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APPROXIMATION AND SPECTRAL PROPERTIES OF
PERIODIC SPLINE OPERATORS

by S. L. LEE and W. S. TANG

(Received 26th September 1989)

We consider discrete convolution operators tij*' whose range is the fc-dimensional space ^ spanned by the
translates of a single function. Examples of Sfk include the space of trigonometric polynomials, periodic
polynomial splines and trigonometric splines. The eigenfunctions of these operators corresponding to the
nonzero eigenvalues are independent of a, and they form an orthogonal basis for £fk. The limiting behaviour of
tk

a) as a,k-*co, is also considered. The corresponding limiting semigroups are computed explicitly.

1980 Mathematics subject classification (1985 Revision): Primary 41A15, 41A10, 42A10, Secondary 47DO5.

1. Introduction

For every positive integer k, let <j>k be an essentially bounded, measurable, complex-
valued 27r-periodic function defined on R, with Fourier series

&(*) -1 &..*"", (LI)
v

where

k.,=~ ] Ux)e~indx, veZ.
2n _«

Let X2n be the Banach space C2K of all continuous complex-valued 27i-periodic
functions on R, or the space Lp

2lt of all complex-valued 27r-periodic LMunctions on R,
l g p < o o . For Z 2 n = C2n, we further assume that (j>k is continuous. Let h: = 2n/k, co: = eih

and suppose that <j>k{ • —jh), j — 0, \,...,k— 1, span a fc-dimensional subspace Sfk of X2n.
Define T^o>: = /, the identity operator on X2n. For every positive integer a, define

<t>'kh- = <t>k*---*<t>k (a t imes), (1.2)

the convolution of 4>k with itself a times, and for feX2n, define

(Tk
x)f)(x): = (ct>k

x)*f)(x) (1.3)

and
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' : = ! E (Tk
a)f)(jh)(t>k(x-jh). (1.4)

k j=o

For feC2n, t[0)f is also defined by (1.4).
Examples of <j)k and the corresponding subspace Sfk include

(i) de la Vallee Poussin kernel

4>k(x)^Xm(x):= I : (" ; } ' ,.eivx, (1.5)
vJ-Lm(m-v)l(m + v)\

where k = 2m+l (see [1,3,14] and 6% is the space of trigonometric polynomials
of degree m,

(ii) uniform trigonometric B-spline xm k which generates the space of uniform
trigonometric splines 2Tk ([16,17]) which is studied in Section 5,

(iii) periodic polynomial B-spline bnk and S^k is the space of periodic polynomial
splines (see [13,15]).

Interpolation by linear combinations of translates of <j>k has been studied in [5] and
[11]. In this note we shall study the approximation and spectral properties of the
operators tk

x) defined by (1.4). The spectral properties of tk
a) are studied in Section 2

where their eigenvalues and eigenvectors are obtained explicitly using the theory of
circulant matrices. The eigenfunctions of t(

k
x) corresponding to nonzero eigenvalues are

independent of a, and they form an orthonormal basis for yk. In Section 3 we study the
limiting behaviour of tk

a)f as a,/c-»oo, which is similar to the iterates of positive
convolution operators [9]. The general theories of Sections 2 and 3 are applied to
periodic polynomial splines in Section 4 and to trigonometric splines in Section 5. The
resulting orthonormal periodic polynomial splines in Section 4 are the same as those
considered recently in [8]. In Section 5 we show that the corresponding set of
orthonormal trigonometric splines of degree m contains the finite section {e'vx: - m ^ v ^
m} of the orthonormal Fourier system. In this case, the corresponding operator t%]kf,
with a = 0, is a discrete analogue of the convolution operator with trigonometric B-
spline kernel which was studied in [7].

2. The spectral properties of tk
a)

For any positive integer a, the operators T^] and tk
x) defined on X2n by (1.3) and (1.4)

can be written as

= ^ - 1 <p[x)(x-t)f(t)dt (2.1)

and
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PERIODIC SPLINE OPERATORS 365

(tf'/)M=^ f W\x,t)f(t)dt, (2.2)

where

and

1 k~i

il/k
x\x,t):=- 2] <l)k(jh — t)(pk(x—jh). (2.3)

For a = 0 , the operator 40) defined on C2lt is given by

(tk
0)f) (x)=i J /UW*(x -j/«). (2-4)

These are linear operators on X2l[» and they are positive if 4>k is positive.
For every nonnegative integer a, the matrix of t ^ ' i ^ - v ^ with respect to the basis

{4>k( • -jh):j = O,l,...,k-l} is the h i t matrix G(a>: = [gi"i,]//c, where

(2.5)

t=Y

Since T[0) = I, this last expression for g|"i, is still valid when <x = 0.
Hence

^ i . = 0 r u ( ( ' - ' " ) ' i ) i f a > O and /,m = 0 , l , . . . , k - l . (2.6)

It can be shown easily that each G{x) is a circulant matrix. The spectral properties of
circulant matrices are well-known (see [4, p. 73]). The eigenvalues of G(a) are

" ra = O

and the cor responding eigenvectors are (l,coJ,...,(o(k~i)j)T, j = 0, l,...,k— 1. H e n c e the
eigenvalues of tk

x):£^k-^6^k are
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1 k~1

"• m = 0

*• 1 = 0

with corresponding eigenfunctions

_ l V J<

h r % + t t ) , y = 0,l k-l, (2.8)
K I-Q

which are independent of a.
Fo r / , geLL let

<f,g>:=i- J
2TT _J

n

be the inner product of / and g. We summarise some properties of X(f and / , in the
following:

Theorem 2.1. For j = 0, \,...,k— 1,

(oJfj, (2.9)

pel K^-l'J)

<Ufi> =0 if j*l, (2.11)

1/2

(2.12)

^ i M for «^1- (2.14)
peZ

Moreover,
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PERIODIC SPLINE OPERATORS 367

(i) if (f)k admits the Fourier expansion

vsZ

then we have

fj(x)=l$k,j+kpe
ixU+kp), xeU, and (2.15)

pel

f°r j = O,l,...,k-l; (2.16)

(ii) if 4>k is real-valued, then f0 and A'o* are real-valued, fj=fk-j and kf) = k{£Lj for a 2:0
and \^j^k-l;

(iii) if <pk is real-valued and even, then

fj(x)=fj(-x),

for Ogy^/c—1 and a ^ l , and

for l^j^k-l anda^O.

Proof. The relation (2.9) follows from (2.8) and a change of variable. By (2.8) again,
the Fourier coefficients of fj are

t - i

K 1 = 0

which is 0 if v^J(mod/c), and is (j>kj+kp if v=j + kp for some pel.. Hence (2.10) holds,
and from which (2.11) and (2.12) follow. Comparing (2.7) and (2.8), we obtain (2.13).
Since <j>k is essentially bounded, <l>i

k
+1) = 4>l

k
)*(pk is continuous with its Fourier transform

in I1 for a ^ l . Hence

e"" (2.17)
veZ

where the Fourier series on the right hand side converges absolutely for every x in f5.
By (2.7) and (2.17), fora ^ 1 ,

»eZ
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veZ \ K 1 = 0

Hence (2.14) holds. The rest of the assertions in the theorem are easy consequences of
(2.7) and (2.8) and their proofs are omitted. •

Corollary 2.2. For j = 0 ,1, . . . , k - 1, let

E/.=fj/\\fj\\2. (2.18)

Then {Ej:j = O,l,...,k—l} is an orthonormal basis of £fk consisting of eigenfunctions of

Proposition 2.3. Suppose that for some a ̂  0,

A|a)#0, / = 0,l, . . . ,fc-l. (2.19)

/ / eix): = <PxeSrk for some je{0,l,. ..,k-l}, then $kJ+kp = 0 for every peZ\{0},
fj = 4>kjej, Ej = $kJej/\$kJ\, kf = $ty and

t^e^Myej (2.20)

for every integer /? ̂  0.

Proof. By the definition of T^ and (2.1), T{i)ej = $iJej for every integer 0 ^
(where $£,•=!). Hence by (1.4),

k- 1

On the other hand, Wf^kffj. Since ti'»:5J-»^ is injective by (2.19),

fJ = iy$k:°jej. (2.21)

By (2.10) and (2.21), $k J+kp = 0 for peZ\{0}, ;.f = ^ y and fj = $kJej. Hence (2.20)
holds and Xf = $ty for'every fi^Q by (2.13) and (2.14). Finally,
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PERIODIC SPLINE OPERATORS 369

3. Approximation properties of t[x)

Throughout this section, suppose that each <pk is continuous, positive, 27r-periodic
with Fourier expansion

E , (3-1)
veZ

such that

^ , o = l, (3-2)

lim 4 , i = l, (3.3)

k-oo

# M p = 0 for every peZ\{0}, (3.4)

lim (/>,til+/t(,=0 for every peZ\{0}, and (3.5)

lc->oo

there exist a positive integer K and an absolutely convergent series YJP*O^P
 s u c n t n a t

|&.1+kp|£|bp| if k^K and p*0. (3.6)It follows from the positivity of <pk, (3.2), (3.3) and Korovkin's Theorem (see [2,
Proposition 1.3.10]) that

lim <j)kJ= 1 for every j e Z . (3.7)
k-ao

Lemma 3.1. Let k and a be positive integers, h = 2n/k, and 0^' and i/^1' be defined by
(1.2) and (2.3) respectively. Then

i- j 4>t(f)dt=\, (3.8)
In _„

I I 4>lx)( - - l h ) = l " l 0La)( • + / * ) = 1, and (3.9)
* i = o * 1 = 0

i - j ^>(., t)dt=i- j W\t,-)dt=\. (3.10)
27i _„ In _„

Proof. The relation (3.8) follows directly from (3.2). The first equality in (3.9) follows
by a change of variable. By (3.1), for every xe IR

veZ
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Hence

I * " 1 - i / I * " 1

k ( = 0 veZ ' V^ 1 = 0

= 1

by (3.2) and (3.4). Finally, (3.10) follows from (2.3), (3.8) and (3.9). •

As a result of Lemma 3.1, for every integer a SO,

7t>l = l and #'1 = 1. (3.11)

Proposition 3.2. For a^O and feX2n (feC2it if a = 0),

Htf'/lk^ll/lk, (3.12)

For a ^ l and feL\n,

] Wf)(x)dx=]f(x)dx. (3.13)

Proof. The relation (3.12) for X2n = C2it follows from (2.2) and (3.10) for the case
<x>0, and from (2.4) and (3.9) for a = 0. For X2n = Lp

2n, l^p<oo, let l/p+\/q = l. By
(2.2), Holder's inequality and (3.10),

UP

|(4a)/)W|^f— I Vk\x,t)dt\ I— J ^\x,t)\f(t)\pdt)\2n -„ J \2n _n /

- t l f <">

Hence by (3.10),

P*
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PERIODIC SPLINE OPERATORS 371

The relation (3.13) also follows from (3.10) and (2.2). •

Proposition 3.3. For every feC2n,

(t^f)(x)=l Z f(lh)<t>k(x-lh)-+f(x) (3-14)
" / = o

uniformly on U as fc->oo.

Proof. We first prove that (3.14) holds for f = eu where el(x) = eix. By (3.6),
Lebesgue's Dominated Convergence Theorem and (3.5), we have

lim £ |<?k,i+ikp|= Z n m l<?k, i+kP| = 0- (3-15)
fc-*oop#0 p/Ofc-*oo

Hence for every xeU,

which tends to 0 as fc->oo by (3.3) and (3.15). Thus

lim 1 1 ^ 1 - ^ 1 1 ^ = 0.
k-oo

It follows from this relation, the positivity of the operators tf\ (3.11) and Korovkin's
Theorem that (3.14) holds for every feC2n. •

Remarks. 1. Suppose that each <pk is continuous, positive, 27t-periodic satisfying
(3.1), (3.2), (3.4) and

lim sup |0t(x)| = O for every 0<5<7i .

Then (3.7), Lemma 3.1, Proposition 3.2 and Proposition 3.3 are still valid.

2. For l ^ p < o o , by Proposition 3.3, (3.12) and density of trigonometric polynomials in
LI.,

Mm | | t i O ) / - / | | « = 0 for every
k-oo
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372 S. L. LEE AND W. S. TANG

Theorem 3.4. Let {ixk}k^l be a nondecreasing sequence of positive integers. A
necessary and sufficient condition for {tk

Xk)f}kiii to converge strongly in X2n as fc-»oo for
every f e X2n is that

lim $k
k
v exists for all v e Z. (3.16)

k-ao

Furthermore,

lim||#k>/-/||X2it = 0 forallfeX2n (3.17)

if and only if

lim <fe = 1,

and

if and only if

lim | |4ak)/-/0|U2.=0 forallfeX2n (3.18)
t-00

lim $lk
v = 0 /oraWveZ\{0}.

4-CC

Proof. If ev(x) = ehx, veZ, then

(tk*
k) ev) (x) = $1% I j £ ev(jh)<f>k(x -jh) 1 (3.19)\

by (2.1) and (1.4). Proposition 3.3 and (3.19) imply that t^k)ev converges strongly in X2n

as fc->oo for all veZ if and only if (3.16) holds. Since {t^'jug! is uniformly bounded,
the first part of Theorem 3.4 follows from the Banach-Steinhaus Theorem.

The relation (3.17) follows from Korovkin's Theorem, since (3.19) with v = l , and
Proposition 3.3 imply that t^e^e^ strongly in X2n as fc->oo if and only if

By (3.11) and (3.19), t^k)ev^S0^ in X2n as /c->oo if and only if \imk_ao$lk
v = 0, v#0.

Hence (3.18) holds. •

The results (3.17) and (3.18) correspond to two special cases of the limit (3.16). We
now consider the general situation. Because of (3.2), \<f>k,v|^l for all veZ. Let

<?*,.:= l-£*.v, veZ.
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By (3.7), limt_ooefciV = 0 for all veZ. The limit (3.16) exists if

lim akEkv: = l;v exists, (3.20)

k-<*>

where

and Im£veU, veZ.
In this case,

lim &% = <?"*•, veZ. (3.21)
k-ao

Theorem 3.5. Let {<xk}kzi be a nondeaeasing sequence of positive integers. If (3.20)
holds, then {t[ak)f} converges strongly in X^for every feX2n. In this case, for any ( > 0
and f eX2n,

lim||!<^»/-<Vlk = 0, (3.22)

where [x] is the greatest integer less than or equal to x, and for / ( x )~£ v e Z / v e l w t ,

(3-23)
VEZ

The operators <t?, £ > 0, form a semigroup whose infinitesimal generator A^ is characterised
by

AJ(x)~ X(_£J>- (3.24)

for every f in the domain of /1 ; .

Proof. The first part follows from Theorem 3.4 and the above remark. Suppose
(3.20) holds and £>0. Since l i m k _ 0 0 $ t v = l for all veZ and <xkC— 1 <[>*£] ^a k ( , by
writing ^ ,v = ?n,ve'9|lv' where ykiV^0 and —n<0kv^n, it is straightforward that

lim yjftcl= lim yl*l, lim e'9*.»[a"'cl= lim e'9*.»"*{,

and so

lim $l
k^

]= lim <j)f!* = e~K*. (3.25)
fc-» oo fc-»oo

By (3.14), (3.19) and (3.25), if ev(x) = eivx, v e Z, then
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374 S. L. LEE AND W. S. TANG

strongly in X2n as /c->oo. The results (3.22) and (3.23) follow from the Banach-Steinhaus
Theorem. Relation (3.16) for the infinitesimal generator /4C of <DC follows from (3.23)
(see [2]). •

Remarks. 1. For a sequence {ck} of complex numbers converging to 1, the existence
of limt_0Oc* does not imply that limfc_oofe(l — ck) = i exists, where Re^eUv { + co} and
Im^eU. Thus for complex $k v, conditions (3.16) and (3.20) are not equivalent.

2. If $kv are all real (or if all <f)k are positive and even), then (3.16) and (3.20) are
equivalent. In this case, (3.20) is a necessary and sufficient condition for {t{

k
k)f} to

converge strongly in X2n for every feX2n.

4. Periodic polynomial splines

Let M 0 = x(_1/2,i/2] and for n = 1,2,....let Mn: = M0* M n _ t be the uniform B-spline of
degree n. Let Icbea positive integer, h: = 2n/k and for n= 1,2,...,define

^ . , W : = Z'cMn_1(/I-
1(x-27tv)), xeU, (4.1)

V

the uniform, 27t-periodic B-spline of degree n — 1. Using the Fourier transform of Mn_u

a straightforward computation gives

. ,*"", (4-2)
V

where

r /sin/iv/2\" -„ , „ , ,

^ • ' : " ( l ^ 2 j« V€Z- (43)

The function bnJ( is an even, positive, 27r-periodic function with Bnk0 = \, £nkyl-*i as
/c-+oo (i.e. h->0), and it translates bnk(x—jh), j = O,\,...,k—l, span the /c-dimensional
space ^n%k of 27i-periodic polynomial splines of degree n— 1 with knots at jh or (J + i)K
j = O,l,...,k — l, depending on whether n is even or odd (see [15]).

Proposition 4.1. For a. = 1,2,...,

lS&j+tp*0> j = O, l , . . . , / c - l . (4.4)
p

Proof. If./ = 0,

Suppose y = l ,2 , . . . , /c— 1. Then
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n(<z+l)

The sum on the right of (4.5) can be expressed as

n(a+i

( 9 \n(ct+l)f a) / J L _ - \n(«+i

J) { E ' ( ^ i )
Hence (4.4) follows from (4.5). D

Theorem 2.1 and Proposition 4.1 show that for a = 1,2,..., the operator

WJ)(*)••=-. I iSMtf){jh)bH,k(x-M, (4.6)
/ = 0

where SQf is defined by (1.3) with SjfV: = Tjf* and b. k = <f>il, is such that s ' ^ Ja ->&L k is
bijective. Hence by (2.14) and (2.8) its nonzero eigenvalues are

with corresponding eigenvectors

1 k~1

j = O,l, . . . , / lc-l . It follows from (2.11) and (2.12) in Theorem 2.1 that the orthogonal
relations

W * ' ^ * ;VU"" (4-9)

hold. This was also established recently in [8]. The normalised eigenfunctions

L j , j = 0,l,...,fc-l (4.10)
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furnish an orthonormal basis for the space S^k. Furthermore by (2.15) of Theorem 2.1,
we can write

ixU+kp)/( i + kn\
'M±*£L (4.11)1/2

Remarks. 1. It was also proved in [8] that if k is odd

as n-*oo. This result follows immediately from (4.11). In fact (4.12) also holds if k is
even, and furthermore for j = k/2,

kxEn k/2(x)->cos — as n-+co. (4.13)

2. Since Bn k v satisfies (3.4), (3.5) and (3.6), the results of Section 3 hold for the operators
s(a)

The operators s£'fc contain an additional parameter n which plays much the same role
as a. We shall state, without proof, results on the limiting behaviour of sffi as n and k
tend to infinity.

Theorem 4.2. (a) Let txk,k=l,2,...,be a nondecreasing sequence of positive integers.
Then

lim \\^j}f-f\\Xl. = O forallfeX2n (4.14)
n, k —* co

if and only if

Hm p u p = 1
„,*-«, V n/k

lim | | s ^ / - / o | k , = O forallfeX2« (4.15)
n,k~* oo

lim - i - ) =0 /or all v#0.
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(b) A necessary and sufficient condition for (sfflf) to converge strongly for any f e X2n

as n,k-*<x> is that

lim I —I exists for alive 1. (4.16)
n,k-co\ nV/k )

Let

sin nv/k
nv/k

where

= !-«*., (4-17)

Then (4.16) holds if and only if limn k-,aonak/k
2 = y exists or equals oo. Furthermore if

(4.16) holds, then

lim (MjnthY = e-™^, v^O. (4.18)
V nVlk )

Theorem 4.3. A necessary and sufficient condition for (s(
n"^/) to converge strongly for

any feX2n as n,k-*co is that lim(ljt_00 n<xk/k
2 = y exists or equals oo.

If yj^O or co, then for any £>0 and feX2n,

lim ||sg*ay-«I>{/|U1. = O, (4.19)
n,k-» oo

w/iere the limiting semigroup is given by

(*«/) W = E e-t'Wfy e'" (4.20)

S. Trigonometric splines

Let n,k be positive integers with n+l^k,h: = 2n/k, and define a sequence (an v), veZ,
by

V 6 Z >

where the factor whose denominator equals zero is taken to be ih. The terms of the
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sequence c n v = 0 if and only if v = kp+j, j = 0,l,...,n,peZ, p^O. It is known (see
Schoenberg [17]), that

Mn(e-): = I a n , v e ' - x 6 [ 0 , 2 i ] , (5.2)
V

is a piecewise polynomial function in e'x of degree n, with knots at jh, j = O,l,...,k — l,
which possesses continuous derivatives up to order n — 1, and is supported on

A straightforward computation shows that

n _ ,n, , i (n+l)(( l /2)n-v)/2 J
"n,v—* e "v>

where

t.mK;.*h*2!!=m, os«s»,
n /=o (v-j)

the factor whose denominator equals zero is taken to be h/2. Hence
(5.3)

Since dv = dn-v, v e Z, the function

i ( 2 ( m l \ X6[0 ,2TI) , (5.4)

is a real function supported on the interval [0, (n + \)K\ and its restriction to each
subinterval {jh,{j+\)h) lies in the linear span of (sin|x)v(cos^x)"~v, v = 0, \,...,n. Clearly

Pn(x) = (-ire-inxl2Mn(e
ix), X6[0,27T), (5.5)

and we define Pn(x), xeU, by requiring it to be 27r-periodic. The function Pn is called a
trigonometric B-spline degree n (see [6,16]). They satisfy the recurrence relation

MPn(x) = 2sinixPn_1(x) + 2s in | ( (n+ l ) / I - x )P n _ 1 (x -^ ) . (5.6)

Since P o (x )^0 , it follows from (5.6) that Pn(x)^0.
We are interested in the case n = 2m is an even integer, m = l , 2 , . . . , where we define

xeU. (5.7)

Then

T(x) = Xfv*
lv*, xeU, (5.8)
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where

^v = im.k.v- = dv+Jdm (5.9)

(m!)2(sin (m - v)h/2... sin h/2) (sin (m + v)h/2... sin /i/2) , .

Jc(w!)2sin(|v|-m)/i/2sin(|v|-m+l)/i/2...sin(|v
7r(|v|-m)...(|v| + ro)(sin/i/2...sinm/i/2)2

The Fourier coefficients fv = 0 if and only if
1,2, In particular, if k = 2m+ 1, then f v =0 for

= pk — m, pk — m+l,...,pk + m, p =
1, and

v (m-v)!(m + v)!'

Therefore

(m!)2 | -
| V | = W -

are the de la Vallee Poussin kernels and

):=±- ] xJx-t)f(t)dt, xsU, (5.11)
2?r

the de la Vallee Poussin means for a 27t-periodic integrable function / (see [1,3,14]). An
extension of (5.11) to convolution operators with trigonometric B-spline kernels was
studied in [7].

Let ^n,*: = {s£C2m"1(IR):s|(O_1/2)ft,(j + i/2H) e Q u a l s a trigonometric polynomial of
degree m}. The following results follow from (5.5), (5.6) and the corresponding properties
of Mn(e

ix) (see [17]).

Proposition 5.1. The function T m t € ^ , t is even, 2n-periodic and supptm)[ =

Proposition 5.2. The space STmk is a linear space of dimension k spanned by
r(--jh)J = O,l,...,k-l.

Proposition 5.3. For a = 1,2,3,..., and j e Z,

0- (5-12)

Furthermore, for \j I ^ m,
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E il + l _ in+ l

Proof. The relation (5.13) follows from (5.9). Hence (5.12) holds for |;|gm. For
| the result follows by a similar argument as Schoenberg ([17, p. 412]). •

For <x = 0, l , . . . , and /eX 2 n ( /£C 2 n i f <x = 0), let

:=l t (T%J)(jh)Tm,k(x-jh) (5.14)

where T%]kf is defined by (1.3) with <j>k = im,k. By Theorem 2.1 and Proposition 5.3, the
restriction t(^k\rmi-*^k is bijective. It follows from (2.14) and (2.8) that the nonzero
eigenvalues of t(^k and the corresponding eigenfunctions are respectively

P

fm.j=U = r I ctAm,k( •-/&), ; = 0,l, . . . ,fe-l. (5.16)
K i = o

For convenience, we extend A '̂j and fm j to all j e Z by periodicity so that kj+k = kj and
fj+k=fj,jeZ. By (5.13) we have

| (5.17)

Let £m>j be the corresponding normalised eigenfunctions.

Proposition 5.4. The set {Em y. —m^j^k — m—\} is an orthonormal basis for STmk.
\\

Proof. The first part of the assertion follows from Corollary 2.2. The second part
follows from Proposition 2.3 since e'ixe&~mk and fm_kj>0 for |;'|^m. •

Remarks. 1. The eigenfunctions EmJ(x) are related to the r-flowers of I. J.
Schoenberg [17].

2. The operators T^\k and t{^]k are related to the de la Vallee Poussin operator Vm

defined in (5.11). In fact when fc = 2m+l, T^2m+1 = Vm and T^2 m + 1 are products (in
the sense of composition) of Vm. Also, t^)lm+lf is a discrete analogue of de la Vallee
Poussin means.

It is straightforward to verify that the Fourier coefficients imkiV satisfy (3.2) to (3.6)
for wi^l. Therefore the results of Theorems 3.4 and 3.5 are applicable to the
trigonometric spline operator tl£l where the limits in (3.16), (3.17), (3.18) are taken as
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k-KX) with m fixed. In fact, the results of Theorem 3.4 also hold for t^l if the limits are
taken in such a way that m,k->co and mh = 2nm/k->6e[0,n~\. In particular we have

Theorem 53. Let <xm, m=l,2,3,... be a nondecreasing sequence of positive integers.
Then

fe)/-/|k = 0 forallfeX2n (5.18)

if and only if

M^Y-1' (519)

where the limit is taken as m, fc->oo and mh-^de [0,7r].
Furthermore (5.19) holds if and only if <xm = 0(m) as m-»oo.

Proof. The first part of the theorem follows by the same argument as in the proof of
(3.17) in Theorem 3.4, with <j>k t given by

__msin(m+l)h/2
Xm-k-1'~{m+l)sinmh/2'

Further, a straightforward computation gives

(m+ 1)(1 — tm fcl) = 1 +2msin2-h — mcot-mhsin-. (5.20)

Hence

fm k , = 1 1 1 — — c o t — j + 0(fc2). (5.21)

Since

, mh mh . 8 8 , n . n rn n1 - — c o t — - » 1 - - c o t - ^ 0 for 0e[O,7r],

(5.19) holds if and only if am=0(m) by (5.21). •
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