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On the boundedness operator

Panayotis Th. Lambrinos

This paper is a continuation of the study of the boundedness

operator 6 . By determination of the congruences (that is,

collapsings) of the smallest lattice containing 6 and closed

under application of 6 , a nev classification of all topological

spaces is obtained according to boundedness criteria.

Recently [2, 3], I defined and studied the boundedness operator

6 : 22 -»• 22 where X f 0 and for each 8 c 2* ,

68 = {S c X : H c B, H u {S} has finite intersection property

implies flH * 0} .

A subset of a topological space is called bounded [2, 3] if it is

contained in some finite union of members of every open cover of the whole

space. Let yB be the family of all intersections of (non-empty) families

of finite unions of members of 8 [/, 5], 6 is defined inductively by

6V = 6(6V~1) , (Y2 = y) , and multiplication of 6 and y by functional

composition.

Then SyB is the family of the bounded subsets of the space {X, T)

where 8 is a subbasis for the family i of the closed sets of it [3,

2]. The study of 6 by analogy to the study of the compactness operator

p of de Groot, Herri ich, Strecker, Wattel [/, 4, 5] provided [2, 3] the

relations

(1) H <= 8 =" 68 c 6H ;

(2) 6y = 6 ;

Received 3 February 1975.

417

https://doi.org/10.1017/S0004972700024072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024072


418 Panayotis Th. Lambrinos

(3) H <= YB n 68 , H has f in i te intersection property implies
HH * 0 ;

(U) YB A 6V8 C 6VB vhere H A B = {ff n J ; I ( «, B € B} ;

(5) 6V A 6V+1 = 6V n 6 W 1 ;

(6) 68 = 6y(B u 62B)

(T) 6 c 63 ;

(8) 62 = 6U
 ;

(9) 63 c 6 u 62 =* 6 = 63 ;

(10) Y<5 = <S, i l c B € 6 B = > > l € 6 8 .

The l a s t two re la t ions give to 6 "nicer" properties than those of p .

Relations of the above type are interesting since a complete c lass i f ica t ion

of a l l topological spaces according to t>oundedness c r i t e r i a has been

obtained [2, 3] by the determination of the congruences of the resul t ing

monoid {Y, 6, <52, «3} .

Another classification according to boundedness criteria is obtained

here by means of the smallest lattice L (with order induced by

containment) containing 6 and closed under application of 6 to the

members of L . The ideas and techniques are inspired by [7]. We have

(11) 6 n 62 = 62 n 63 ;

(12) 6 n 62 = 6(6 u 62) = 6(62 u 63) ;

(13) 62 u 63 c 6(6 n 62) ;

(lit) 62(6 n 62) = 6 n 62 .

Proof of (11). By (7 ) , S n S2 c 82 n 63 c 62 . Assume that

5 € 62B n 63B , ( 1 / H c B , H v {S} has f in i te intersection property.

.Then, by (U), H* = H A {5} c 62B n 63B = y[&2B) n fi(628) and H* has

f i n i t e intersect ion property. I t follows by (3) that 0 # ClH and thus,

S € 68 ; tha t i s , 62 n &3 c 6 .
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Proof of (12). By (1) , 6(62 u 63) c 6 (6 u S2) c 62 n 63 . Let

S € 62B n 63B , 0 * H c 628 u 638 , H u ( S } have f in i te intersection

property. Then, as before, H* = H A {S} c 62B n 63B and thus

5 € 6(62B u <S3B) .

Proof of (13). 6 r> 6 n 62 c 62 implies by (l) that

62 c 6(6 n 62) => 63 .

Proof of (14). By (l), (13), and (12), we have

6(6(6 n 62)) c 8 n 62 . Conversely, by (7) and (12),

6 n 62 = 6(6 u 62) c 62(6(6 u 62)) = 62{8 n 62) .

The above method of proving the converse of (1*0 may serve also to

obtain a clearer proof of [?, (15)].

By the above relations we get the following lattice L :

t6(6n62)

L contains 6 and is closed under application of 6 . By Example 1

below, the seven elements of the lattice are in general, distinct. In

order to determine all the possible congruence relations (that is,

collapsings) of the lattice, the following will be useful.

(15) (i) 62 <= 63 or 63 <= 62 if and only if

(ii) 6 c 62 or S2 c 6 if and only if

(iii) 6(6 n 62) = 62 u 63 .

Proof, (i) =» (ii). If 62 c 63 then, by (ll),
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62 = 62 o 63 = 6 n 62 c 6 and if 63 c 62 then, by (7), 6 c 62 .

(ii) =» (iii). If 6 <= 62 then, by (l), 63 c 62 and thus

&(8 n 62) = 62 = 62 u 63 . If 62 c 6 then, by (7), &2 ̂  63 and thus

6(6 n 62) = 63 = 62 u 63 .

(iii) =» (i). If there exist A € 62B - 63B and B € 63B - 62B then,

by (10), 62B \ A u B \ 63B . Nevertheless, by (13), A d 6 (6 n 62) 5 B

and by (10), A u B € 6 (6 n 62) - 62 u 63 * 0 .

Now, in order to obtain a complete classification of all topological

spaces, let 0. denote the class of spaces for which a certain

collapsing of L occurs.

If 6 <f 6 and 6 <f ̂  then, by (15), (9), the space belongs either

to the class (> : no collapse, or to the class

Q^ : 6(6 n 62) 3 62 u 63 = 6 u 62 3 63 = 6 3 6 n 62 c 62 .

If 6 c 62 then, by (l), (9), <S = <53 and thus, by (15), the space

belongs to Q_ : L = {6} or to

0 : 6 = 6
3 = 6 n 62 c 62 = 6 u 62 = 62 u 63 = 6(6 n 62) .

Final ly, i f 62 c 6 then, by (7 ) , (15), the space belongs to <L or

to !L : 62 = 6 n 62 c 6 = 6 u 62 = 63 = 62 u 63 = 6(6 n 62) or to

Qg : 62 = 6 n 62 c 6 = 6 u 62 c 63 = 62 u 63 = 6(6 n 62) .

THEOREM. Every topologioal epaae belongs to one of the non-empty

disjoint classes Q. , 1 5 i 5 6 .

Proof. By the above mentioned argument, the classes Q. , 1 5 i < 6 ,

exhaust all possibilities for spaces and they are by construction disjoint.

Finally, they are also non-empty because of the following:

EXAMPLE 1. Let (* , T.J be an infinite topological space such that
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the family of i t s bounded subsets 677 equals the family of the countable

subsets of X (for example, this happens in the space fi of the

countable ordinals with the usual order topology [2, Example 5-1-V]). Let

also [X, T ) be an infinite discrete space and [XuX, t) their

disjoint topological union. By Theorem 2.1+ [2],

Sf* = [s c x u X : S n X countable and S n X finite} .

i t is proved that 62f = {M C X U X : M n X± finite} andThen

= {N C x u X • N n X finite} . It follows that for the space

{X, T) , 6 £ 62 , and 62 $ 6 ;

(I) if X is uncountable then (X, T) is a {L -space;

(II) if X is countable then (X, T) is a (L-space;

(III) every finite space is a (L-space;

(IV) every infinite discrete space is a Qi -space;

(V) every infinite compact space is a <L-space;

(VI) ft is a !L-space.

With respect to the S-classification of [2, 3] we get (L u (L = S

S = \ u S2 , ^ u ̂  u ̂  . S3 u 5U .

Using the following relation (l6) one can obtain another proof of (6)

by modification of methods given in [5],

(16) 6(H u B) = 6H n 68 n 5(H A 8) .

Proof. By (1), H c H u B 3 B and H A 8 c y(H u B) imply that

6(H u B) c 6H n 68 n 6(H A B) . Conversely, let

S f 6H n 6B n 6(H A 8) , 0 t V <= H u 8 , and V u {5} have the finite

intersection property. If P = V n H = 0 or t>2 = 0 n 8'= 0 then

OP # 0 . If V1 t 0 ?t V2 then 0 ?t P* = V± A P2 c H A 8 and P* u {5}
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has f in i t e in tersect ion property. Therefore 0 t f)V* - DP . Since in each

case 0 * DO , we conclude that S d &(H u B) .

Proof of (6). By (2) , ( l 6 ) ,

6y(B u 628) = 6(B U 62B) = 6B n 63B n 6[B A 62B) ,

and toy (7), ( D , (U), 6B <= 63B c 6(B A 62B) .

Despite the s imi lar i ty of the atoove resul t to that of [7] there exis ts

no connection between them in that neither consti tutes a generalization of

the other. However, in the l ight of (10), some of the following open

problems may be easier than the corresponding ones for p [7, 5].

Y Y

(a) Given an operator f : 22 •* 22 , under what conditions does it

coincide with the boxmdedness operator 6 ? (Boundedness axiomatization
problem.)

(b) Determine whether or not {He 2 : 6H = 8} may be empty3 as

well as conditions to guarantee the existence of a largest H (or H of

maximal families).

2
(a) The corresponding problems for 6

(d) Determine the possible relations between 6 and p (some are

evident).

References

[ / ] J . de Groot, H. Herri ich, G.E. Strecker, E. Wattel, "Compactness as an

operator", Compositio Math. 21 (1969), 3^9-375.

[2] Panayotis Lambrinos, "A topological notion of boundedness",

ManuBcripta Math. 10 (1973), 289-296.

[3] IlavciYiwTTi 0. Aapirpwou [Panayotis Th. Lambrinos], "TiroouvoAa (m, n ) -

Trepomoyeva eia TOTTOXOYKOV xwpov" [{m, w)-bounded subsets of a

topological space], (Doctoral Dissertation, University of

Thessaloniki, Thessalonlki, Greece, 1971*).

[4] G.E. Strecker, E. Wattel, H. Herriich, and J . de Groot, "Strengthening

Alexander's subbase theorem", Duke Math. J. 35 (1968), 671-676.

https://doi.org/10.1017/S0004972700024072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024072


The boundedness operator 423

[5] E. Watte I, The compactness operator in set theory and topology

(Mathematical Centre Tracts, 21. Mathematisch Centrum,

Amsterdam, 1968).

Department of Mathematics,

University of Thessaloniki,

Thessaloni ki,

Greece.

Present address:

Mathematical Institute,

University of Oxford,

St Giles,

England.

https://doi.org/10.1017/S0004972700024072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024072

