Canad. Math. Bull. Vol. 44 (4), 2001 pp. 504-508

Weak Amenability of a Class of Banach Algebras

Yong Zhang

Abstract. We show that, if a Banach algebra \mathfrak{A} is a left ideal in its second dual algebra and has a left bounded approximate identity, then the weak amenability of \mathfrak{A} implies the (2m + 1)-weak amenability of \mathfrak{A} for all $m \ge 1$.

In a recent paper [2] Dales, Ghahramani and Grøbæk have introduced the concept of *n*-weak amenability for Banach algebras. They point out the fact that, for $n \ge 1$, (n + 2)-weak amenability always implies *n*-weak amenability, and prove further that if a Banach algebra \mathfrak{A} is an ideal in \mathfrak{A}^{**} , then the weak amenability of \mathfrak{A} also implies the (2m + 1)-weak amenability of \mathfrak{A} for all m > 0. As to the general case, they have raised an open question: Does weak amenability imply 3-weak amenability? This question has been answered in negative by the author in [5]. In this note we consider the Banach algebras which are one sided ideals in their second dual algebras, and discuss sufficient conditions under which weak amenability will imply (2m+1)-weak amenability for m > 0. We shall also consider an example to show the use of our result.

Let \mathfrak{A} be a Banach algebra and X be a Banach \mathfrak{A} -bimodule. A linear mapping $D: \mathfrak{A} \to X$ is a *derivation* if $D(ab) = a \cdot D(b) + D(a) \cdot b$ for $a, b \in \mathfrak{A}$. For any $x \in X$, the mapping $\delta_x: a \mapsto ax - xa$, $a \in \mathfrak{A}$, is a continuous derivation, called an *inner derivation*. Let $\mathcal{B}^1(\mathfrak{A}, X)$ be the space of all continuous derivations from \mathfrak{A} into X and let $\mathcal{Z}^1(\mathfrak{A}, X)$ be the space of all inner derivations from \mathfrak{A} into X. Then the first *cohomology group* of \mathfrak{A} with coefficients in X is the quotient space $\mathcal{H}^1(\mathfrak{A}, X) = \mathcal{B}^1(\mathfrak{A}, X)/\mathcal{Z}^1(\mathfrak{A}, X)$.

For each $n \ge 1$, $\mathfrak{A}^{(n)}$, the *n*-th conjugate space of \mathfrak{A} , is a Banach \mathfrak{A} -bimodule, with the module actions defined inductively by

$$\langle u, F \cdot a \rangle = \langle a \cdot u, F \rangle, \quad \langle u, a \cdot F \rangle = \langle u \cdot a, F \rangle, \quad F \in \mathfrak{A}^{(n)}, u \in \mathfrak{A}^{(n-1)}, a \in \mathfrak{A}.$$

A Banach algebra \mathfrak{A} is called *n*-weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = \{0\}$. Usually, 1-weakly amenable Banach algebras are called weakly amenable.

Recall that for a Banach algebra \mathfrak{A} , its second dual \mathfrak{A}^{**} is a Banach algebra when equipped with the first Arens product which is given by the following formula

$$\langle f, \Phi \Psi \rangle = \langle \Psi f, \Phi \rangle, \quad f \in \mathfrak{A}^*, \quad \Phi, \Psi \in \mathfrak{A}^{**},$$

Received by the editors September 9, 1999; revised July 20, 2000.

AMS subject classification: Primary: 46H20; secondary: 46H10, 46H25.

Keywords: n-weak amenability, left ideals, left bounded approximate identity.

[©]Canadian Mathematical Society 2001.

Weak Amenability

where $\Psi f \in \mathfrak{A}^*$ is defined by

$$\langle a, \Psi f \rangle = \langle fa, \Psi \rangle, \quad a \in \mathfrak{A}.$$

We refer to Arens' original paper [1] and the survey paper [3] for properties and references about Arens products. In this note, for $m \ge 1$, we always equip $\mathfrak{A}^{(2m)}$ with the first Arens product.

For a Banach space X we will denote by \widehat{X} (resp. \hat{x}) the image of X (resp. $x \in X$) in $X^{(2m)}$ under the canonical mapping. But if no confusion may occur we will keep using X to denote this image. For m > 0, the subspace of $X^{(2m+1)}$ annihilating \widehat{X} will be denoted by X^{\perp} , *i.e.*, $X^{\perp} = \{F \in X^{(2m+1)}; F|_{\widehat{X}} = 0\}$. Concerning the Banach algebra $\mathfrak{A}^{(2m)}$ we have:

Lemma 1 Suppose that \mathfrak{A} is a left, right or two sided ideal in \mathfrak{A}^{**} . Then it is also a left, right or two sided ideal in $\mathfrak{A}^{(2m)}$ for all $m \ge 1$.

Proof Assume that \mathfrak{A} is a left ideal of $\mathfrak{A}^{(2m)}$, $m \geq 1$. We prove that it is also a left ideal of $\mathfrak{A}^{(2m+2)}$. First we have the following \mathfrak{A} -bimodule direct sum decompositions

(1)
$$\mathfrak{A}^{(2m+2)} = (\mathfrak{A}^*)^{\perp} \dotplus (\mathfrak{A}^{**})^{\perp}$$

(2)
$$\mathfrak{A}^{(2m+1)} = (\mathfrak{A})^{\perp} \dotplus (\mathfrak{A}^*)^{\hat{}}.$$

For any $F \in \mathfrak{A}^{(2m+1)}$, let $F = f_1 + \hat{f}_2$, $f_1 \in \mathfrak{A}^{\perp}$, $f_2 \in \mathfrak{A}^*$. Then $af_1 = 0$ for $a \in \mathfrak{A}$, since \mathfrak{A} is a left ideal in $\mathfrak{A}^{(2m)}$. So

$$aF = a\hat{f}_2 = (af_2)^{\hat{}}.$$

For any $\Phi \in \mathfrak{A}^{(2m+2)}$, let $\Phi = \phi + \hat{u}, \phi \in (\mathfrak{A}^*)^{\perp}, u \in \mathfrak{A}^{**}$. Then

$$\langle F, \Phi a \rangle = \langle (af_2)^{\hat{}}, \phi + \hat{u} \rangle = \langle (af_2)^{\hat{}}, \hat{u} \rangle = \langle F, (ua)^{\hat{}} \rangle.$$

This shows that $\Phi a = (ua)^{\wedge} \in \widehat{\mathfrak{A}}$ for $a \in \mathfrak{A}$ and $\Phi \in \mathfrak{A}^{(2m+2)}$. Therefore \mathfrak{A} is a left ideal of $\mathfrak{A}^{(2m+2)}$. So the lemma is true when \mathfrak{A} is a left ideal of \mathfrak{A}^{**} . For the other two cases the proof is similar.

It is known that for a Banach algebra \mathfrak{A} with a bounded approximate identity (b.a.i. in short), if X is a Banach \mathfrak{A} -bimodule in which \mathfrak{A} acts trivially on one side, then $\mathcal{H}^1(\mathfrak{A}, X^*) = \{0\}$ (see [4, Proposition 1.5]). The following lemma can be viewed as an extension of this result.

Lemma 2 Suppose that \mathfrak{A} is a Banach algebra with a left (right) b.a.i.. Suppose that X is a Banach \mathfrak{A} -bimodule and Y is a weak* closed submodule of the dual module X^* . If the left (resp. right) \mathfrak{A} -module action on Y is trivial, then $\mathcal{H}^1(\mathfrak{A}, Y) = \{0\}$.

505

Proof The proof is quite standard. Here we give the proof in the case that \mathfrak{A} has a left b.a.i. and \mathfrak{A} acts trivially on the left in *Y*. Suppose that $D: \mathfrak{A} \to Y$ is a continuous derivation. Let (e_i) be a left b.a.i. of \mathfrak{A} , and $f \in Y$ be a weak^{*} cluster point of $(D(e_i))$. Since $\mathfrak{A}Y = \{0\}$, we have

$$D(a) = \lim D(e_i a) = fa = fa - af, \quad a \in \mathfrak{A}.$$

Hence *D* is inner. This shows that $\mathcal{H}^1(\mathfrak{A}, Y) = \{0\}$.

With the preceding two lemmas, we can now prove a partial converse to [2, Proposition 1.2] as follows.

Theorem 3 Suppose that \mathfrak{A} is a weakly amenable Banach algebra. If \mathfrak{A} has a left (right) b.a.i. and is a left (resp. right) ideal in \mathfrak{A}^{**} , then \mathfrak{A} is (2m + 1)-weakly amenable for $m \ge 1$.

Proof We give the prove in the case that \mathfrak{A} has a left b.a.i. and is a left ideal in \mathfrak{A}^{**} . The proof for the other case is similar. First, from the \mathfrak{A} -bimodule decomposition (2) we have the cohomology group decomposition

$$\mathcal{H}^{1}(\mathfrak{A},\mathfrak{A}^{(2m+1)}) = \mathcal{H}^{1}(\mathfrak{A},\mathfrak{A}^{*}) \dotplus \mathcal{H}^{1}(\mathfrak{A},\mathfrak{A}^{\perp})$$

If \mathfrak{A} is weakly amenable, we have $\mathcal{H}^{1}(\mathfrak{A}, \mathfrak{A}^{*}) = \{0\}$. \mathfrak{A}^{\perp} is clearly weak^{*} closed submodule of $\mathfrak{A}^{(2m+1)}$. Since \mathfrak{A} is a left ideal in \mathfrak{A}^{**} , it is a left ideal in $\mathfrak{A}^{(2m)}$ from Lemma 1. It follows that the left \mathfrak{A} -module action on \mathfrak{A}^{\perp} is trivial. Then Lemma 2 leads to $\mathcal{H}^{1}(\mathfrak{A}, \mathfrak{A}^{\perp}) = \{0\}$. As a consequence we have $\mathcal{H}^{1}(\mathfrak{A}, \mathfrak{A}^{(2m+1)}) = \{0\}$, *i.e.*, \mathfrak{A} is (2m+1)-weakly amenable.

Now let us consider an example. Suppose that *S* is an infinite set and s_0 a fixed element in *S*. Define an algebra product in $\ell^1(S)$ in the following way.

(3)
$$a \cdot b = a(s_0)b, \quad a, b \in \ell^1(S).$$

It is easily verified that with this product $\ell^1(S)$ is a Banach algebra. We shall denote it by $(\ell^1(S), \cdot)$, or $\ell^1(S)$ in short. It has a left identity e_0 defined by

$$e_0(s) = \begin{cases} 1 & \text{if } s = s_0 \\ 0 & \text{if } s \neq s_0. \end{cases}$$

But it has no right approximate identity. $\ell^1(S)$ is also a left ideal in $\ell^1(S)^{**}$. In fact, for $u \in \ell^1(S)^{**}$, $u = wk^*$ - lim a_α , with (a_α) a bounded net in $\ell^1(S)$, we have

$$u \cdot a = wk^* - \lim a_{\alpha} \cdot a = \lim a_{\alpha}(s_0)a \in \ell^1(S), \quad a \in \ell^1(S).$$

Here we have used the fact that $\lim a_{\alpha}(s_0)$ exists. It is also easy to see that $\ell^1(S)$ is not a right ideal of $\ell^1(S)^{**}$. The $\ell^1(S)$ -bimodule actions on the dual module $\ell^1(S)^* = \ell^{\infty}(S)$ are in fact formulated as follows.

(4)
$$a \cdot f = \langle a, f \rangle e_0^*, \quad f \cdot a = a(s_0)f, \quad a \in \ell^1(S), f \in \ell^\infty(S),$$

where e_0^* is the element of $\ell^{\infty}(S)$ satisfying $e_0^*(s_0) = 1$, and $e_0^*(s) = 0$ for $s \neq s_0$.

506

Weak Amenability

Assertion 1 The Banach algebra $(\ell^1(S), \cdot)$ is weakly amenable.

Proof Suppose that $D: \ell^1(S) \to \ell^\infty(S)$ is a derivation. Then for $a, b \in \ell^1(S)$, from equations (3) and (4),

$$a(s_0)D(b) = D(a \cdot b) = a \cdot D(b) + D(a) \cdot b$$
$$= \langle a, D(b) \rangle e_0^* + b(s_0)D(a).$$

By taking b = a, we see $\langle a, D(a) \rangle = 0$ for all $a \in \ell^1(S)$. This in turn implies that

$$\langle a, D(b) \rangle = -\langle b, D(a) \rangle, \quad a, b \in \ell^1(S).$$

So

$$D(a) = D(e_0 \cdot a) = \langle e_0, D(a) \rangle e_0^* + a(s_0)D(e_0)$$

= $-\langle a, D(e_0) \rangle e_0^* + a(s_0)D(e_0)$
= $D(e_0) \cdot a - a \cdot D(e_0), \quad a \in \ell^1(S).$

Therefore *D* is inner. This shows that $(\ell^1(S), \cdot)$ is weakly amenable and the proof is complete.

By using Theorem 3, Assertion 1 induces immediately the following:

Assertion 2 For $m \ge 0$, $(\ell^1(S), \cdot)$ is (2m + 1)-weakly amenable.

Note The algebra $(\ell^1(S), \cdot)$ is not 2*m*-weakly amenable for any $m \ge 1$.

Proof From [2, Proposition 1.2] it suffices to show that $(\ell^1(S), \cdot)$ is not 2-weakly amenable. Let $E = {\epsilon_0^*}^{\perp} \subset \ell^1(S)^{**}$. Then for every $u \in E$ and every $a \in \mathfrak{A}$, from equation (4), $u \cdot a = 0$. This implies that any linear mapping from $\ell^1(S)$ into E is a derivation. Especially $D: a \mapsto a(s_1)u$ for some nonzero $u \in E$ and $s_1 (\neq s_0) \in S$ is a continuous non-inner derivation from $\ell^1(S)$ into $\ell^1(S)^{**}$. Therefore $(\ell^1(S), \cdot)$ is not 2-weakly amenable.

Acknowledgement The author thanks Professor F. Ghahramani who pointed out the link of the result in this paper with [4, Proposition 1.5], and gave him valuable suggestions in the preparation of this paper.

References

- [1] R. Arens, The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2(1951), 839–848.
- [2] H. G. Dales, F. Ghahramani and N. Gronbaek, *Derivations into iterated duals of Banach algebras*. Studia Math. **128**(1998), 19–54.
- [3] J. Duncan and S. A. R. Hosseiniun, *The second dual of a Banach algebra*. Proc. Roy. Soc. Edinburgh **84A**(1979), 309–325.
- [4] B. E. Johnson, Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127, 1972.
- [5] Yong Zhang, Weak amenability of module extensions of Banach algebras. Preprint.

Department of Mathematics University of Manitoba Winnipeg, Manitoba R3T 2N2 email: zhangy@cc.umanitoba.ca

508