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A SEQUENCE OF RESULTS 
ON CLASS NUMBER CONGRUENCES 

ANTONE COSTA 

ABSTRACT. Let p = 1 mod 8 be a rational prime and let h(—p) be the class number 
of Qi^p). In [1], Barrucand and Cohn show that h(-p) = 0 mod 8 iff/? = x2 + 32y2 

for some x,y € Z. In this article, we generalize their result to a family of relative 
quadratic extensions K/F, where Fk is the maximum totally real subfield of Q(C2*+2 ), 
and K = Fk(^/—pk), pk a power of a prime of Fk from a family of positive density. 

1. Introduction. Let p = 1 mod 8 be a positive prime integer, and for any integer 
n, let h(n) be the narrow class number of Q(v^). It is well known that h(—p) = 0 mod 4 
and h(—2p) = 0 mod 4, and that the following statements are, in fact, true; 

(Ao) h(—p) = 0 mod 8 iff (1 — i/p) = 1 i.e. iff 1 — >/—T is a square modulo/?. 
(B0) h(-2p) = 0mod8 iff(y/^2/p) = 1. 
(C0) h(-p) + h(-2p) = ^ mod 8. 
(D0) h(-2p) = 0 mod 8 iff p = a2 + 2b2 with a2 = 1 mod 16 

h(-p) = 0 mod 8 iff p = a2 + 2b2 with a2 = p mod 16 (where a, b G Z). 
We note that any two of the statements in Co and Do implies the third. 

In more recent work, numerous authors, for instance Gras [3], Pioui [4], Steven-
hagen [6] and Williams [7], have demonstrated that these results are actually part of 
a much broader family of congruences involving the various weighted sums of the class 
numbers of certain related quadratic number fields. In this article, we show that they can 
also be viewed as members of a sequence of results on the class numbers of more general 
relative quadratic extensions. More specifically, if ^ = Q(Ç2*+2)+, k > 0 (£, being any 
primitive n-th root of unity, E* the maximal totally real subfield of a CM extension £), 
rk = 2 + 2COS(TT/2/:+1) and A(2)k = {p G Z,p prime : p = 1 mod2*+3 with all the units 
of Fk being squares mod/?}, (note A(2)k D A(2)*+1), then we have the following; 

PROPOSITION. Let pk be a totally positive representative of a principal ideal p% 
where fk is the narrow class number ofFk, and pk is a prime ideal dividing p G A(2)k. 
Then, ifh(/i) is the class number of 'F^i-y/jl), we have h(—pk) = 0mod4 and hi—r^Pk) = 
0 mod 4, and in fact 

(Ak) h(-Pk) = 0mod8 iff (l - &M/p) = 1. 
(Bk) h(-rkPk) = 0mod8 iff(y/=n/p) = 1. 
(Ck) h(-pk) + h(-Tkpk) = $• mod 8. 
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(Dk) h(-rkpk) = 0mod8 iffpc
k
k = a2+rkb

2 a,b <E 0Fk, with %k/Q(a2) = 1 mod2 M 

h(-pk) = 0mod8 iffpc
k
k = a2+rkb

2 with ^^(a2) = pmod2k+4 

where ck is the class number ofFk(^/—rk) which, likefk, is odd. [2; 13.7] 

In Section 2 of this paper, we obtain (A*) and (Bk), essentially using an extension 
of Redei's [5] machinery for determining the 8-rank of the classgroup of any quadratic 
number field. In Section 3 we make some elementary computations involving units to 
obtain (C^), and use the reciprocity laws for Hilbert symbols to prove (D^). Finally, in 
Section 4, we compute the Dirichlet density of the sets A(2)k. 

2. Let p be in A(2)k, and let pk be a totally positive representative of a principal ideal 
pc

k
k, pk a prime ideal dividing p. Moreover, let Ek = Fk(^/p^), and Lk — Fk(^—pk). By 

class field theory we note that Ek/Fk is ramified only at pk and that Lk/Fk is ramified 
at pk, the infinite places of Fk, and rk—a uniformizer for the unique dyadic prime of 
Fk. (Since all of the units of Fk are squares modulo pk, there exists a unique quadratic 
mod pk ray class character on the ideals of Fk. If Fk(y/Pk) *s t n e corresponding quadratic 
extension, then (3k is totally positive, and is divisible by only one prime ideal, pk. Thus we 
see that pk |/Ç, and that we may assume (3k = epk, e being some totally positive unit of 
Fk. But since Fk has odd narrow class number, any totally positive unit must be a square. 
Therefore Ek — Fk(yjpl) — Fk(y/0^). To obtain the conductor for Lk, we simply observe 
that it is one of the three quadratic subfields of EkRk, where Rk = Q((2*+2).) 

We now let F be any totally real number field with odd narrow class number, E = 
F(\fD) a totally complex quadratic extension of F. In [2; 19.2,19.3], it is shown that the 
2-torsion subgroup of C(£), 2C(£), is generated by the classes of those prime ideals of 
E dividing D. Moreover, every unramified quartic extension corresponds to a 'splitting' 
of these primes into disjoint sets Z)i, Z)2 for which Z)2 is a square modulo all the primes 
in D\, and D\ is a square modulo those primes in D^. In our case, we see immediately 
that 2-rank C(Lk) — 4-rank C(Lk) = 1. To determine the 8-rank, we follow Redei's 
constructions. 

We begin by observing that the extension Fk(^/p^, i)=Mk Z> Lk is unramified of de­
gree 2. Moreover, there exists an extension Qk ^ Mk D Lk such that Qk/Lk is unram­
ified of degree 4. This can actually be constructed by observing that if pk = p'kp'£ in 
Q((2*+2) = Fk(i), the fact that the units of Fki hence of Fk(i) = Rk, are all squares modulo 
p (i.e. Rk/Fk is a type I CM extension [C-H 13.4,13.6]), implies by class field theory the 
existence of quadratic extensions H'k — Q(C2*+2, a'k), H'l — Q(C2*+2, a'k) of Q((2*+2) rami­
fied only at p'k and p'£ respectively. If we set Qk = Mk(a

f
k) = Mk(a'k

f), then Qk/Lk will 
be unramified of degree 4 and Ga\(Qk/Fk) ~ Dg. 

If now we set (rk) = r2 = 1 in C(Lk), then r ^ 1, since rk, pk are the only finite primes 
ramifying to Lk, and the prime above pk must have odd order (since (^—pk) is already 
principal), the class of r must generate C(Lk)2 by itself. Therefore 8-rank C(Lk) = 1 iff 
r splits to Qk, iff the unique dyadic prime of Q(C2^) splits to Qk, iff xp>(\ — (2*+2) = 1, 
where \p' is the unique mod p'k quadratic ray class character on the ideals of Q(£2*+2), iff 
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1 — (2*+2 is a square modulo/? (i.e. (1 — Qi^/p) — 1). This gives us (A*) simply as a 
consequence of Redei's machinery. 

To obtain (B^) we argue similarly, replacing Fk(y/—pk) with Fk(y/—rkpk) for Lk, 
Fk(y/Pk, y/—Tk) for M^ and Fk(^/—rk) for Q^+O- We need only note that here ^/—T* 
serves as a uniformizer for the dyadic prime of Fk(yJ—Tk), and that the units here con­
tinue to be squares modulop [C-H 13.4,13.6]. 

3. For k > 0, let ek = cot(?r/2*+2) = cot(7r/2*+1) + CSC(TT/2*+1) G F*. We note 

ek = cot(7r/2*+1) + ^1+cot2(7r/2*+1) 

and let 
ë* = cot(7r/2*+1) - v/l+cot2(7r/2^1) 

so that £këk = —l,ifc > 1 (for example, £0 = l,ei = I + A/2,^2 = l + v/2 + \/2(2 + \/2)). 
Now recall thatC2^ = COS(TT/2*+2) + /sin(7r/2*+2), so that 

ek+i = csc(7r/2*+2X2*+3 

implying that if/? = 1 mod 2k+3, ek+i is in the same square class modulo/? as csc(7r/2*+2) 
iff/? = 1 mod2*+4. Taking norms, we find that 

fl^/ota + 0 = ^ / Q ( 1 + V2 + Î) = 23 = 222* 

^ 2 / Q f e + 0 = ^ / Q ( f e + i)(ë2 + O) 

= fl&1/Q(-2 + 2eiî) 

= ^ I / Q ( 2 0 ^ 1 / Q ( £ I + 0 

= 24222* 

and in general, by induction, 

*ûtk/Q(£k + 0 = %^/Q^k + 0(ê* + 0) 

= 5VL1/Q(-2 + 2eik_iO 

= ^ 1 / Q ( 2 0 5 ^ I / Q ( Ê * - I + 0 

which in turn implies 

22*---242221 

£k + i _ n , .2+4+-+2* 
— (1 — Çzk+2) M 1 - (&*-. 

where /1 is a unit in Q((2*+2). 
But as p G A(2)\ all units of Q(C2*+2) are squares mod/?, hence 1 — C,2

k+2 an(* 
csc(7r/2*+2) belong in the same square class. Moreover 

CSC(TT/2*+2) = 2 C " S ( 7 r / ^ i ? = csc(7r/2*+iy2 + 2cos(7r/2*+i) = csc(7r/2*+1)v^ 
sin(7r/2*+1) / v 
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essentially by half angle formula. But we claim that csc(7r/2*+1 ) is itself a square mod/7 

and as such, csc(ir/2k+2), yfr~k and <J—rk are all in the same square class. To justify this 

claim, we need only note the following sequence of identities. Let 6k = —i£k and 6k — 

—iëk. As ekik = — 1» OkÔk = 1- Therefore 

(l + 0*)20* = 2 + 0* + 0* 

(1 - iEk)
2(-iek) = 2 - 2iek-i 

(1 -iëkfek = 2(e*_i + i) 
/ l - i ' e * \ 2 

(k > 1) implying that mod/?, ek and e:̂  l + *\ hence csc(7r/2*+1) are all in the same 

square class. But again, p G A(2)*, and as such £*, a unit in Q(£2*+2)+ is a mod/? square 

by assumption. Thus we have C*. 

Given this, to show D*, we need only compute (y/—rk/p) = (— Tk/p)4> To this end 

we note that if ck is the narrow class number of Fk(y/—rk), then c* is odd [2; 13.7] and 

we may write pc
k
k — a\+ rkb\ with ak,bk G Opk. Now mod/?*, tf* = —Tkb\, implying 

that — rk is a 4th power iff akbk is a square mod/?* i.e. iff (akbk,pk)Pk = 1. By Hilbert 

reciprocity, we have 

{akbk,pk)Pk = J ] (akbktpùu = f ] (ahPk)u; H (bk,pk)œ 

u ÏPk w ÏPk u ÏPk 

We note that as pk is totally positive, we may ignore infinite primes as for these (x,/?*L = 

1 VJC G 0Fk. Now if fe* = jfb'k, then 

n a*./*)* = n (b'k,PkMTk,pk)% 
V ÏPk U ÏPkTk 

But/? G A(2)* implies that/? splits to F*+1, hence (rk,pk)n = (rk,pk)Pk = 1. More­

over, if v\bk, v finite and nondyadic, then mod v, pk = a\. Therefore (bk,pk)v = 1 and 

Uuj[pk(bk>Pk)uj = 1 

Finally, we note bothp k ,r k \a k and if v\ak, then modv, pk = rkb\, hence (ak,pk)v = 

(ak>Tk)v Thus we have 

n(ak*Pk)u= n (ak,Pk)uj= n o^^x. 
<*> M ^ M ^ u ÏPkjk 

= I l (ûife.'nk)u; 

u hk 

= (ak,rk)Tk 

since r* is totally positive. But (ak,rk)Tk = 1 iff fA^/Q(a*)2 = 1 m o d 2 ^ , the Hilbert 

symbol (a,rk)Tk corresponding to the extension Fk+xjFk. Thus, by ( Q ) , we have both 

parts of (D*). 
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4. In this section, we compute the density in the set of primes of A(2)k. We begin 
by noting [C-H 13.7] that as Fk has units with independent signs, U\ — Jj\, where 
Uk, Ul are, respectively, the units and totally positive units of Fk. As such, there exists 
a unit £(1), which is negative at precisely one embedding of Fk. Thus by considering the 
various conjugates of £(1), {s(l\..., £(/:)}, we obtain a complete system of representatives 
for Uk/U

2
k. 

Therefore, p G A(2)k iff p = 1 mod 2k+3 and p splits to Ek = Fk(\fëû,..., y/é®\ 
that is, iff p splits to EkFk+\. As Ek D Fk+\ — Fk (by checking ramification at the infinite 
primes), we have [EkFk+i : Q]=2k+2k+l = 4 and that the Dirichlet density, 6(A(2)k) = 
\/dk. 

In conclusion, the author wishes to thank Drs. P. E. Conner, J. Hurrelbrink and 
P. Stevenhagen, for their support and numerous helpful conversations. 
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