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Abstract

Reactive oxygen species (ROS) play an essential role in regulating various functions of organ-
isms such as gene transcription, signalling transduction and immune response. However,
overproduction of ROS can lead to oxidative stress, which is related to various ageing diseases
including eye and brain degenerative diseases. Ocular measurements have recently been sug-
gested as potential sources of biomarkers for the early detection of brain neurodegenerative
diseases. MicroRNAs (miRNAs) are useful biomarkers for various diseases including degen-
erative diseases. miRNAs play an important role in the oxidative stress mechanisms of ageing
diseases. In this paper, the role of miRNAs related to oxidative stress mechanisms in four age-
ing diseases, Parkinson’s disease (PD), Alzheimer’s disease (AD), glaucoma and age-related
macular degeneration was reviewed. The common miRNA biomarkers related to the four dis-
eases were also discussed. The results show that these eye and brain ageing diseases share
many common miRNA biomarkers. It indicates that the ocular condition may be a prognostic
biomarker for PD or AD patients. When a patient’s eye condition changes, this can be a warn-
ing of a change in PD or AD status.

Introduction

Degenerative diseases may share some common pathological mechanisms such as oxidative
stress including brain and eye diseases. In this paper, the common microRNA (miRNA)
mechanisms for some oxidative stress-related degenerative brain and eye diseases are discussed
including Parkinson’s disease (PD), Alzheimer’s disease (AD), glaucoma and age-related
macular degeneration (AMD).

A free radical is any molecular species capable of independent existence that contains
unpaired electrons in atomic orbitals. Free radicals are highly reactive and behave as oxidants
or reductants because they can either donate an electron to or accept an electron from other
molecules (Ref. 1). There are many types of free radicals including oxygen- and nitrogen-based
species. Reactive oxygen and nitrogen species (RONS) contributed to the development of vari-
ous diseases; however, intracellular RONS could also be an important component of intracel-
lular signalling cascades (Ref. 2). Reactive oxygen species (ROS) are by-products derived from
cellular oxidative metabolism. The intrinsic biochemical properties of ROS play an essential
role in regulating various functions of living organisms, contributing to the development of
living organisms. They are involved in many important cellular activities such as gene tran-
scription, signalling transduction and immune response. However, ROS overproduction can
lead to oxidative stress, a phenomenon caused by an imbalance between ROS production in
cells and tissues and the ability of a biological system to detoxify these reactive products
(Ref. 3). Oxidative stress is associated with a variety of diseases. Excess ROS can eventually
lead to cell death.

The brain consumes more energy than any other tissue and is a major metaboliser of oxy-
gen. The brain relies heavily on mitochondria to produce energy. During ageing, damaged
mitochondria produced less adenosine triphosphate, and more ROS accumulated. ROS caused
oxidative stress that triggered neurodegenerative diseases (Ref. 4). Neurodegenerative diseases
are caused by excessive and pathological loss of neurons, leading to dementia, cognitive
impairment and so on. Microglial activation and oxidative stress are hallmarks of neurodegen-
erative disease (Ref. 5). Oxidative stress is related to all major neurodegenerative diseases and is
associated with neuronal injury and pathological progress. As a result, oxidative stress is widely
recognised as a potential target for protective therapies (Ref. 6).

Of these four oxidative stress-related degenerative diseases discussed in this paper, two of
them (PD and AD) are brain diseases, and the other two (AMD and glaucoma) are eye dis-
eases. Ocular measurements have recently been suggested as potential sources of biomarkers
for the early detection of neurodegenerative diseases (Ref. 7). The optic nerve is the most
accessible part of the central nervous system (CNS), so there might be a strong connection
between optic neuritis and CNS disease (Ref. 8). Amyloid-beta (Aβ), p-tau, chronic inflamma-
tion and iron dyshomoeostasis might be common pathogenic mechanisms linking AD, glau-
coma and AMD, and iron chelation is a common therapeutic option for these disorders
(Ref. 9). Ocular disorders presented characteristics of neurodegenerative diseases and, on
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the other hand, AD and PD showed peculiar alterations at the
ocular level (Ref. 10). Despite the possible link between eye and
brain diseases, both may not have a very strong association
because patients with brain diseases do not always have eye dis-
eases, and vice versa. However, because ocular conditions are eas-
ier to detect and diagnose than brain conditions, we may be
interested in whether ocular conditions can be prognostic biomar-
kers in patients with brain diseases (Fig. 1).

To understand more mechanisms linking brain oxidative
stress-related diseases and eye stress-related diseases, in this
study, common miRNA biomarkers for brain diseases and eye
diseases are reviewed. A miRNA is a small non-coding RNA
that plays an important role in many biological functions includ-
ing gene regulation. The first miRNA was discovered in the early
1990s when studying the nematode Caenorhabditis elegans
regarding the gene lin-14 (Ref. 11). Since then, many miRNAs
have been discovered for different species, and they were shown
to be highly conserved across species (Ref. 12). In the canonical
miRNA biogenesis pathway, primary miRNAs are transcribed
and then processed into precursor miRNA (pre-miRNAs) that
produce functional mature miRNAs, the −3p single-stranded
miRNA and the −5p single-stranded miRNA. miRNAs have
been used as biomarkers for many diseases such as coronavirus
disease 2019 (COVID-19) and neurological diseases (Refs 13,
14). The association between diseases can be explored using
miRNA biomarkers (Refs 15, 16, 17). miRNA biomarkers were
used to explore the comorbidities of COVID-19 (Ref. 18). The
serum concentration levels of miR-499, miR-21, miR-155 and
miR-208a were significantly increased in COVID-19 patients
compared with the healthy controls (Ref. 19). miRNAs in
serum, cerebrospinal fluid and brain tissue have been investigated
in AD as novel markers for treatment and diagnosis (Ref. 20).
miR-146a, miR-335-3p and miR-335-5p were found to be down-
regulated in PD patients compared with controls (Ref. 21).

miRNAs are closely related to ROS, which is fine-tuned by dys-
regulated miRNAs, and vice versa (Ref. 22). Oxidative stress affects
the expression levels of miRNAs and miRNAs regulate many genes
involved in oxidative stress response (Ref. 6). miRNAs can be oxi-
dised, leading to the misidentification of target mRNAs. Oxidative
stress and miRNAs are closely related during neurodegenerative
processes such as mitochondrial dysfunction, deregulation of pro-
teostasis and neuroinflammation. Mitochondrial dysfunction
could damage by-products of respiration, and mitochondrial ROS
were involved in cell signalling (Ref. 23). This paper discusses com-
mon miRNA biomarkers of oxidative stress-related eye and brain
diseases via pre-miRNAs. For more details on the specific mature
miRNA biomarkers, readers can refer to the cited references.

Oxidative stress-related eye and brain diseases

The oxidative stress-related diseases, glaucoma, AMD, PD and
AD, are reviewed in this section.

Glaucoma

Glaucoma is a disease with characteristic optic neuropathy and
vision loss, and primary open-angle glaucoma (POAG) is the
most common type of glaucoma worldwide. POAG is a chronic
neurodegenerative disease of optic nerve damage associated with
an open anterior chamber angle and elevated intraocular pressure
(IOP). POAG can induce retinal ganglion cell apoptosis and
degenerate the optic nerve head (ONH). ROS plays a key role
in the pathogenesis of POAG. Certain miRNAs were involved
in the delicate balance of extracellular matrix synthesis and depos-
ition regulated by chronic oxidative stress in POAG-associated tis-
sues (Ref. 24). Various miRNAs are abundantly expressed in the

eyes. The miRNA expressions in the normal human ciliary
body, cornea and trabecular meshwork were studied to better
understand miRNA function and disease involvement in these tis-
sues (Ref. 25). Many miRNAs were identified in ocular tissue.

Various miRNAs could be used as biomarkers to assist in the
early diagnosis of POAG. IOP is the major primary risk factor for
blindness in glaucoma patients. The expression of miR-143 and
miR-145 is enriched in the smooth muscle and trabecular mesh-
work of the eye. Targeted deletion of miR-143/145 in mice results
in a significant reduction in IOP (Ref. 26). Aqueous humour
(AH) is a dynamic intraocular fluid that supports the vitality of
tissues that regulate IOP. AH is the liquid inside the front part
of the eye. The eye constantly produces a small amount of AH,
and an equal amount of AH flows out through the trabecular
meshwork of the drainage angle. An imbalance in AH production
and drainage can lead to IOP. Exosomes are a major constituent
of AH (Ref. 27). The expression profiles of miRNAs in the AH of
glaucoma patients and the control group were compared (Ref. 28).
Fifty-seven miRNAs showed a statistically significant difference in
expression levels between the control group and the glaucoma
group. Among them, let-7b-3p, miR-4507, miR-3620-5p,
miR-1587 and miR-4484 were most significantly different.
Trabecular meshwork cells damaged by oxidative stress released
extracellular miRNAs, including miR-21 and miR-107, as estab-
lished in vitro and glaucoma AH (Ref. 29). The over-expression
of miR-144-3p promoted proliferation and invasion of human
trabecular meshwork cells by inhibiting the expression of fibro-
nectin 1 in oxidative stress human trabecular meshwork cells,
and thus miR-144-3p could be a potential target for glaucoma
treatment (Ref. 30). Silencing of miR-29b-3p could protect
human trabecular meshwork cells against oxidative injury by
upregulation of RNF138 to activate the extracellular signal-
regulated kinase pathway (Ref. 31).

Macular degeneration

Both AMD and diabetic retinopathy (DR) are typically associated
with oxidative stress. The use of antioxidant agents could be used
as a co-adjuvant therapy for these diseases. miRNAs are involved
in the regulation of angiogenesis, oxidative stress, immune
response and inflammation in AMD and DR (Ref. 32).
miR-205-5p was modulated by oxidative stress and regulates vas-
cular endothelial growth factor A (VEGFA)-angiogenesis
(Ref. 33). Hence, miR-205-5p is proposed as a candidate against
eye-related proliferative diseases (Ref. 33).

The retinal pigment epithelium (RPE) is usually exposed to high
levels of pro-oxidative stimuli. Inhibition of miR-144 could
enhance nuclear factor erythroid-2-related factor 2 (Nrf2)-depend-
ent antioxidant signalling in RPE and prevent oxidative
stress-induced AMD (Ref. 34). VEGFA enhancement and neovas-
cular overgrowth are the clinical hallmarks of AMD (Refs 35, 36).
VEGFA was produced by retinal cells, including the RPE (Ref. 37).
Activation of the Nrf2 signal pathway could protect RPE cells from
oxidative damage, and miR-125b could target the Nrf2/
hypoxia-inducible factor-1α signal pathway to protect RPE from
oxidative damage (Ref. 38).

Alzheimer’s disease

AD is an irreversible neurodegenerative disorder affecting both
cognition and emotional behaviour (Ref. 39). Extracellular accu-
mulation of Aβ peptide and the flame-shaped neurofibrillary tan-
gles of the microtubule-binding protein tau are two major
hallmarks required for a diagnosis of AD (Ref. 40). miRNA con-
tributes to the development of AD by regulating the accumulation
of Aβ peptides and tau phosphorylation (Refs 41, 42, 43). In

2 Hsiuying Wang

https://doi.org/10.1017/erm.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2023.19


addition, oxidative stress is one of the major pathomechanisms of
AD, as well as other key events such as mitochondrial dysfunc-
tion, inflammation, metal dysregulation and protein misfolding.

The oxidative stress-associated miRNAs including seven upre-
gulated miRNAs (miR-125b, miR-146a, miR-200c, miR-26b,
miR-30e, miR-34a, miR-34c) and three downregulated miRNAs
(miR-107, miR-210, miR-485) were found in vulnerable brain
regions of AD at the prodromal stage (Ref. 44). N-
Acetylglucosaminyltransferase III (GnT-III) is a glycosyltransferase
responsible for synthesising a bisecting N-acetylglucosamine resi-
due. The mRNA levels of GnT-III were found highly expressed
in the brains of AD patients and GnT-III was expressed strongly
in AD model mice (Ref. 45). A study showed that GnT-III might
be targeted by miR-23b, and activation of the Akt/GSK-3β signal-
ling pathway could contribute to tau-lesion inhibition by miR-23b
(Ref. 46). In addition, miR-23b could inhibit oxidative stress by
altering Aβ-precursor protein processing. This might conclude
that overexpression of miR-23b could interrupt the pathogenesis
of AD (Ref. 46). The mechanism of miR-592, KIAA0319 and the
Keap1/Nrf2/ARE signalling pathway in AD was examined
(Ref. 47). Downregulation of miR-592 could inhibit oxidative stress
injury of astrocytes in rat models of AD by upregulating KIAA0319
through the activation of the Keap1/Nrf2/ARE signalling pathway.

Hairy and enhancer of split-related with YRPW motif protein
2 (HEY2) is a hairy-related transcription factor family of
Notch-downstream transcriptional repressors. miR-98 could tar-
get HEY2 to inhibit the activity of the Notch pathway, contribut-
ing to the inhibition of the production of Aβ and the
improvement of oxidative stress and mitochondrial dysfunction
in AD mice (Ref. 48). Exosomes are extracellular vesicles that
can carry miRNAs and establish intercellular communication in
neurons. Exosomal miRNAs can modulate the activity of multiple
physiological pathways in neurodegenerative diseases, including

oxidative stress responses. miR-141-3p was a potential serum bio-
marker for AD, that was observed with low concentrations in the
plasma exosomes of AD patients (Ref. 49). miR-125b-5p was
upregulated in cerebrospinal fluid-derived exosomes of patients
with AD compared with healthy controls (Ref. 50). Inhibition
of miR-125b-5p reduced ROS levels and lowered mitochondrial
membrane potential, thereby demonstrating neuroprotective
effects against oxidative stress (Ref. 51).

Parkinson’s disease

PD is a chronic neurodegenerative disease named after James
Parkinson, who reported this clinical syndrome in 1817
(Ref. 52). The PD has motor and non-motor symptoms including
tremors, slowed movement, rigid muscles, impaired posture and
balance, speech changes, writing changes, sleep disorders, depres-
sion, cognitive changes, illusions and delusions (Ref. 53). PD was
demonstrated to be associated with several genes including
α-synuclein (SNCA); parkin (PARK2); PTEN-induced putative
kinase 1 (PINK1); DJ-1 (PARK7); leucine-rich repeat kinase 2
(LRRK2); DnaJ (Hsp40) homologue, subfamily C, member 13
(DNAJC13), coiled-coil-helix-coiled-coil-helix domain contain-
ing 2 (CHCHD2), transmembrane protein 230 (TMEM230) and
resistance to inhibitors of cholinesterase 3 (RIC3) (Refs 54, 55,
56, 57, 58).

The stimulation of oxidative stress is critical for the evolution of
metabolic syndrome and PD (Ref. 59). In the 1-methyl- 4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, oxidative
stress might be an early event that directly killed some of the dopa-
minergic (DA) neurons (Ref. 60). PINK1 and parkin were involved
in mitochondria-associated autophagy, and the loss of function of
these proteins leads to the accumulation of damaged mitochondria
(Refs 61, 62). In the pathogenesis of PD, mitochondria dysfunction

Figure 1. Ocular conditions might be prognostic biomarkers in patients with brain diseases.
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is closely related to ROS (Ref. 63). PD might be more relevant to oxi-
dative stress than AD (Ref. 64).

miR-27a and miR-27b suppressed the expression of PINK1,
contributing to inducing oxidative stress (Ref. 65). SNCA could
induce oxidative stress and increase ROS levels (Refs 66, 67),
and the downregulation of miR-7, miR-214, miR-153 and
miR-34b/c might contribute to SNCA-mediated neurotoxicity in
PD (Refs 6, 68). miR-125b-5p was downregulated in
MPTP-induced PD mouse models and MPP+-induced PD cell
models (Ref. 69).

Table 1 summarises some miRNAs related to oxidative stress
mechanisms in glaucoma, AMD, PD and AD.

Common miRNA biomarkers

Common miRNA biomarkers for all of the four diseases or some
of the four diseases are reviewed in this section. The PubMed and
Google Scholar databases were used to find relevant papers by
performing a systematic search using the following terms
‘miRNA, Glaucoma’, ‘miRNA, macular degeneration’, ‘miRNA,
Parkinson’ and ‘miRNA, Alzheimer’. Table 2 summarises some
of the miRNA biomarkers that were indicated as such in at
least two references. The tissues in which the miRNAs were
detected are also provided in Table 2 if they were mentioned in
the reference papers.

The miRNAs in Table 2 involved in these diseases are reviewed
as follows. Tears are a biological fluid with a potential diagnostic
value for ophthalmic diseases. POAG-patient tear pellets showed
different expressions of miR-16 and miR-126 in comparison with
pellets obtained from healthy persons (Ref. 71). miR-16-5p was
one of the most abundant miRNAs detected in AH (Ref. 70).
The other miRNAs in Table 2 detected in AH included
miR-21-5p, miR-22-3p, miR-144-3p, miR-205-5p, miR-29a-3p,
miR-29c-5p, miR-30a-5p and miR-30d-5p (Ref. 70). The use of

Table 1. miRNAs related to the four oxidative stress-related diseases

Disease miRNA Reference

Glaucoma miR-143, miR-145 26)

miR-144 30

let-7b-3p, miR-4507, miR-3620-5p,
miR-1587 and miR-4484

28

miR-21, miR-107 29

miR-29b 31

Macular
degeneration

miR-205-5p 33

miR-125b 38

miR-144 34

AD miR-125b, miR-146a, miR-200c,
miR-26b, miR-30e, miR-34a,
miR-34c, miR-107, miR-210, miR-485

44

miR-23b 46

miR-592 47

miR-98 48

miR-141-3p 49

miR-125b-5p 50

PD miR-27a, miR-27b 65

miR-7, miR-214, miR-153 6

miR-34b, miR-34c 6, 68

miR-125b-5p 69

Table 2. Common miRNA biomarkers of glaucoma, AMD, PD or AD

miRNA Disease Tissues Reference

miR-16 Glaucoma AH, tear 70, 71, 72

Alzheimer Brain cortex from rat
embryos, mouse
brains, plasma

73, 74

miR-21 Glaucoma Trabecular meshwork
cells, plasma, angular
aqueous plexus cells

29, 70, 75

Parkinson Serum, mouse,
SH-SY5Y cells

53, 76, 77

Alzheimer Mouse hippocampal
slices, SH-SY5Y cells,
cerebrospinal fluid

78, 79

miR-22 Glaucoma Mouse, AH 70, 80

Parkinson Serum 76, 81

miR-93 Glaucoma AH, trabecular
meshwork cells,
retinal ganglion cells

72, 82, 83,
84

Macular
degeneration

Mouse, human retinal
pigment epithelium
(ARPE-19) cells

85, 86

Alzheimer Serum, blood 87, 88

miR-107 Glaucoma AH, trabecular
meshwork cells

29, 70

Alzheimer Mouse, peripheral
blood, SH-SY5Y,
SK-N-SH cells

89, 90, 91

miR-143 Glaucoma Mouse, TM cells, AH 26, 92, 93

Alzheimer Serum, SH-SY5Y cells,
blood

88, 94, 95

miR-144 Glaucoma Human trabecular
meshwork cells, AH

30, 70

Alzheimer Blood, mouse 96, 97

miR-205 Glaucoma AH 70, 72

Macular
degeneration

ARPE-19 cells, serum 33, 98

Parkinson MN9D cells,
cerebrospinal fluid

99, 100

miR-26a Glaucoma AH, scar samples,
subconjunctival
Tenon’s capsule
tissues

101, 102

Parkinson Mouse, cerebrospinal
fluid

103, 104

Alzheimer Mouse, peripheral
blood, serum,
post-mortem

105, 106

miR-29a Glaucoma AH, LC cells 70, 107

Macular
degeneration

Plasma, retinal
pigment epithelial
cells

108, 109

Parkinson Serum, SH-SY5Y cell
line

110, 111

Alzheimer Venous blood,
cerebrospinal fluid

112, 113

miR-29b Glaucoma Human trabecular
meshwork cells

31, 114

Parkinson Serum 111, 115

(Continued )
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polydopamine-polyethylenimine nanoparticles (PDA/PEI NPs) as
miRNA carriers in the treatment of ocular hypertension and glau-
coma was investigated (Ref. 75). PDA/PEI NPs/miR-21-5p has
been demonstrated as a promising anti-glaucoma drug for treat-
ing POAG. Tetrahedral frame nucleic acids (tFNAs) can be
used as miRNA carriers in retinal neurons. tFNAs could transfer
miR-22 into damaged retinal neurons that had a neuroprotective
effect on glaucoma (Ref. 80). Up-regulation of miR-93-5p, bind-
ing with phosphatase and tensin homologue, suppressed the
autophagy of retinal ganglion cells through the AKT/MTOR path-
way in N-methyl-D-aspartate-induced glaucoma (Ref. 84).

Postoperative filtering tract scarring is one of the main reasons
for the failure of glaucoma filtration surgery. miR-26a played an
important role in the formation of filtering tract scar and func-
tioned as a potential drug target (Ref. 101). miR-30a-3p and
miR-143-3p were upregulated in the AH of POAG patients com-
pared with controls (Ref. 93). miR-30d-5p was significantly upre-
gulated in pseudoexfoliation (PEX) glaucoma patients compared
with the control (Ref. 126). miR-126 facilitated the apoptosis of
retinal ganglion cells in glaucoma rats by promoting the VEGF–
Notch signalling pathway (Ref. 134). The level of miR-125b
expression was increased in POAG patients and PEX syndrome
glaucoma patients compared with cataracts alone patients
(Ref. 138). Intracameral delivery of miR-146a can long-term
reduce IOP in rats. This miR-146 effect observed in rats could
provide the development of effective gene therapy for human
glaucoma (Ref. 162).

The ONH is the site of initial optic nerve damage in glaucoma.
ONH-derived lamina cribrosa (LC) cells are adversely affected in
glaucoma and cause deleterious changes in ONH. miR-29a-3p
and miR-29c-3p were downregulated in POAG LC cells compared
with non-glaucomatous LC cells (Ref. 107). let-7a-5p and
miR-143-3p were found to be significantly upregulated in the
normal-tension glaucoma (NTG) patients compared with the
controls (Ref. 92). miRNA profiles of patients with PEX glaucoma
or NTG compared with normal controls using individual AH
samples were studied in Korea (Ref. 126). In NTG patients,
let-7a-5p and let-7b-3p were significantly upregulated compared
with controls. Salidroside (Sal) had a protective effect on
H2O2-injured human trabecular meshwork cells. miR-27a was
upregulated by Sal, and miR-27a suppression could reverse the
protective effect of Sal on H2O2-injured human trabecular mesh-
work cells (Ref. 158). This result might provide a therapeutic strat-
egy for the remedy of glaucoma.

Table 2. (Continued.)

miRNA Disease Tissues Reference

Alzheimer Blood, rat, HEK-293T
cells

96, 116

miR-29c Glaucoma AH, LC cells 70, 107

Parkinson Serum 111, 117

Alzheimer Mouse, frontal
cortices

118, 119,
120, 121

miR-30a Glaucoma AH, plasma 70, 93

Parkinson Mouse 122, 123

Alzheimer Mouse, plasma
APPswe cells

124, 125

miR-30d Glaucoma AH 70, 126

Parkinson MN9D cells, mouse,
venous blood

127, 128

Alzheimer Blood 20, 96

miR-7 Macular
degeneration

ARPE-19 cells,
macular region of the
retina

129, 130

Parkinson Human nigral
sections, animals

6, 131, 132

Alzheimer Superior temporal
lobe neocortex

130, 133

miR-126 Glaucoma Tear pellets, retinal
ganglion cells

71, 134

Macular
degeneration

Serum, mouse 98, 135

Parkinson Laser microdissected
DA neurons from
post-mortem,
SH-SY5Y, SK-N-SH
cells

136, 137

miR-125b Glaucoma Tear, anterior lens
capsules

138, 139

Macular
degeneration

ARPE-19 cells, brain,
retinal tissues

38, 130

Parkinson Human
neuroblastoma cell
line SK-N-SH,
SH-SY5Y cell, mouse

69, 140

Alzheimer Cerebrospinal fluid,
Serum

50, 141

miR-146a Macular
degeneration

Macular region of the
retina, retina or
vitreous humour
specimens, plasma

130, 142,
143

Parkinson Peripheral blood 21, 144

Alzheimer Mouse, serum,
superior temporal
lobe neocortex,
SH-SY5Y cells

45, 88,
130, 145

let-7a Glaucoma AH 92, 126

Macular
degeneration

Retina, serum 142, 146

Parkinson Mouse, plasma 147, 148

Alzheimer SH-SY5Y cells 96, 149

let-7b Macular
degeneration

Mouse 142, 150

Alzheimer Cerebrospinal fluid 151, 152

(Continued )

Table 2. (Continued.)

miRNA Disease Tissues Reference

let-7d Macular
degeneration

Retina, serum 142, 146

Parkinson MN9D cells 153, 154

Alzheimer Blood, cerebrospinal
fluid

20, 155

miR-155 Macular
degeneration

Macular region of the
retina

130, 142

Parkinson Peripheral blood,
serum

21, 144

Alzheimer Superior temporal
lobe neocortex

130, 156,
157

miR-27a Glaucoma Tear, human
trabecular meshwork
cells

139, 158

Alzheimer SH-SY5Y cells, serum,
cerebrospinal fluid

159, 160,
161
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The role of miR-93 and miR-126 in AMD was investigated
using a laser-induced choroidal neovascularisation mouse
model, and miR-93 and miR-126 were suggested as putative
therapeutic targets for AMD in humans (Refs 85, 135).
miR-29a-3p was expressed in the patient group (Ref. 108).
MEG3 was demonstrated to play a protective role against AMD
by maintaining RPE differentiation via the miR-7-5p/Pax6 axis
(Ref. 129). miR-146a-5p has a high-affinity target in the comple-
ment factor H, the most strongly and consistently advanced
AMD-associated gene. It suggested that miR-146a-5p could be a
biomarker for advanced AMD (Ref. 142). miR-155-5p,
let-7a-5p, let-7b-5p and let-7d-5p significantly elevated in
advanced AMD retina (Ref. 142).

Three exosomal miRNAs, miR-21-3p, miR-22-3p and
miR-223-5p, could significantly discriminate PD from healthy con-
trols (Ref. 76). Metastasis-associated lung adenocarcinoma tran-
script 1 (MALAT1) has been reported to be upregulated in PD.
The MALAT1/miR-205-5p axis could regulate the apoptosis of
MN9D cells by directly targeting LRRK2, which was involved in
the molecular pathogenesis of PD (Ref. 99). Two miR-24 and
miR-205 in cerebrospinal fluid could distinguish PD from controls
(Ref. 100). miR-26a/death-associated protein kinase 1 signalling
induced synucleinopathy and DA neuron degeneration in PD
(Ref. 103). Circular RNA circTLK1 regulated DA neuron injury
during PD by targeting miR-26a-5p/DAPK1 (Ref. 104).
miRNA-155-5p was upregulated in PD patients compared with
healthy controls whereas miRNA-146a-5p was downregulated in
PD patients in comparison with healthy controls (Ref. 144).
Inhibiting GSK3β by 7-BIO alleviated the
1-methyl-4-phenylpyridinium-4-methyl-1 (MPP+) induced neuro-
toxicity by regulating miR-29a-3p expressions in PD model
SH-SY5Y cells (Ref. 110). Serum miR-29a and miR-29c levels
were downregulated in PD patients compared with healthy controls
(Ref. 111). miR-29b levels were shown to be associated with differ-
ent subsets of PD cognition and could accurately discriminate PD
patients with dementia (PDD) from non-PDD (Ref. 115). GLT-1
was a critical factor in the development of PD and miR-30a-5p
could regulate GLT-1 expression and function by ubiquitination
of these glutamate transporters through the PKCα pathway in
vitro and in vivo (Ref. 122).

FTY720-Mitoxy, a derivative of a PD’s drug FTY720, could
significantly increase the miR-30d-5p level (Ref. 127).
miR-30d-5p was upregulated in AD patients and let-7a-5p,
miR-29b-3p and miR-144-5p were downregulated in AD patients
compared with healthy controls (Ref. 96). Let-7a suppresses
SNCA-induced microglial inflammation by targeting STAT3 in
PD (Ref. 147). Let-7d was downregulated in a
6-OHDA-induced cellular model of PD, and let-7d played an
important role in DA neuronal cell injury (Refs 153, 154).
miR-7 in brain areas associated with DA neurodegeneration

significantly decreased in PD patients and parkinsonian
MPTP-induced animals (Ref. 131). Elevated levels of miR-126
might play a functional role in DA neurons and PD pathogenesis
by downregulating IGF-1/PI3K/AKT signalling (Ref. 136).

miR-93 was identified as a key node in the miRNA–mRNA
network by topological analysis for AD. Long noncoding RNAs
(lncRNAs) might play an important role in the development
and treatment of AD. lncRNA NEAT1 aggravated Aβ-induced
neuronal damage by sponging miR-107, suggesting a novel
approach to the treatment of AD (Ref. 91). miR-143-3p inhibition
promoted neuronal survival in a vitro cellular model by targeting
NRG1, and the miR-143-3p/NRG1 axis is a potential therapeutic
target for AD treatment (Ref. 94). A panel of miRNAs including
miR-143-3p is a promising substitute for the traditional measure-
ment of p-tau/Aβ-42 in cerebrospinal fluid as an effective bio-
marker of AD (Ref. 95). Overexpression of miR-26a-5p
suppressed tau phosphorylation and Aβ accumulation in the
AD mice by targeting DYRK1A (Ref. 105). The protective effects
of klotho and linagliptin treatment on human peripheral blood
mononuclear cells (PBMCs) of AD patients and healthy controls
were studied. Klotho induced miR-29a expression in the PBMCs
of healthy controls, whereas miR-29a expression was induced in
the AD group by klotho and linagliptin (Ref. 112).

A low miR-29c-3p level was detected in the brain tissue of AD
animal models (Ref. 118). Dysregulation of the miR-30a-5p/
ADAM10/SIRT1 pathway was a key mediator of AD pathogenesis
(Ref. 124). miR-7-5p expression was significantly increased in
LPS + Aβ-42-stimulated PBMCs of AD patients (Ref. 133).
miR-125b was downregulated in the serum of AD patients
(Ref. 141). Cerebrospinal fluid from AD patients contained higher
amounts of let-7b compared with healthy controls (Ref. 152). The
expression level of let-7d-5p was significantly increased in the AD
patients compared with control individuals (Ref. 155). Control of
miR-155 might be a promising approach for AD treatment
(Ref. 157). lncRNA NEAT1 regulated the development of AD
by downregulating miR-27a-3p (Ref. 159).

Discussion

Table 2 lists 23 common miRNA biomarkers, which are related to
at least one of the two eye diseases (glaucoma or AMD) and at
least one of the brain diseases (PD or AD). These common
miRNAs show that there might have common pathological
mechanisms between these eye diseases and brain diseases.
Among these miRNAs, 13 miRNAs are associated with three of
these diseases. Seven miRNAs and three miRNAs are related to
two and four diseases, respectively. Table 3 provides the numbers
of the four diseases that are associated with these biomarkers.
More than half of these 23 miRNAs are associated with at least
three of these diseases. These miRNA biomarkers can be used
to study common mechanisms among these diseases (Fig. 2).

Recent articles have discussed miRNA-based therapeutic
approaches for neurodegenerative diseases. Gene therapy methods
for AD often involved targeting RNA through the use of synthetic
antisense oligonucleotides (ASOs), small synthetic molecules
designed to regulate protein translation (Ref. 163). miRNA-based
ASOs might be more powerful therapeutics compared with trad-
itional options. However, delivering miRNAs to the CNS for neu-
rodegenerative disease therapy can be challenging because of the
blood–brain barrier (BBB), which limits their transfection effi-
ciency. To increase transfection efficiency and overcome the BBB,
two strategies have been formulated: restoring suppressed miRNA
levels using miRNA mimics (agonists) or inhibiting miRNA func-
tion using anti-miRs (antagonists) to repress overactive miRNA
function (Ref. 164). Additionally, miRNA expression may be

Table 3. Numbers of the four diseases associated with these miRNA biomarkers

Number of the four
diseases associated
with miRNA biomarkers miRNA

Number of
miRNAs

2 miR-16, miR-22, miR-107,
miR-143, miR-144, Let-7b,
miR-27a

7

3 miR-21, miR-93, miR-205,
miR-26a, miR-29b,
miR-29c, miR-30a,
miR-30d, miR-7, miR-146a,
miR-126, let-7d, miR-155

13

4 miR-29a, miR-125b, let-7a 3
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influenced by sex, suggesting sex-specific therapeutic strategies to
be implemented in disease treatment (Ref. 165).

Although PD, AD, glaucoma and AMD share common
miRNA pathological mechanisms, we cannot conclude that they
have a very strong connection. Eye diseases might be triggered
by other diseases such as metabolic disorders or caused by the
overuse of electronic products for young patients. The eye disease
may not be directly related to the onset of brain disease. However,
for those with brain diseases, the eye condition may be a window
into the brain condition. It is much easier to monitor eye condi-
tions than brain conditions, and ocular conditions may be useful
prognostic biomarkers for patients with brain diseases. In add-
ition, antioxidants are a persuasive therapy against severe neur-
onal loss, that can prevent the development of these diseases.
Diet is a major source of antioxidants. Antioxidants, such as
glutathione, arginine, citrulline, taurine, creatine, selenium, zinc,
vitamin E, vitamin C, vitamin A and tea polyphenols can help
regulate ROS (Ref. 166). A balanced diet with various whole
foods can provide natural sources of antioxidants to prevent
these diseases.

Conclusions

The four oxidative stress-related ageing disorders, glaucoma,
AMD, AD and PD, are discussed in this paper. The common
miRNAs involved with these diseases are reviewed. Since these
diseases share many common miRNA biomarkers, it may indicate
that these diseases have some common pathological mechanisms.
However, these common miRNA biomarkers are not sufficient to
conclude the significant associations between these diseases.
Several previous studies showed that the eye might be a window
to the brain. Additionally, glaucoma and AMD share common
miRNA biomarkers with PD and AD. This fact might indicate
that the eye condition of PD or AD patients may be a prognostic
biomarker for monitoring PD and AD course. It is easier to exam-
ine the eye condition than the brain condition. When a PD or AD
patient’s eye condition changes, this can be a warning of a change
in PD or AD course.
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