Weak Amenability of a Class of Banach Algebras

Yong Zhang

Abstract. We show that, if a Banach algebra \mathfrak{H} is a left ideal in its second dual algebra and has a left bounded approximate identity, then the weak amenability of \mathfrak{A} implies the $(2 m+1)$-weak amenability of \mathfrak{A} for all $m \geq 1$.

In a recent paper [2] Dales, Ghahramani and Grøbæk have introduced the concept of n-weak amenability for Banach algebras. They point out the fact that, for $n \geq 1$, ($n+2$)-weak amenability always implies n-weak amenability, and prove further that if a Banach algebra \mathfrak{A} is an ideal in $\mathfrak{Q}^{* *}$, then the weak amenability of \mathfrak{A} also implies the $(2 m+1)$-weak amenability of $\mathfrak{A l}$ for all $m>0$. As to the general case, they have raised an open question: Does weak amenability imply 3-weak amenability? This question has been answered in negative by the author in [5]. In this note we consider the Banach algebras which are one sided ideals in their second dual algebras, and discuss sufficient conditions under which weak amenability will imply $(2 m+1)$-weak amenability for $m>0$. We shall also consider an example to show the use of our result.

Let \mathfrak{A} be a Banach algebra and X be a Banach \mathfrak{A}-bimodule. A linear mapping $D: \mathfrak{Q} \rightarrow X$ is a derivation if $D(a b)=a \cdot D(b)+D(a) \cdot b$ for $a, b \in \mathfrak{X}$. For any $x \in X$, the mapping $\delta_{x}: a \mapsto a x-x a, a \in \mathfrak{X}$, is a continuous derivation, called an inner derivation. Let $\mathcal{B}^{1}(\mathfrak{A}, X)$ be the space of all continuous derivations from \mathfrak{A} into X and let $\mathcal{Z}^{1}(\mathfrak{A}, X)$ be the space of all inner derivations from \mathfrak{A} into X. Then the first cohomology group of \mathfrak{A} with coefficients in X is the quotient space $\mathcal{H}^{1}(\mathfrak{A}, X)=$ $\mathcal{B}^{1}(\mathfrak{H}, X) / \mathcal{Z}^{1}(\mathfrak{H}, X)$.

For each $n \geq 1, \mathfrak{A}^{(n)}$, the n-th conjugate space of \mathfrak{A}, is a Banach \mathfrak{U}-bimodule, with the module actions defined inductively by

$$
\langle u, F \cdot a\rangle=\langle a \cdot u, F\rangle, \quad\langle u, a \cdot F\rangle=\langle u \cdot a, F\rangle, \quad F \in \mathfrak{A}^{(n)}, u \in \mathfrak{A}^{(n-1)}, a \in \mathfrak{H} .
$$

A Banach algebra \mathfrak{A} is called n-weakly amenable if $\mathcal{H}^{1}\left(\mathfrak{H}, \mathfrak{A}^{(n)}\right)=\{0\}$. Usually, 1weakly amenable Banach algebras are called weakly amenable.

Recall that for a Banach algebra \mathfrak{H}, its second dual $\mathfrak{A}^{* *}$ is a Banach algebra when equipped with the first Arens product which is given by the following formula

$$
\langle f, \Phi \Psi\rangle=\langle\Psi f, \Phi\rangle, \quad f \in \mathfrak{A}^{*}, \quad \Phi, \Psi \in \mathfrak{H}^{* *}
$$

[^0]where $\Psi f \in \mathfrak{A}^{*}$ is defined by
$$
\langle a, \Psi f\rangle=\langle f a, \Psi\rangle, \quad a \in \mathfrak{U} .
$$

We refer to Arens' original paper [1] and the survey paper [3] for properties and references about Arens products. In this note, for $m \geq 1$, we always equip $\mathfrak{A}^{(2 m)}$ with the first Arens product.

For a Banach space X we will denote by \widehat{X} (resp. \hat{x}) the image of X (resp. $x \in X$) in $X^{(2 m)}$ under the canonical mapping. But if no confusion may occur we will keep using X to denote this image. For $m>0$, the subspace of $X^{(2 m+1)}$ annihilating \widehat{X} will be denoted by X^{\perp}, i.e., $X^{\perp}=\left\{F \in X^{(2 m+1)} ;\left.F\right|_{\widehat{X}}=0\right\}$. Concerning the Banach algebra $\mathfrak{H}^{(2 m)}$ we have:

Lemma 1 Suppose that \mathfrak{A} is a left, right or two sided ideal in $\mathfrak{A}^{* *}$. Then it is also a left, right or two sided ideal in $\mathfrak{A}^{(2 m)}$ for all $m \geq 1$.

Proof Assume that \mathfrak{A} is a left ideal of $\mathfrak{A}^{(2 m)}, m \geq 1$. We prove that it is also a left ideal of $\mathfrak{A}^{(2 m+2)}$. First we have the following \mathfrak{A}-bimodule direct sum decompositions

$$
\begin{equation*}
\mathfrak{A}^{(2 m+2)}=\left(\mathfrak{H}^{*}\right)^{\perp} \dot{+}\left(\mathfrak{A}^{* *}\right)^{\wedge} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{A}^{(2 m+1)}=(\mathfrak{H})^{\perp} \dot{+}\left(\mathfrak{H}^{*}\right)^{\wedge} \tag{2}
\end{equation*}
$$

For any $F \in \mathfrak{H}^{(2 m+1)}$, let $F=f_{1}+\hat{f}_{2}, f_{1} \in \mathfrak{H}^{\perp}, f_{2} \in \mathfrak{H}^{*}$. Then $a f_{1}=0$ for $a \in \mathfrak{A}$, since \mathfrak{A} is a left ideal in $\mathfrak{A}^{(2 m)}$. So

$$
a F=a \hat{f}_{2}=\left(a f_{2}\right)^{\wedge}
$$

For any $\Phi \in \mathfrak{H}^{(2 m+2)}$, let $\Phi=\phi+\hat{u}, \phi \in\left(\mathfrak{A}^{*}\right)^{\perp}, u \in \mathfrak{A}^{* *}$. Then

$$
\langle F, \Phi a\rangle=\left\langle\left(a f_{2}\right)^{\wedge}, \phi+\hat{u}\right\rangle=\left\langle\left(a f_{2}\right)^{\wedge}, \hat{u}\right\rangle=\left\langle F,(u a)^{\wedge}\right\rangle .
$$

This shows that $\Phi a=(u a)^{\wedge} \in \widehat{\mathfrak{A}}$ for $a \in \mathfrak{H}$ and $\Phi \in \mathfrak{H}^{(2 m+2)}$. Therefore \mathfrak{H} is a left ideal of $\mathfrak{A}^{(2 m+2)}$. So the lemma is true when \mathfrak{A} is a left ideal of $\mathfrak{A}^{* *}$. For the other two cases the proof is similar.

It is known that for a Banach algebra \mathfrak{H} with a bounded approximate identity (b.a.i. in short), if X is a Banach \mathfrak{M}-bimodule in which \mathfrak{H} acts trivially on one side, then $\mathcal{H}^{1}\left(\mathfrak{A}, X^{*}\right)=\{0\}$ (see [4, Proposition 1.5]). The following lemma can be viewed as an extension of this result.

Lemma 2 Suppose that \mathfrak{A} is a Banach algebra with a left (right) b.a.i.. Suppose that X is a Banach \mathfrak{A}-bimodule and Y is a weak* closed submodule of the dual module X^{*}. If the left (resp. right) \mathfrak{A}-module action on Y is trivial, then $\mathcal{H}^{1}(\mathfrak{A}, Y)=\{0\}$.

Proof The proof is quite standard. Here we give the proof in the case that \mathfrak{H} has a left b.a.i. and \mathfrak{H} acts trivially on the left in Y. Suppose that $D: \mathfrak{H} \rightarrow Y$ is a continuous derivation. Let $\left(e_{i}\right)$ be a left b.a.i. of \mathfrak{A}, and $f \in Y$ be a weak* cluster point of $\left(D\left(e_{i}\right)\right)$. Since $\mathfrak{A} Y=\{0\}$, we have

$$
D(a)=\lim D\left(e_{i} a\right)=f a=f a-a f, \quad a \in \mathfrak{A} .
$$

Hence D is inner. This shows that $\mathcal{H}^{1}(\mathfrak{A}, Y)=\{0\}$.
With the preceding two lemmas, we can now prove a partial converse to [2, Proposition 1.2] as follows.

Theorem 3 Suppose that \mathfrak{A} is a weakly amenable Banach algebra. If \mathfrak{A} has a left (right) b.a.i. and is a left (resp. right) ideal in $\mathfrak{H}^{* *}$, then \mathfrak{A} is $(2 m+1)$-weakly amenable for $m \geq 1$.

Proof We give the prove in the case that \mathfrak{A} has a left b.a.i. and is a left ideal in $\mathfrak{A}^{* *}$. The proof for the other case is similar. First, from the \mathfrak{Y}-bimodule decomposition (2) we have the cohomology group decomposition

$$
\mathcal{H}^{1}\left(\mathfrak{H}, \mathfrak{A}^{(2 m+1)}\right)=\mathcal{H}^{1}\left(\mathfrak{H}, \mathfrak{H}^{*}\right)+\mathcal{H}^{1}\left(\mathfrak{A}, \mathfrak{H}^{\perp}\right)
$$

If \mathfrak{H} is weakly amenable, we have $\mathcal{H}^{1}\left(\mathfrak{H}, \mathfrak{H}^{*}\right)=\{0\}$. \mathfrak{H}^{\perp} is clearly weak ${ }^{*}$ closed submodule of $\mathfrak{A}^{(2 m+1)}$. Since \mathfrak{A} is a left ideal in $\mathfrak{A}^{* *}$, it is a left ideal in $\mathfrak{H}^{(2 m)}$ from Lemma 1. It follows that the left \mathfrak{H}-module action on \mathfrak{A}^{\perp} is trivial. Then Lemma 2 leads to $\mathcal{H}^{1}\left(\mathfrak{H}, \mathfrak{H}^{\perp}\right)=\{0\}$. As a consequence we have $\mathcal{H}^{1}\left(\mathfrak{A}, \mathfrak{H}^{(2 m+1)}\right)=\{0\}$, i.e., \mathfrak{H} is $(2 m+1)$-weakly amenable.

Now let us consider an example. Suppose that S is an infinite set and s_{0} a fixed element in S. Define an algebra product in $\ell^{1}(S)$ in the following way.

$$
\begin{equation*}
a \cdot b=a\left(s_{0}\right) b, \quad a, b \in \ell^{1}(S) \tag{3}
\end{equation*}
$$

It is easily verified that with this product $\ell^{1}(S)$ is a Banach algebra. We shall denote it by $\left(\ell^{1}(S), \cdot\right)$, or $\ell^{1}(S)$ in short. It has a left identity e_{0} defined by

$$
e_{0}(s)= \begin{cases}1 & \text { if } s=s_{0} \\ 0 & \text { if } s \neq s_{0}\end{cases}
$$

But it has no right approximate identity. $\ell^{1}(S)$ is also a left ideal in $\ell^{1}(S)^{* *}$. In fact, for $u \in \ell^{1}(S)^{* *}, u=\mathrm{wk}^{*}-\lim a_{\alpha}$, with $\left(a_{\alpha}\right)$ a bounded net in $\ell^{1}(S)$, we have

$$
u \cdot a=\mathrm{wk}^{*}-\lim a_{\alpha} \cdot a=\lim a_{\alpha}\left(s_{0}\right) a \in \ell^{1}(S), \quad a \in \ell^{1}(S) .
$$

Here we have used the fact that $\lim a_{\alpha}\left(s_{0}\right)$ exists. It is also easy to see that $\ell^{1}(S)$ is not a right ideal of $\ell^{1}(S)^{* *}$. The $\ell^{1}(S)$-bimodule actions on the dual module $\ell^{1}(S)^{*}=$ $\ell^{\infty}(S)$ are in fact formulated as follows.

$$
\begin{equation*}
a \cdot f=\langle a, f\rangle e_{0}^{*}, \quad f \cdot a=a\left(s_{0}\right) f, \quad a \in \ell^{1}(S), f \in \ell^{\infty}(S) \tag{4}
\end{equation*}
$$

where e_{0}^{*} is the element of $\ell^{\infty}(S)$ satisfying $e_{0}^{*}\left(s_{0}\right)=1$, and $e_{0}^{*}(s)=0$ for $s \neq s_{0}$.

Assertion 1 The Banach algebra $\left(\ell^{1}(S), \cdot\right)$ is weakly amenable.

Proof Suppose that $D: \ell^{1}(S) \rightarrow \ell^{\infty}(S)$ is a derivation. Then for $a, b \in \ell^{1}(S)$, from equations (3) and (4),

$$
\begin{aligned}
a\left(s_{0}\right) D(b) & =D(a \cdot b)=a \cdot D(b)+D(a) \cdot b \\
& =\langle a, D(b)\rangle e_{0}^{*}+b\left(s_{0}\right) D(a) .
\end{aligned}
$$

By taking $b=a$, we see $\langle a, D(a)\rangle=0$ for all $a \in \ell^{1}(S)$. This in turn implies that

$$
\langle a, D(b)\rangle=-\langle b, D(a)\rangle, \quad a, b \in \ell^{1}(S)
$$

So

$$
\begin{aligned}
D(a) & =D\left(e_{0} \cdot a\right)=\left\langle e_{0}, D(a)\right\rangle e_{0}^{*}+a\left(s_{0}\right) D\left(e_{0}\right) \\
& =-\left\langle a, D\left(e_{0}\right)\right\rangle e_{0}^{*}+a\left(s_{0}\right) D\left(e_{0}\right) \\
& =D\left(e_{0}\right) \cdot a-a \cdot D\left(e_{0}\right), \quad a \in \ell^{1}(S) .
\end{aligned}
$$

Therefore D is inner. This shows that $\left(\ell^{1}(S), \cdot\right)$ is weakly amenable and the proof is complete.

By using Theorem 3, Assertion 1 induces immediately the following:

Assertion 2 For $m \geq 0,\left(\ell^{1}(S), \cdot\right)$ is $(2 m+1)$-weakly amenable.

Note The algebra $\left(\ell^{1}(S), \cdot\right)$ is not $2 m$-weakly amenable for any $m \geq 1$.

Proof From [2, Proposition 1.2] it suffices to show that $\left(\ell^{1}(S), \cdot\right)$ is not 2-weakly amenable. Let $E=\left\{e_{0}^{*}\right\}^{\perp} \subset \ell^{1}(S)^{* *}$. Then for every $u \in E$ and every $a \in \mathfrak{N}$, from equation (4), $u \cdot a=0$. This implies that any linear mapping from $\ell^{1}(S)$ into E is a derivation. Especially $D: a \mapsto a\left(s_{1}\right) u$ for some nonzero $u \in E$ and $s_{1}\left(\neq s_{0}\right) \in S$ is a continuous non-inner derivation from $\ell^{1}(S)$ into $\ell^{1}(S)^{* *}$. Therefore $\left(\ell^{1}(S), \cdot\right)$ is not 2-weakly amenable.

Acknowledgement The author thanks Professor F. Ghahramani who pointed out the link of the result in this paper with [4, Proposition 1.5], and gave him valuable suggestions in the preparation of this paper.

References

[1] R. Arens, The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2(1951), 839-848.
[2] H. G. Dales, F. Ghahramani and N. Gronbaek, Derivations into iterated duals of Banach algebras. Studia Math. 128(1998), 19-54.
[3] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra. Proc. Roy. Soc. Edinburgh 84A(1979), 309-325.
[4] B. E. Johnson, Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127, 1972.
[5] Yong Zhang, Weak amenability of module extensions of Banach algebras. Preprint.

Department of Mathematics
University of Manitoba
Winnipeg, Manitoba
R3T 2N2
email: zhangy@cc.umanitoba.ca

[^0]: Received by the editors September 9, 1999; revised July 20, 2000.
 AMS subject classification: Primary: 46 H 20 ; secondary: $46 \mathrm{H} 10,46 \mathrm{H} 25$.
 Keywords: n-weak amenability, left ideals, left bounded approximate identity.
 (c)Canadian Mathematical Society 2001.

