

β

}
=

{
∂.α, ∂ .

β

}
= 0. (10.66)

It is not hard to verify that the combined operators

Qα := i∂α + h̄σμ
α
.
α
θ
.
α∂μ and Q.

α := i∂.α + h̄σμ
α
.
α
θα∂μ (10.67)

satisfy the relations (10.63) and so, together with the definitions (10.64), give a differential rep-
resentation of the abstract operators in the algebra (10.63). Newcomers in this field usually find it
surprising that there exists a second pair of operators

Dα := ∂α + ih̄σμ
α
.
α
θ
.
α∂μ and D.

α := ∂.α + ih̄σμ
α
.
α
θα∂μ (10.68)

that satisfy {
Dα , D.

α

}
= −2σμ

α
.
α
Pμ = 2ih̄σμ

α
.
α
∂μ, (10.69)

as well as the other relations (10.63) upon substituting Q → D and Q → D, and finally that{
Dα , Qβ

}
= 0 =

{
Dα , Q .

β

}{
D.
α , Qβ

}
= 0 =

{
D.
α , Q .

β

} }
⇔

{
U−1
ε,εDαUε,ε = Dα,

U−1
ε,εD.

αUε,ε = D.
α.

(10.70)

Recalling the property (10.70), Dα and D.
α are usually called super-covariant derivatives, although

they are in fact invariant with respect to supersymmetry transformations; for brevity and to avoid
this imprecision, we use “super-derivative” instead. Note that

−iQα = Dα − 2ih̄σμ
α
.
α
θ
.
α∂μ and − iQ.

α = Dα − 2ih̄σμ
α
.
α
θα∂μ. (10.71)

Digression 10.7 The definitions (10.64) and relations (10.63) and (10.69) imply that the
physical dimensions (units) of the operators in the supersymmetry algebra are

[Pμ] =
M L

T
, [Lμν] =

M L2

T
, [Qα] = [Q.

α] =

√
M L

T
= [Dα] = [D.

α]. (10.72a)

Also,

[θα] = [θ
.
α] =

√
T

M L
, so [h̄θασμ

α
.
α
θ
.
α] = [xμ]. (10.72b)

In turn, using the high energy particle physics convention where powers of h̄ and c are
implied and unwritten, the dimensions of these field theory operators are expressed by
specifying the appropriate power of energy:

[Pμ] = 1 = [H], [Lμν] = 0, [Qα] = [Q.
α] = 1

2 = [Dα] = [D.
α],

[θα] = [θ
.
α] = − 1

2 , [xμ] = −1,
(10.72c)

implying, e.g., that
√

MeV
c are units for Qα and h̄ c

MeV for xμ; see Digressions 10.3 on p. 362
and 10.6 on p. 370, as well as Table C.5 on p. 528.
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Superfields
Since all the operators in the algebra (10.63) are now realized as differential operators (10.64),
(10.67) and (10.68) with respect to the coordinates of superspace (10.65), it is natural to
introduce functions over superspace, so-called “superfields,” F(x; θ, θ). The very definition of
coordinates (10.65) implies that they are nilpotent:

{θα, θβ} = 0
α=β
=⇒ 0 = {θα, θα} = 2(θα)2 ⇒ (θα)2 = 0, α = 1, 2; (10.73a)

{θ
.
α
, θ

.
β} = 0

.
α=

.
β

=⇒ 0 = {θ
.
α
, θ

.
α} = 2(θ

.
α)2 ⇒ (θ

.
α)2 = 0,

.
α = 1, 2. (10.73b)

Therefore, every function of the variables θα, θ
.
α has a formal Taylor expansion that terminates and

gives a finite polynomial:

F(x; θ, θ) = φ(x) + θαψα(x) + θ
.
αχ.

α(x) + · · · + θ2θ2F (x), (10.74)

where the coefficients in the expansion are ordinary functions over ordinary spacetime and where
θ2 := 1

2 εαβθ
αθβ and θ2 := 1

2 ε.α .βθ
.
αθ

.
β [☞ Appendix A.6.2 and especially Comment A.3 on p. 490, for

notation]. If F(x; θ, θ) is given as a commuting, scalar superfield and since the θ, θ coordinates anti-
commute, the coefficient functions – called component fields – alternate between being commuting
and anticommuting:

0. φ(x) is a commuting function and a scalar,
1. ψα(x) and χ.

α(x) are anticommuting functions and spin- 1
2 spinors,

...
4. F (x) is a commuting function and a scalar.

Alternatively, the component fields may be defined as the coefficients in the Taylor expansion
over (θα, θ

.
α), using the super-derivatives projected to the spacetime subspace of superspace:

φ(x) := F(x; θ, θ)
∣∣; (10.75a)

ψα(x) :=
[
DαF(x; θ, θ)

]∣∣; (10.75b)

χ.
α(x) :=

[
D.
αF(x; θ, θ)

]∣∣; (10.75c)

F(x) := − 1
4

[
D2F(x; θ, θ)

]∣∣; (10.75d)

Vα.α(x) := − 1
2

[
[Dα, D.

α]F(x; θ, θ)
]∣∣, Vμ := 1

2σ
.
αα
μ Vα.α; (10.75e)

G(x) := − 1
4

[
D2F(x; θ, θ)

]∣∣; (10.75f)

λα(x) := − 1
4

[
D2DαF(x; θ, θ)

]∣∣; (10.75g)

κ.α(x) := − 1
4

[
D2D.

αF(x; θ, θ)
]∣∣; (10.75h)

F (x) := 1
32

[
(D2D2 + D2D2)F(x; θ, θ)

]∣∣ (10.75i)

where the vertical right-delimiter denotes the projection to the “ordinary” spacetime:

( X )
∣∣ := lim

θ,θ→0
( X ). (10.76)

These definitions use super-derivatives instead of ordinary partial derivatives:

1. Since all definitions (10.75) contain a projection θ, θ → 0 that annihilates contribu-
tions that include ih̄σσσσμ·θ∂μ and ih̄θ·σσσσμ∂μ, the end result is the same as if Dα → ∂α and
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D.
α → ∂.α were used – up to spacetime derivatives of component fields of “lower” physical

dimensions (units), obtained upon multiple application of super-derivatives, where one of
these derivatives acts on the θ, θ coordinates in the other.

2. The advantage of using super-derivatives in the definitions (10.75) follows from the rela-
tions (10.70): Q and Q may be freely anticommuted with the super-derivatives D, D, which
is not true of ordinary partial derivatives ∂α, ∂.α.

3. The super-covariant derivatives may be used for imposing superdifferential constraints,
which are then evidently covariant with respect to supersymmetry transformations, im-
plemented by the operator (10.62) [☞ Section 10.3.3].

Note: when acting upon superfields and superdifferential expressions of superfields, whereas
the super-derivatives Dα, D.

α act as usual, from the left, the supersymmetry generators Qα, Q.
α act

from the right [189, 76]. Thus,

Qα

(
F
)

= F
←−
Qα = +(QαF), but Qα

(
DβF

)
= (DβF)

←−
Qα

(10.70)= −(
Qα ◦DβF

)
, (10.77)

where in the final expressions, both +QαF and −QαDβF act as usual, from the left. It is useful to
note that the operators used in the definitions (10.75) form a hierarchy of super-derivatives:

−

−

−

+1
32

2

2

2

2

2 2

−

−

2

2

4

1
44

1

4
1 1

4
1

(10.78)

This structure is partially ordered by the physical dimension [☞ Digression 10.7 on p. 378], which
grows upward in the diagram (10.78), and by successive application of Dα and D.

α denoted by
arrows in the diagram (10.78).

Example 10.1 The infinitesimal supersymmetry transformations of any component field
may be obtained by computing the projection

D [δQ(ε)F]
∣∣ (10.70)= δQ(ε)(DF)

∣∣ =
[− i(ε·Q + ε·Q)(DF)

]∣∣
=

(
ε·(D − 2ih̄σσσσμ·θ ∂μ) + ε·(D − 2ih̄θ·σσσσμ∂μ)

)
(DF)

∣∣ =
(
ε·D + ε·D)

(DF)
∣∣,

(10.79)

where D is the specific D-operator from the basis (10.78) that projects on the desired
component field within the superfield F. For example,

δQ(ε)φ =
(
εαDα + ε

.
αD.

α

)
F
∣∣ = εαψα + ε

.
αχ.

α; (10.80)

δQ(ε)ψα = (ε·D + ε·D)(DαF)
∣∣ = 1

2ε
βεβαD2F

∣∣ + ε
.
α
( 1

2{Dα, D.
α} − 1

2 [Dα, D.
α]
)
F
∣∣

= 1
2ε
βεβα(−4F) + ih̄σμ

α
.
α
ε
.
α(∂μφ) − 1

4σ
μ

α
.
α
ε
.
α
(
σ

.
ββ
μ [Dβ, D .

β
]F

)∣∣
= 2εαβε

βF + ih̄σμ
α
.
α
ε
.
α(∂μφ) + σ

μ

α
.
α
ε
.
αFμ; etc. (10.81)
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Another key property is that every function of the form

[D2D2 f (F1, F2, . . . )]
∣∣ (10.82)

is automatically an invariant under the supersymmetry transformation. More precisely, we have
the standard result:

Theorem 10.7 For every analytic functional expression f (F1, F2, . . . ) constructed from su-
perfields F1, F2, etc., the Hamilton action of the form

∫
dx [D2D2 f ]

∣∣ is supersymmetric:

δQ(ε)
∫

d4x [D2D2 f (F1, F2, . . . )]
∣∣ =

∫
d4x ∂μKμ = 0, (10.83)

where the functional expression and the component fields of the superfields Fi satisfy
the restrictions that are usual in field theory, and which guarantee that the spacetime
integrals (10.83) are well defined and convergent.

Comment 10.3 The concrete choice of the functional expression f (F1, F2, . . . ) of course
depends on which concrete terms one desires in the Lagrangian density:

L := [D2D2 f (F1, F2, . . . )]
∣∣. (10.84)

By definition, the Lagrangian density is said to be supersymmetric if it defines a supersym-
metric Hamilton action, which means that δQ(ε)L = ∂μKμ suffices.

Proof The result (10.83) follows from direct computation with the two terms:

δQ(ε)
∫

d4x [D2D2 f (F1, F2, . . . )]
∣∣ (10.71)=

∫
dx

{
(ε·Dα + ε·D + . . . )D2D2 f (F)

}∣∣∣
θ,θ→0=

∫
d4x

{
εα DαD2︸ ︷︷ ︸

≡0

D2 f (F) + ε
.
αD.

αD2D2 f (F)
}∣∣∣

(A.164)=
∫

d4x
{
ε
.
α
[−4ih̄σμ

α
.
α
∂με

αβDβ + D2D.
α

]
D2 f (F)

}∣∣∣
=

∫
d4x

{
∂μ

[−4ih̄ε
.
ασ
μ

α
.
α
εαβDβD2 f (F)]

∣∣︸ ︷︷ ︸
:=Kμ

+ε
.
αD2 D.

αD2︸ ︷︷ ︸
≡0

f (F)
∣∣ }

=
∫

spacetime
d4x ∂μKμ =

∮
∂(spacetime)
(d3x)μ Kμ, (10.85)

where the last integral vanishes, since the “boundary” of spacetime is an infinitely distant 3-sphere,
where the fields, and also the integral of Kμ, are routinely required to vanish. 
�

Comment 10.4 As it is only necessary for the entire integral
∮
∂(spacetime)
(d3x)μ Kμ to vanish, it would

suffice for the expression Kμ to vary “at infinity” so that the sum over the infinitely distant
(spacetime) 3-sphere should evaluate to zero.

Digression 10.8 Given an anticommuting (Grassmann) variable θ, integration over θ that
is invariant with respect to constant translations θ→ θ+ ε must in fact be functionally
identical to the partial θ-derivative:

∫
dθ f (θ) ≡ ∂

∂θ f (θ); this is called Berezin integration,
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after Felix Alexandrovich Berezin. Since θ must be nilpotent, the result of such integration
must be θ-independent, and no loss is incurred by appending the θ → 0 projection.
However, delimited by this trailing projection, the action of a super-derivative such as
D := ∂

∂θ + ih̄θ ∂∂x (where x is a commuting variable) is identical to the action of a partial
θ-derivative, which in turn is identical to Berezin integration:

[D f (θ)]
∣∣ =

[ ∂
∂θ

f (θ)
]∣∣∣ =

∫
dθ f (θ). (10.86)

The θ, θ→ 0 projection (10.76) of the 4-fold super-derivative (10.84) of any superfield
function is thus equal to its d2θd2θ-integral. In turn, this re-interprets the integral–super-
derivative combination such as in (10.83) as a d4xd2θd2θ-integration over the whole
superspace and so provides a completely uniform and geometrical treatment. In prac-
tice, however, one evaluates these integrals by means of projections of super-derivatives,
which is why they are so indicated throughout this chapter.

10.3.3 The chiral and the gauge superfield
The superfield F(x; θ, θ) may also be regarded a partially ordered set of component fields, which
may be partially ordered by growing physical dimensions (units) akin to the diagram (10.78).
Preserving this structure, it is possible to impose constraints on some of the component fields,
which is most effectively achieved using super-derivatives.

Super-constraints and the chiral superfield
Using the superfields and super-derivatives Dα and D.

α, it is possible to specify superdifferential
equations that – because of the relations (10.70) – transform covariantly with respect to the action
of supersymmetry transformations Uε,ε, given by equation (10.62).

One of the simplest such superdifferential equations defines the so-called chiral (and the
conjugate, anti-chiral) superfield:11

chiral D.
α Φ = 0 and anti-chiral Dα Φ = 0. (10.87)

It is then not hard to show that

φ := [Φ]
∣∣, ψα := [DαΦ]

∣∣, F := − 1
4 [D2Φ]

∣∣ (10.88)

are the only non-trivial component fields: two complex scalar fields φ and F, and one 2-component
complex spin- 1

2 field ψα; the physical dimensions (units) of these two scalar fields, however, are
not equal: [F] = [φ]·ML

T . The remaining components either vanish or do not include new fields;
for example,

[D.
αΦ]

∣∣ (10.87)= 0, [D2Φ]
∣∣ (10.87)= 0, (10.89)

[D.
αDαΦ]

∣∣ (10.69)= [(2σμ
α
.
α
Pμ − DαD.

α)Φ]
∣∣ (10.87)= [(−2iσμ

α
.
α

h̄∂μ)Φ]
∣∣ = −2ih̄σμ

α
.
α
(∂μφ). (10.90)

Supersymmetric transformations are easily derived following Example 10.1 on p. 380:

δQ(ε)φ = (ε·D + ε·D)Φ
∣∣ = ε·ψ; (10.91a)

11 The analogy with complex-analytic functions is fully justified and valuable.
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δQ(ε)ψα = (ε·D + ε·D)
DαΦ

∣∣ =
( 1

2ε
βεβαD2 + 2ih̄ε

.
ασ
μ

α
.
α
∂μ

)
Φ
∣∣,

= 2εαβε
β F + 2ih̄σμ

α
.
α
ε
.
α(∂μφ); (10.91b)

δQ(ε)F = (ε·D + ε·D)(− 1
4 D2Φ)

∣∣ = − 1
4ε

.
α
(
4ih̄σμ

α
.
α
εαβ∂μDβ

)
Φ
∣∣,

= −ih̄σμ
α
.
α
ε
.
αεαβ(∂μψβ). (10.91c)

Digression 10.9 Iterating the result (10.91), one can show that

[δQ(ε(1)), δQ(ε(2))](φ;ψα; F) = 2ih̄(ε(2)·σσσσμ·ε(1) − ε(1)·σσσσμ·ε(2))∂μ(φ;ψα; F). (10.92a)

That is, the commutator of two supersymmetry transformations formally equals a
translation in spacetime. However, notice that this translation parameter,

ε
μ
(1,2) := (ε(2)·σσσσμ·ε(1) − ε(1)·σσσσμ·ε(2)), (10.92b)

is not an ordinary spacetime vector! The supersymmetry transformation parameters,
εα(1), ε

α
(2) anticommute, and so are nilpotent [☞ relations (10.73)]; the vector (10.92b)

is therefore itself (degree-4) nilpotent: (εμ(1,2))
4 ≡ 0 for any μ = 0, 1, 2, 3. Similarly,

ε·ψ is only formally a “shift” in the scalar field φ, according to the transformation
relation (10.91a), since the expression ε·ψ(x) is in every spacetime point (degree-4)
nilpotent and the function φ(x) in every spacetime point has values that are ordinary,
i.e., non-nilpotent commuting complex numbers.

Conclusion 10.3 Although the (symmetrized) iterative application of the supersymmetry
generators Qα and Q.

α is equivalent to the application of the spacetime translation gener-
ator Pμ, supersymmetry transformations (10.62) do not produce transformations in “real”
spacetime.

The fact that supersymmetry transformations map the fields φ(x) ↔ ψα(x) ↔ F(x) (and
their derivatives) in every spacetime point, however, remains.

Notice that chiral superfields (at the same spacetime point) form the “ring” algebraic struc-
ture [☞ the lexicon entry, in Appendix B.1]:

Conclusion 10.4 The product of two chiral superfields is again a chiral superfield:

D.
αΦ1 = 0 = D.

αΦ2, ⇒ D.
α(Φ1Φ2) = 0, (10.93)

with the usual rules of distribution between multiplication and addition. It follows that
chiral fields (at the same spacetime point) form the “chiral ring.” Moreover, it follows that
an arbitrary analytic function of chiral superfields (defined by its Taylor expansion) is also
a chiral superfield.

Theorem 10.8 The most general supersymmetric Lagrangian density for a chiral superfield
Φ must be of the form

L [Φ] = [D2D2 K(Φ†, Φ)]
∣∣ + [D2 W(Φ)]

∣∣ + [D2 W(Φ†)]
∣∣. (10.94)

Proof Since the Lagrangian density must be real, for the first term of the general form (10.84)
one selects a real function K(Φ†, Φ), and adds the second term and its Hermitian conjugate where
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W(Φ) is an arbitrary analytic function. Indeed, this second term is also (and independently!)
supersymmetric:

(ε·Q + ε·Q) D2 W(Φ)
∣∣

(10.71)= εα(iDα − 2h̄σμ
α
.
α
θ
.
α
∂μ) D2 W(Φ)

∣∣ + ε
.
α(iD.

α − 2h̄σμ
α
.
α
θα∂μ) D2 W(Φ)

∣∣
θ,θ→0= iεα DαD2︸ ︷︷ ︸

≡0

W(Φ)
∣∣ + iε

.
α(−2ih̄σμ

α
.
α
∂με

αβDβ + D2D.
α)W(Φ)

∣∣
= ∂μ

[
2h̄ε

.
ασ
μ

α
.
α
εαβDβW(Φ)

∣∣]︸ ︷︷ ︸
Kμ

+ iε
.
αD2 D.

αW(Φ)︸ ︷︷ ︸
=0

∣∣ = ∂μKμ, (10.95)

so the
∫

d4x-integral vanishes again, owing to the usual restrictions on the fields. Listing all possible
Lorentz-invariant terms, one shows that the expression (10.94) is the most general form of a
supersymmetric Lagrangian density. 
�

The standard choice K(Φ†, Φ) = Φ†Φ gives (after some “D-gymnastics” [☞ rela-
tions (A.162)–(A.165)]) the standard Lagrangian density for a scalar φ and a fermion ψα, and
the total resulting Lagrangian density is – up to integration by parts for symmetrization of the
expression,

L [Φ] = −(∂μφ∗)ημν(∂νφ) − i
2σ

μ
.
αα
[
ψ.
α(∂μψα) − (∂μψ.

α)ψα
]
+ F∗F

+ F W ′(φ) + 1
2 ε
αβψαψβ W ′′(φ) + F∗ W ′(φ∗) + 1

2 ε
.
α
.
βψ.

αψ
.
β

W ′′(φ∗). (10.96)

Since the Euler–Lagrange equations of motion for the component fields F and F∗,

F∗ = −W ′(φ) and F = −W ′(φ∗), (10.97)

are non-differential equations in F and F∗, they may be used to substitute F and F∗:

L [Φ] = − i
2σ

μ
.
αα
[
ψ.
α(∂μψα) − (∂μψ.

α)ψα
]− (∂μφ∗)ημν(∂νφ)

− |W ′(φ)|2 + 1
2 ε
αβψαψβ W ′′(φ) + 1

2 ε
.
α
.
βψ.

αψ
.
β

W ′′(φ∗). (10.98)

The constant h̄ has been eliminated in the expressions such as (10.94)–(10.98) by redefining
the component fields to emphasize the similarity with the Lagrangian density (7.34) [☞ Exer-
cise 10.3.6 on p. 388]. A similar redefinition of the fermion fields ψα,ψ.

α and the use of the
basis (A.132) for the Dirac γγγγ-matrices shows the first term (10.98) to give the standard Lagrangian
density (5.68a) for Dirac fermions.

The computation (10.94)–(10.98) clearly shows that the D2D2Φ†Φ| term produced the stan-
dard “kinetic” part of the Lagrangian density, while the terms D2W(Φ)|+ D2W(Φ†)| produce, after
eliminating F and F∗ via their equations of motion (10.97), the potential

V(φ) = |W ′(φ)|2 � 0. (10.99)

Finally, the terms −ψ2W ′′(φ∗) − ψ
2W ′′(φ∗) provide the supersymmetric completion of the poten-

tial |W ′(φ)|2. Owing to the relation (10.99) with the potential, the function W(Φ) is called the
superpotential.
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Digression 10.10 On one hand, owing to Theorem 10.7 on p. 381, and the similar re-
sult (10.95), the Lagrangian density (10.96) is known to be supersymmetric, i.e., its
infinitesimal supersymmetry transformation δQ(ε) = −i(ε·Q + ε·Q) changes the La-
grangian density (10.96) into a total derivative. This may also be directly verified by
substituting the supersymmetry transformations of the component fields

δQ(ε)φ = εαψα, δQ(ε)ψα = 2εαβε
βF + 2ih̄σμ

α
.
α
ε
.
α(∂μφ),

δQ(ε)F = ih̄σμ
α
.
α
εαβε

.
α(∂μψβ)

(10.100a)

into the Lagrangian density (10.96).
However, the Lagrangian density (10.98) is not invariant with respect to the super-

symmetry transformations (10.100a)! These transformations represent the original (and
linear) supersymmetry action upon the superfield Φ, i.e., upon the component fields –
including F. The elimination of F by (10.97) changes this action, so that the transforma-
tion rules (10.100a) also change, and the Lagrangian density (10.98) is invariant with
respect to the so-changed transformations. As W ′(φ) is nonlinear in the general case,
these changed supersymmetry transformation rules are also nonlinear.

Digression 10.11 The simplest model in which supersymmetry is spontaneously broken
was found by O’Raifeartaigh, and has the superpotential

D2[λΦ0 + mΦ1Φ2 + gΦ0Φ 2
1 ]

∣∣ + h.c., (10.101a)

where Φ0, Φ1 and Φ2 are three chiral superfields. The non-differential equations of
motion for the auxiliary components F0, F1 and F2 are (10.98)

F0 = −λ− gφ 2
1 , F1 = −mφ1 − 2gφ0φ1, F2 = −mφ2, (10.101b)

which make the potential in this model into (10.99)

V =
2

∑
k=0

∣∣Fk|2 =
∣∣λ+gφ 2

1
∣∣2 +

∣∣mφ2+2gφ0φ1
∣∣2 +

∣∣mφ1
∣∣2. (10.101c)

This cannot possibly vanish: the last term can vanish only where φ1 = 0 and where
the potential becomes V = |λ|2 + |mφ2|2 > 0. Supersymmetry is therefore broken
spontaneously as there is no solution to the equations of motion where V = 0.

One of the original ideas for the application of supersymmetry was to find superfields where the
bosons and fermions of the Standard Model [☞ Table 2.3 on p. 67] would all be component fields
of the same superfields. However, the component fields of the same superfield differ only by spin,
and not by charges (electric, weak isospin or color), so this is not possible: the Standard Model
fermions have completely different charges from the bosons.

It follows that identifying the 2-component Weyl fermion ψα(x) ∈ Φ(x; θ, θ) with a left-
handed chiral half of a Dirac 4-component wave-function of the electron, the complex scalar field
φ(x) ∈ Φ(x; θ, θ) is the electron superpartner, the so-called selectron, which must be added to the
list in Table 2.3 on p. 67. Bosons with the charges given in Table 7.1 on p. 275 have not been de-
tected experimentally, while supersymmetry implies their existence; one jokes that supersymmetry
is already 50% experimentally verified. However, this means that supersymmetry – in Nature –
must be broken, and in such a way that the masses of the bosonic superpartners of the elementary
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fermions from Table 2.3 on p. 67 are sufficiently big, bigger than the masses of the elemen-
tary fermions by the amount ESuSy/c2, so that this explains why they have not been detected
experimentally so far [☞ examples in Figure 10.2 on p. 375].

The gauge superfield
Consider now the real superfield A† = A. The component fields may be found by means of
Taylor-esque projections (10.75); specifically, the projection (10.75e) finds the real 4-vector field
Aμ(x) ∈ A(x; θ, θ). On the other hand, the same component of the combined superfield i(Φ−Φ†)
gives

1
4σ

.
αα
μ

[
[Dα, D.

α]i(Φ − Φ†)
]∣∣ = 2h̄

(
∂μ &e(φ)

)
, (10.102)

so that the superfield transformation

A → A′ = A + i(Φ − Φ†) ( Aμ → A′
μ = Aμ + ∂μ

(
2h̄ &e(φ)

)
(10.103)

contains the gauge transformation (5.89) of the vector component field, where − h̄
c &e(φ) plays

the role of the gauge local parameter. Of course, if the chiral superfields Φi are intended one for
each Standard Model elementary fermion and we introduce the real superfield A ( Aμ for the
electromagnetic field, to parametrize the gauge transformation of the electromagnetic field we
must introduce a separate chiral superfield Λ, the scalar component of which plays the role of the
gauge local parameter.

A detailed analysis [189, 562, 560, 76] of the component fields in the combination A +
i(Λ − Λ) shows that a suitable choice of the superfield Λ eliminates the component fields in the
“lower half” of the superfield A, as per diagram (10.78). However, it is more practical to define
the chiral–anti-chiral pair of fermionic superfields:

Aα := (D2DαA) and A.
α := (D2D.

αA), (10.104)

which satisfy
A = A† ⇒ εαβDαAβ = ε

.
α
.
βD.

αA .
β
, (10.105)

and the components of which include

Aα

∣∣ =: λα, A.
α

∣∣ =: λ̄.
α, (10.106a)

DαAβ

∣∣ =: εαβD + i(σσσσμν)αγ εβγFμν, D.
αA .

β

∣∣ =: ε.
α
.
β
D + i(σσσσμν)

.
γ.
α ε .β .γFμν, (10.106b)

D2Aα

∣∣ = −ih̄σμ
α
.
α
ε
.
α
.
β(∂μλ̄ .

β
), D2A.

α

∣∣ = −ih̄σμ
α
.
α
εαβ(∂μλβ). (10.106c)

Here,
Fμν := (∂μAν − ∂νAμ), (10.107)

and the component fields from the “lower half” of the original superfield A show up neither in the
expressions (10.106) nor in any other projection of the superfields Aα and A.

α. A supersymmetric
Lagrangian density that includes the standard − 1

4 FμνFμν Lagrangian density is then obtained from
the expression

L [A] = − 1
4 [D2 εαβAαAβ]

∣∣− 1
4 [D2 ε

.
α
.
βA.

αA .
β
]
∣∣

= − 1
4 FμνFμν − ih̄

2 σ
μ
.
αα
[
λ̄.
α(∂μλα) − (∂μλ̄.

α)λα
]
+ 2D2. (10.108)

The first term is – up to a (re)scaling of the field Aμ – the Lagrangian density that is identical to
the density in the expression (5.76) for electromagnetic fields. The equations of motion for the
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spinor fields (λα, λ̄.
α) are the Dirac equations, which is typical for spin- 1

2 fermions, but the mass
of these spinors vanishes. These then are the superpartners of the gauge fields and are in general
called gauginos.12 Notice that the relation (10.105) equates the component functions that occur in
D- and D-projections (10.106b), but leaves λ̄.

α formally independent of λα. The condition (10.105),
however, guarantees that the Dirac spinor (λα, λ̄.

α) has four real independent components.

Supersymmetric electrodynamics
The minimal supersymmetric Lagrangian density where the chiral field F interacts with the gauge
superfield A, for the supersymmetric version of electrodynamics for example, is obtained in the
form

L = − 1
4 [D2 εαβAαAβ]

∣∣− 1
4 [D2 ε

.
α
.
βA.

αA .
β
]
∣∣ +

[
D2D2 Φ eqΦA Φ

]∣∣. (10.109)

This Lagrangian density is invariant with respect to the gauge transformations

A → A + i(Λ − Λ), Φ → eiqΦΛΦ, Φ → e−iqΦΛΦ, (10.110)

which coincide with the transformations (5.14a) for the component fields Aμ, and that of the
ψα ∈ Φ with the left-handed chiral projection of the transformation (5.14b). Expanding the ex-
pression (10.109) produces the Lagrangian density for supersymmetric electrodynamics, where the
additional terms involve the superpartners of both the photon (itself represented by the 4-vector
potential Aμ), and the left-handed chiral electron (represented by the fermion field ψα).

To extend this minimal model so as to include also the right-handed chiral electron, we must
introduce another chiral field, Φc := C(Φ), which is defined so that ψc

α is the left-handed chiral
spin- 1

2 fermionic field with the electric charge opposite to that of the electron. Then, ψc.
α
∈ Φc is

the right-handed chiral spin- 1
2 fermions field with the electric charge equal to the electron charge.

Therefore, the Lagrangian density for electrodynamics with a massive electron must be of the form

L = − 1
4 [D2 εαβAαAβ]

∣∣− 1
4 [D2 ε

.
α
.
βA.

αA .
β
]
∣∣ +

[
D2D2 Φ eqΦA Φ

]∣∣ +
[
D2D2 Φc e−qΦA Φc]∣∣

+ m
{
[D2ΦΦc]

∣∣ + [D2Φ Φc]
∣∣}, (10.111)

where we added terms in the second row, which produce the Lagrangian terms m(ψ·ψc + ψ·ψc)
for the electron, as well as (after eliminating the auxiliary scalar fields F and Fc using their non-
differential equations of motion) m2φφc ≡ m2|φ|2 for the selectron.

The minimal supersymmetric Standard Model
The construction of the complete supersymmetric Standard Model is now seen as a generalization
of the procedure that led us to the Lagrangian density (10.111). For the details of this construction,
the interested Reader is directed to the abundant literature [☞ textbooks [189, 562, 560, 76] to
begin with]. However, note:

1. On one hand, supersymmetry conceptually unites bosons and fermions – and requires that
every boson has a fermion superpartner, and vice versa.

2. On the other hand, the concrete bosons and fermions of the Standard Model cannot be each
others’ superpartners, since the (gauge and Higgs) bosons in the Standard Model transform
differently from the fundamental fermions in the Standard Model with respect to the action
of the gauge group SU(3)c × SU(2)w × U(1)Q.

12 Superpartners of bosonic particles are named using the boson’s name with an attached -ino suffix, such as photino,
gluino and higgsino. The superpartners of fermionic particles are named by attaching an s- prefix to the fermion’s name,
such as selectron, sneutrino and squark.
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Also, it turns out that the details of the fermion mass hierarchy require introducing not one but
two chiral superfields for each Higgs field in the Standard Model, and it follows:

Conclusion 10.5 The so-called Minimally Supersymmetric Standard Model (MSSM) re-
quires a little over twice as many particles as the Standard Model.

Considering this simple counting of degrees of freedom used to describe Nature, the rea-
son for supersymmetrizing the Standard Model certainly is not economy. However, recall the
conceptual and practical (technical) consequences of supersymmetry [☞ Section 10.3.1]:

1. vacuum stabilization,
2. mass hierarchy stabilization, and
3. simplification of the renormalization procedure.

Note also the fact that before the invention of supersymmetry, which successfully solves these
problems of the Standard Model, these problems were hardly mentioned. Of course, that owes
partly to the approach of describing Nature pragmatically and axiomatically:

Comment 10.5 Theoretical models are constructed with the aim to describe, in a logi-
cally coherent and consistent theoretical system, the known phenomena without predicting
nonexistent phenomena, and while keeping the necessary assumptions as few as possible.

These assumptions (axioms) are re-examined only when the resulting theoretical sys-
tem “paints” the development of the model “into a corner” and when within this theoretical
system it is not possible to construct a model that does not err in a concrete aspect of the
description of Nature, or when an opportunity emerges to explain it in a conceptually more
fundamental or practically simpler system of assumptions.

Of course, the question remains: In what measure is supersymmetry of help in models of
quantum physics that contain the general theory of relativity? Considering that the complete theory
of quantum gravity does not exist yet, a final answer to this question then does not exist either☞ .
However, the next chapter will permit us to say a little more about this.

10.3.4 Exercises for Section 10.3

✎ 10.3.1 Prove that the left-hand side of the relation (10.55) is non-negative.

✎ 10.3.2 Show that the operators (10.67) and (10.68) satisfy the operatorial relations (10.69)
and (10.70).

✎ 10.3.3 Confirm the relations (10.91).

✎ 10.3.4 Confirm the result (10.95).

✎ 10.3.5 By iterative and consistent use of relations (10.69) and definitions (10.88) (a.k.a.
“D-gymnastics”), derive equation (10.96) from (10.94).

✎ 10.3.6 Return the proper factors of h̄ and c in the expressions (10.96)–(10.98).
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10.4 Classification of off-shell supermultiplets
Recall Procedure 5.1 on p. 193, which is generally accepted as the only systematic procedure ap-
plicable in all known models of quantum field theory [☞ also Procedure 11.1 on p. 416]. For the
purposes of this procedure we must define an integral of the general type∫

D[ φ ] eiS[φ]/h̄ (10.112)

to be computed over all possible fields, here represented by the symbol φ. S[φ] is the classical
Hamilton action, which according to Hamilton’s principle has a minimum for the choice of fields
φ that satisfy the classical (Euler–Lagrange) equations of motion, i.e., for fields φ that are on
shell. For such classical fields, S[φ] is minimal, and the integrand exp{iS[φ]/h̄} oscillates min-
imally. By contrast, a choice of the fields that are “far” from such classical fields then causes
the integrand to oscillate very fast, so that the contributions mostly cancel. The naive reason-
ing then is that the contributions of the classical fields dominate the formal integral (10.112). This
is in no way proven rigorously, as the space of the choices of the fields φ is infinite-dimensional:
although the contribution to the integral (10.112) from any one non-classical field is infinites-
imally small, there are continuously many such fields and the sum over them may well even
diverge.

However, we certainly know that the fields over which the integration (10.112) is to be
performed must a priori be off-shell, i.e., not subject to any differential equation, and foremost
not the classical (Euler–Lagrange) equations of motion: that would be outright contradic-
tory. Quantum supersymmetric models then must be constructed using off-shell supermultiplets
(collections of particles and their superpartners); in models of supersymmetric quantum field
theory, both the known particles and all their superpartners must be represented by off-shell
fields.

With that in mind it is then surprising that four decades after the introduction of supersym-
metry in field theory there is still no complete theory of off-shell representation of supersymmetry
algebras☞ . Recent research in this direction [139, 140, 141, 142] indicates a fantastic and com-
binatorially complex multitude of possibilities, very different from the well-known theory of the
finite-dimensional unitary representations of Lie algebras, and even the supersymmetric on-shell
representations, which are well known.

The remainder of this section gives a telegraphic description of this research, mostly so as
to indicate some open possibilities for research. However, this introduction is restricted to intact
supermultiplets13 – those that have not been constrained or gauged in any way. Constrained and
gauged (gauge-equivalences of) supermultiplets are indeed very widely used, and the interested
Reader is directed to the textbooks [189, 562, 560, 76].

10.4.1 One-dimensional supersymmetry as the common denominator
Recall the three levels of theoretical analysis of physical systems [☞ description on p. 366] where
supersymmetry may show up, and especially the second and third levels of analysis, where
supersymmetry reduces to supersymmetric quantum mechanics, with the algebra{QI , QJ

}
= 2δI JH,

[
H , QI

]
= 0, I, J = 1, . . . , N, (10.113)

where H = ih̄∂τ is the Hamiltonian and τ the proper time, and where in the general case one does
not require N to be even as in the relations (10.32). Note that we revert to the quantum-mechanical
normalization, [Q I ] =

√
ML
T .

13 The adjective “intact” is simply shorter than the detailed “unconstrained and ungauged.”
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Following the lesson from the conclusion in Digression 10.9 on p. 383, or even just sim-
ply the pragmatic application of supersymmetry as a transformation that maps bosons into
fermions and back, the goal of classifying representations of supersymmetry is to classify all
possible supermultiplets, i.e., collections of bosons and fermions that supersymmetry maps one
into the other. To this end, it is convenient to introduce a graphical notation as described in
Table 10.1.14

Table 10.1 The correspondence between Adinkras and supersymmetry transformations gives:
node↔ component field; white/black node↔ boson/fermion; Ith color/index edge↔ QI ; dashed
edge↔− sign; edge direction↔ 1 (∂τ when following an edge in the opposite direction). In addi-
tion, the Adinkras are drawn putting the nodes at levels proportional to their relative units, so the
implicit edge directions are upward.

Adinkra Supersymmetry transf. Adinkra Supersymmetry transf.

QI

[
ψB
φA

]
=

[
i
.
φA
ψB

]
QI

[
ψB
φA

]
=

[−i
.
φA

−ψB

]

QI

[
φA
ψB

]
=

[ .
ψB
iφA

]
QI

[
φA
ψB

]
=

[− .
ψB

−iφA

]

Edges are here labeled by the index I; for a fixed I, they are drawn in the Ith color.

The next two examples of supermultiplets of N = 2 supersymmetric quantum mechanics
should clarify the application of the rules in Table 10.1.

Example 10.2 The simplest supermultiplet is of the general form that reflects the basis of
the type (10.78):

Q1 φ = ψ1, Q2 φ = ψ2, (10.114a)

Q1 ψ1 = i
.
φ, Q2 ψ1 = −iF, (10.114b)

Q1 ψ2 = iF, Q2 ψ2 = i
.
φ, (10.114c)

Q1 F =
.
ψ2,

Ψ2Ψ1

Φ Q2 F = − .
ψ1. (10.114d)

The black edges depict the action of the Q1 supercharge and the gray edges the Q2-
action. The fact that in a two-colored quadrangle (10.114) an odd number of edges must
be dashed (i.e., the corresponding supercharge action has an additional −1 sign) follows
from the fact that

φ
Q1−→ ψ1

−Q2−−→ F : F = −Q2
(Q1(φ)

)
,

φ
Q2−→ ψ1

Q1−→ F : F = Q1
(Q2(φ)

)
,

}
⇒ Q1Q2 = −Q2Q1, (10.115)

in agreement with equation (10.31).

14 A graphical representation of a system of equations offers the evident advantage of heuristic insight and is not at all a
new idea [177]; the formalization of such graphs – called Adinkras – for the purposes of supersymmetry, however, is of
recent origin [139]. They are particularly useful in depicting intact supermultiplets.
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Example 10.3 Another example of an N = 2 supermultiplet is

Q1 ϕ1 = χ1, Q2 ϕ1 = χ2, (10.116a)

Q1 ϕ2 = χ2, Q2 ϕ2 = −χ1, (10.116b)

Q1 χ1 = i
.
ϕ1, Q2 χ1 = −i

.
ϕ2, (10.116c)

Q1 χ2 = i
.
ϕ2,

χ2χ1

ϕ1 ϕ2 Q2 χ2 = i
.
ϕ1. (10.116d)

Formally, equating (φ;ψ1ψ2; F) = (ϕ1;χ1,χ2;
.
ϕ2) identifies the two supermultiplets, but

this implies the relation F = .
ϕ2 and so ϕ2 =

∫
dτ F, which is evidently non-local. The two

supermultiplets, (10.114) and (10.116), thus cannot be considered equivalent off-shell
supermultiplets.

Both examples, 10.2 and 10.3, depict supermultiplets that consist of two bosons and two
fermions. The difference is indicated by the fact that in Example 10.2 [F] = [φ]·ML2

T2 , whereas
in Example 10.3 [ϕ1] = [ϕ2]; see Table C.5 on p. 528. It is then evident that the supersymmetric
Lagrangian of the form

L2 := 1
2μ

[
( .
ϕ1)2 + ( .

ϕ2)2 + 2i
h̄ (χ1

.
χ2 − .

χ1χ2)
]
, (10.117)

with an appropriate characteristic constant μ, produces the familiar equations of motion: second
order in time derivatives for the bosons ϕ1, ϕ2 and first order for fermions χ1,χ2. By contrast, the
analogous supersymmetric Lagrangian

L1 := 1
2μ

[
(
.
φ)2 + 1

h̄2 F2 + 2i
h̄ (ψ1

.
ψ2 −

.
ψ1ψ2)

]
(10.118)

produces the usual equations of motion for the boson φ and the fermions ψ1,ψ2, but an algebraic
equation for the boson F [☞ step 4(b)iii on p. 374, as well as the equations of motion (10.97)].

This dynamical information is thus encoded by the “height arrangement” of the nodes in
the Adinkra, which defines the relative physical units of the component fields in the depicted
supermultiplet.

Digression 10.12 The formal difference between the supermultiplets (10.114)
and (10.116) is seen by analyzing the identifications(

φ;ψ1,ψ2; F
) =−−→ (

ϕ1;χ1,χ2; ( .
ϕ2)

)
,(

φ, (
∫

dτ F
)
;ψ1,ψ2)

=←−− (
ϕ1, ϕ2;χ1,χ2

)
.

(10.119)

This gives a formal bijection between the two supermultiplets. However, since ∂τ : ϕ2 �→
(
.
ϕ2) annihilates the constant term in a power expansion of the function ϕ2(τ) and ∂−1

τ :
F �→ (

∫
dτ F) adds an arbitrary (integration) constant, this formal bijection is not a

perfect 1–1 mapping in both ways, and the supermultiplets (10.116) and (10.114) must
be considered different.

Digression 10.13 For the Lagrangians (not Lagrangian densities!) L1 and L2 to have the
units of energy and μ to be identifiable as a mass, [φ] = [ϕi] = L, [ψi] = [χi] =

√
ML2

T
and [F] = ML3

T2 .
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Supermultiplets that can be depicted with Adinkras (graphs that are constructed based on
the rules in Table 10.1 on p. 390 [☞ article [139] for the appropriate theorems and details]) have
the property that the supersymmetric mapping from bosonic to fermionic component fields and
back may also be represented by a system of superdifferential relations:

D IΦi = (LI)i
αΨα, D IΨα = ih̄(RI)α i .

Φi, (10.120)

where the index I counts supercharges, i the bosonic superfields Φi, α the fermionic superfields
Ψα, chosen so that:

1. component fields φi = Φi| and ψα = Ψα| (up to a ∂τ- or ∂−1
τ -prefactor as needed) are the

complete system of component fields for the desired supermultiplet, and
2. in every row and every column, the numerical matrices (LI)i

α and (RI)α i have precisely
one nonzero entry, which equals ±1.

Because of the relations (10.71), the system of superdifferential relations specifies the supersym-
metric transformations within the supermultiplet.

Although there exist supermultiplets that do not satisfy these requirements, all worldline
off-shell supermultiplets may be constructed starting with such “adinkraic” supermultiplets [284,
143]. Adinkras for a few such supermultiplets for small N (in the variant where neither ∂τ- nor
∂−1
τ -prefactors were used) are

(10.121)

It should now be clear that there exist a combinatorially (hyper-exponentially) growing number
of different node-height arrangements in Adinkras with growing N. Every new node-height ar-
rangement corresponds to a new application of ∂τ- and ∂−1

τ -prefactors, which then specifies a
new supermultiplet, which in turn results in a number of different supermultiplets that grows
combinatorially with a growing N.

In turn, the matrices LI and RI in the equations (10.120) satisfy the relations

(LI)i
α (RJ)αk + (LJ)i

α (RI)αk = 2δI J δ
k
i , (10.122)

(RI)α j (LJ)j
β + (RJ)α j (LI)j

β = 2δI J δ
β
α , (10.123)

which define a double cover of the Clifford algebre Cl(0, N).15 In the original articles [195, 197,
196, 198, 199, 194, 193] the algebra (10.123) was denoted GR(d, N), where it is assumed that,
as needed, the superfields Φi, Ψα may be replaced by their ∂τ-derivatives. Indeed, this formal
∂τ-mapping connects all supermultiplets with the same “chromo-topology” [139]. For the rela-
tively simple case of quantum-mechanical N = 2 supersymmetry, iterations of such ∂τ-mapping
yield the cyclic sequence

the overall ¶τ-derivative of the initial Adinkra

¶τ

¶τ

¶τ

(10.124)

15 The double-covered Clifford algebra is obtained by identifying LI , RI
2–1�−→ eI .
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For quantum-mechanical N = 3 supersymmetry, the analogous cyclic sequence is

(10.125)

where the gray-highlighted Adinkra (bottom, right) is identical (up to the overall level, indi-
cated by the gray dot-n-dash line) to the initial one, at far left, thus repeating the cycle. These
illustrations show that for the (even just adinkraic) finite-dimensional representations of quantum-
mechanical N-extended supersymmetries the number of possible node-height arrangements – and
so the number of different supermultiplets – grows combinatorially with the growing number of
supersymmetries, N.

In addition, starting with N = 4, there emerges a new possibility – “projections” – of which
more in the next section. May it suffice here to show but one example:

ϕ0000 = (∂τ–2ϕ1111 )

ϕ1100 = ϕ0011

(∂τ–2ϕ1111
2)

ϕ1100

ϕ0000

ϕ0011

2

(10.126)

The dashed double-ended arrows indicate some of the pairs of component fields in the left-
hand supermultiplet that are identified so as to obtain the component fields of the right-hand
supermultiplet. The naming convention of the labeled component fields is explained in the next
section.

It has been proven that the number of such “adinkraic” off-shell supermultiplets grows
fantastically fast with the number of supersymmetries, and one expects about 1047 distinct super-
multiplets for N � 32, which are expected to form about 1012 equivalence classes [141, 142].
Finally, it has been shown that an infinite number of ever larger (and non-adinkraic) super-
multiplets can be constructed as networks of adinkraic supermultiplets, connected by one-way
supersymmetry transformations [284]; this is also the structure of some rather well-known
supermultiplets of simple supersymmetry in 4-dimensional spacetime [190].

— ❦ —

For such a (worldline) supermultiplet to be the 1-dimensional “shadow” of a supermultiplet from a
4-dimensional supersymmetric field theory, it is necesary that both the component fields and the su-
percharge action are compatible with Poincaré symmetry in 4-dimensional spacetime. One expects
this to be a rather nontrivial requirement [197, 157, 158, 191, 283], which should drastically re-
duce the number of possible supermultiplets in higher-dimensional spacetime, but this verification
(dimensional reconstruction) is far from solved in general ☞ ; see Refs. [157, 158, 191, 283, 409].

10.4.2 Supermultiplets and binary encryption
It is fascinating that the classification of off-shell quantum-mechanical supermultiplets [140, 142]
is closely related to the classification of doubly even binary linear block codes, which may be used
in error-detecting and error-correcting encryption [286].
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That is, in the quantum-mechanical N-extended supersymmetry (10.113) we have N real
supercharges QI , so that a supermultiplet may be identified – up to an application of ∂τ- and/or
∂−1
τ -prefactors – with a complete iterative application of all QI ’s upon some starting component

field. The supermultiplet in Example 10.2 on p. 390 may be reconstructed also as{
φ, ψ1 := Q1(φ), ψ2 := Q2(φ), F := Q1

(Q2(φ)
) }

, (10.127)

and the supermultiplet in Example 10.3 on p. 391 as{
ϕ1, χ1 := Q1(ϕ1), χ2 := Q2(ϕ1), ϕ2 := ∂−1

τ

(Q1(Q2(ϕ1)
) }

. (10.128)

As the defining relations of the supersymmetry algebra (10.113) imply that

QIQJ = −QJQI , I �= J, (10.129a)(QI
)2 = H, I = 1, . . . , N, (10.129b)

it follows that every formal Q-monomial can be expressed as a linear combination of H-multiples
of lexicographically ordered monomials from the basis{

Qb := Qb1
1 Qb2

2 · · · QbN
N , bI = 0, 1, I = 1, . . . , N

}
. (10.130)

Evidently, there are ∑N
k=0 (N

k ) = 2N so-ordered Q-monomials and they are unambiguously encoded
by the binary exponents bI , which may be concatenated into a binary number of a formal binary
exponent b. Following the examples (10.127) and (10.128), we define{

φb

ψb

}
:= Qb(φ00···), when |b| :=

N

∑
I=1

bI is
{

even,
odd.

(10.131)

The field identification in the relation between the two Adinkras (10.126) requires the
imposition of the operatorial conditions16

Q1Q2 " +Q3Q4, Q1Q3 " −Q2Q4, Q1Q4 " +Q2Q3, (10.132a)

in addition to the relations (10.113), i.e., (10.129). Indeed, acting (always only from the right!)
by the operators Q1,Q2,Q3 and Q4 on the relations (10.132a) produces

HQ1 " +Q2Q3Q4, HQ2 " −Q1Q3Q4, HQ3 " +Q1Q2Q4, HQ4 " −Q1Q2Q3, (10.132b)

and then, finally, also
(H2 = −h̄2∂2

τ) " −Q1Q2Q3Q4. (10.132c)

This last relation corresponds to the identification of the component fields:(
H2φ0000 = −h̄2(∂2

τφ0000)
)

=
(
−Q1Q2Q3Q4(φ0000) =: −φ1111

)
. (10.133)

Similarly, other relations (10.132) encode all other identifications (10.126), and so also the pro-
jection of the bigger, left-hand side supermultiplet to the smaller, right-hand side supermultiplet.
It is essential to note that the relations (10.132) do not impose any ∂τ-differential equation upon
any of the component fields, and each field – and so the entire supermultiplet – remains off-shell.

16 By operatorial conditions/relations one implies conditions/relations between two operatorial expressions, and which
conditions/relations must hold when the left-hand and the right-hand sides of the equality are applied on any object
upon which the operation of the given operators is defined.
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Digression 10.14 Note that – up to additional H-factors – each of the eight
relations (10.132) may be obtained from any other one. For example,

HQ2 " −Q1Q3Q4
·Q3−−→ HQ2Q3 " −Q1Q3Q4Q3 = +HQ1Q4. (10.134a)

In that sense are the three relations (10.132a) “basic” since all other relations (10.132b)–
(10.132c) follow with no additional H-factors, whereas the converse does not follow.
Jointly, the relations (10.132a) may be written as

QIQJ − 1
2 ε I J

KLQKQL " 0, (10.134b)

which indicates the need for the Levi-Civita symbol ε I JKL, where all four indices have
precisely one of the four possible values – corresponding to the binary number b =
1111 [☞ Ref. [141] for analogous relations that correspond to other codes].

All the relations (10.132), and so also all the identifications (10.126) are almost unambigu-
ously encoded by the binary number b = 1111,17 which generates a so-called “binary doubly
even linear block code” d4 [286], which is also the simplest such code. These codes are used in
binary encryption that helps in communications by enabling the detection of transmission errors
and even some corrections, and without re-transmitting the original message. Once projected, as
in the example (10.126), the smaller supermultiplet may be connected with various “node-height
rearrangements” by applying the formal ∂τ- and ∂−1

τ -prefactors, which then generates all possible
supermultiplets with that chromo-topology [142].

Thus, the classification of off-shell worldline supermultiplets is closely related to the clas-
sification of “binary doubly even linear block codes,” and gives a close relationship between
supersymmetry and encryption – which is a fully unexpected and fascinating result in this research.
Numerically, it is even more fascinating that there are at least ∼1047 such codes for N � 32
(which is a limit suggested by the M-theoretic extension of superstrings), and that they form at
least ∼1012 equivalence classes; moreover, the number of supermultiplets of which the “chromo-
topology” [142] is defined by any one such code itself grows combinatorially with N, which further
increases the “menagerie.”

The construction and classification of off-shell supermultiplets in higher-dimensional space-
times starting from the so far discussed worldline off-shell supermultiplets is in progress [157, 158,
191, 283, 409] ☞ . In addition, other approaches and methods can complement these efforts, even
if in more specific setting (such as for a fixed number of supersymmetries, N): see, for example,
Refs. [281, 292, 47], to begin with.

10.4.3 Exercises for Section 10.4

✎ 10.4.1 Prove that the Lagrangian terms (10.117) and (10.118) are invariant with respect to
the supersymmetry transformations (10.114)–(10.116).

✎ 10.4.2 Derive and solve the equations of motion defined by the Lagrangian density (10.117).

✎ 10.4.3 Complete the Lagrangian term L3 = ω(ϕ1
.
ϕ2−ϕ2

.
ϕ1) + · · · so it is invariant with

respect to the supersymmetry transformations (10.116).

✎ 10.4.4 Derive and solve the equations of motion defined by the Lagrangian density L1 +L3,
as defined in the expression (10.117) and the solutions of Exercise 10.4.3.

17 Except for the choice of the relative sign in equation (10.134b), for cases with a total of N = 4k supersymmetries.
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