A SEQUENCE OF RESULTS ON CLASS NUMBER CONGRUENCES

ANTONE COSTA

Abstract

Let $p \equiv 1 \bmod 8$ be a rational prime and let $h(-p)$ be the class number of $\mathbb{Q}(\sqrt{-p})$. In [1], Barrucand and Cohn show that $h(-p) \equiv 0 \bmod 8$ iff $p=x^{2}+32 y^{2}$ for some $x, y \in \mathbb{Z}$. In this article, we generalize their result to a family of relative quadratic extensions K / F, where F_{k} is the maximum totally real subfield of $\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$, and $K=F_{k}\left(\sqrt{-p_{k}}\right), p_{k}$ a power of a prime of F_{k} from a family of positive density.

1. Introduction. Let $p \equiv 1 \bmod 8$ be a positive prime integer, and for any integer n, let $h(n)$ be the narrow class number of $\mathbb{Q}(\sqrt{n})$. It is well known that $h(-p) \equiv 0 \bmod 4$ and $h(-2 p) \equiv 0 \bmod 4$, and that the following statements are, in fact, true;
$\left(\mathrm{A}_{0}\right) h(-p) \equiv 0 \bmod 8 \operatorname{iff}(1-i / p)=1$ i.e. iff $1-\sqrt{-1}$ is a square modulo p.
$\left(\mathrm{B}_{0}\right) h(-2 p) \equiv 0 \bmod 8 \operatorname{iff}(\sqrt{-2} / p)=1$.
$\left(\mathrm{C}_{0}\right) h(-p)+h(-2 p) \equiv \frac{p-1}{2} \bmod 8$.
$\left(\mathrm{D}_{0}\right) h(-2 p) \equiv 0 \bmod 8$ iff $p=a^{2}+2 b^{2}$ with $a^{2} \equiv 1 \bmod 16$
$h(-p) \equiv 0 \bmod 8$ iff $p=a^{2}+2 b^{2}$ with $a^{2} \equiv p \bmod 16($ where $a, b \in \mathbb{Z})$.
We note that any two of the statements in C_{0} and D_{0} implies the third.
In more recent work, numerous authors, for instance Gras [3], Pioui [4], Stevenhagen [6] and Williams [7], have demonstrated that these results are actually part of a much broader family of congruences involving the various weighted sums of the class numbers of certain related quadratic number fields. In this article, we show that they can also be viewed as members of a sequence of results on the class numbers of more general relative quadratic extensions. More specifically, if $F_{k}=\mathbb{Q}\left(\zeta_{2^{k+2}}\right)^{+}, k \geq 0\left(\zeta_{n}\right.$ being any primitive n-th root of unity, E^{+}the maximal totally real subfield of a CM extension E), $\tau_{k}=2+2 \cos \left(\pi / 2^{k+1}\right)$ and $A(2)^{k}=\left\{p \in \mathbb{Z}, p\right.$ prime : $p \equiv 1 \bmod 2^{k+3}$ with all the units of F_{k} being squares $\left.\bmod p\right\}$, (note $\left.A(2)^{k} \supseteq A(2)^{k+1}\right)$, then we have the following;

PROPOSITION. Let p_{k} be a totally positive representative of a principal ideal $\rho_{k}^{f_{k}}$ where f_{k} is the narrow class number of F_{k}, and ρ_{k} is a prime ideal dividing $p \in A(2)^{k}$. Then, if $h(\mu)$ is the class number of $F_{k}(\sqrt{\mu})$, we have $h\left(-p_{k}\right) \equiv 0 \bmod 4$ and $h\left(-\tau_{k} p_{k}\right) \equiv$ $0 \bmod 4$, and in fact
$\left(A_{k}\right) h\left(-p_{k}\right) \equiv 0 \bmod 8$ iff $\left(1-\zeta_{2^{k+2}} / p\right)=1$.
$\left(B_{k}\right) h\left(-\tau_{k} p_{k}\right) \equiv 0 \bmod 8$ iff $\left(\sqrt{-\tau_{k}} / p\right)=1$.
($\left.C_{k}\right) h\left(-p_{k}\right)+h\left(-\tau_{k} p_{k}\right) \equiv \frac{p-1}{2^{k+1}} \bmod 8$.
$\left(D_{k}\right) h\left(-\tau_{k} p_{k}\right) \equiv 0 \bmod 8$ iff $p_{k}^{c_{k}}=a^{2}+\tau_{k} b^{2} a, b \in \mathcal{O}_{F_{k}}$, with $\mathcal{N}_{F_{k} / \mathbb{Q}}\left(a^{2}\right) \equiv 1 \bmod 2^{k+4}$ $h\left(-p_{k}\right) \equiv 0 \bmod 8$ iff $p_{k}^{c_{k}}=a^{2}+\tau_{k} b^{2}$ with $\mathcal{N}_{E_{k} / \mathbb{Q}}\left(a^{2}\right) \equiv p \bmod 2^{k+4}$
where c_{k} is the class number of $F_{k}\left(\sqrt{-\tau_{k}}\right)$ which, like f_{k}, is odd. [2; 13.7]
In Section 2 of this paper, we obtain $\left(\mathrm{A}_{k}\right)$ and $\left(\mathrm{B}_{k}\right)$, essentially using an extension of Redei's [5] machinery for determining the 8 -rank of the classgroup of any quadratic number field. In Section 3 we make some elementary computations involving units to obtain $\left(\mathrm{C}_{k}\right)$, and use the reciprocity laws for Hilbert symbols to prove $\left(\mathrm{D}_{k}\right)$. Finally, in Section 4, we compute the Dirichlet density of the sets $A(2)^{k}$.
2. Let p be in $A(2)^{k}$, and let p_{k} be a totally positive representative of a principal ideal $\rho_{k}^{c_{k}}, \rho_{k}$ a prime ideal dividing p. Moreover, let $E_{k}=F_{k}\left(\sqrt{p_{k}}\right)$, and $L_{k}=F_{k}\left(\sqrt{-p_{k}}\right)$. By class field theory we note that E_{k} / F_{k} is ramified only at ρ_{k} and that L_{k} / F_{k} is ramified at ρ_{k}, the infinite places of F_{k}, and τ_{k}-a uniformizer for the unique dyadic prime of F_{k}. (Since all of the units of F_{k} are squares modulo ρ_{k}, there exists a unique quadratic $\bmod \rho_{k}$ ray class character on the ideals of F_{k}. If $F_{k}\left(\sqrt{\beta_{k}}\right)$ is the corresponding quadratic extension, then β_{k} is totally positive, and is divisible by only one prime ideal, ρ_{k}. Thus we see that $p_{k} \mid \beta_{k}^{c_{k}}$, and that we may assume $\beta_{k}=\varepsilon p_{k}, \varepsilon$ being some totally positive unit of F_{k}. But since F_{k} has odd narrow class number, any totally positive unit must be a square. Therefore $E_{k}=F_{k}\left(\sqrt{p_{k}}\right)=F_{k}\left(\sqrt{\beta_{k}}\right)$. To obtain the conductor for L_{k}, we simply observe that it is one of the three quadratic subfields of $E_{k} R_{k}$, where $R_{k}=\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$.)

We now let F be any totally real number field with odd narrow class number, $E=$ $F(\sqrt{D})$ a totally complex quadratic extension of F. In [2; 19.2,19.3], it is shown that the 2-torsion subgroup of $C(E),{ }_{2} C(E)$, is generated by the classes of those prime ideals of E dividing D. Moreover, every unramified quartic extension corresponds to a 'splitting' of these primes into disjoint sets D_{1}, D_{2} for which D_{2} is a square modulo all the primes in D_{1}, and D_{1} is a square modulo those primes in D_{2}. In our case, we see immediately that 2 -rank $C\left(L_{k}\right)=4$-rank $C\left(L_{k}\right)=1$. To determine the 8 -rank, we follow Redei's constructions.

We begin by observing that the extension $F_{k}\left(\sqrt{p_{k}}, i\right)=M_{k} \supseteq L_{k}$ is unramified of degree 2. Moreover, there exists an extension $Q_{k} \supseteq M_{k} \supseteq L_{k}$ such that Q_{k} / L_{k} is unramified of degree 4 . This can actually be constructed by observing that if $\rho_{k}=\rho_{k}^{\prime} \rho_{k}^{\prime \prime}$ in $\mathbb{Q}\left(\zeta_{2 k+2}\right)=F_{k}(i)$, the fact that the units of F_{k}, hence of $F_{k}(i)=R_{k}$, are all squares modulo $p\left(\right.$ i.e. R_{k} / F_{k} is a type I CM extension [C-H 13.4,13.6]), implies by class field theory the existence of quadratic extensions $H_{k}^{\prime}=\mathbb{Q}\left(\zeta_{2^{k+2}}, \alpha_{k}^{\prime}\right), H_{k}^{\prime \prime}=\mathbb{Q}\left(\zeta_{2^{k+2}}, \alpha_{k}^{\prime}\right)$ of $\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$ ramified only at ρ_{k}^{\prime} and $\rho_{k}^{\prime \prime}$ respectively. If we set $Q_{k}=M_{k}\left(\alpha_{k}^{\prime}\right)=M_{k}\left(\alpha_{k}^{\prime \prime}\right)$, then Q_{k} / L_{k} will be unramified of degree 4 and $\operatorname{Gal}\left(Q_{k} / F_{k}\right) \simeq D_{8}$.

If now we set $\left(\tau_{k}\right)=\tau^{2}=1$ in $\mathrm{C}\left(L_{k}\right)$, then $\tau \neq 1$, since τ_{k}, ρ_{k} are the only finite primes ramifying to L_{k}, and the prime above ρ_{k} must have odd order (since $\left(\sqrt{-p_{k}}\right)$ is already principal), the class of τ must generate $C\left(L_{k}\right)_{2}$ by itself. Therefore 8 -rank $C\left(L_{k}\right)=1$ iff τ splits to Q_{k}, iff the unique dyadic prime of $\mathbb{Q}\left(\zeta_{2}{ }^{k+2}\right)$ splits to Q_{k}, iff $\chi_{\rho_{k}^{\prime}}\left(1-\zeta_{2}{ }^{k+2}\right)=1$, where $\chi_{\rho_{k}^{\prime}}$ is the unique $\bmod \rho_{k}^{\prime}$ quadratic ray class character on the ideals of $\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$, iff
$1-\zeta_{2^{k+2}}$ is a square modulo $p\left(\right.$ i.e. $\left.\left(1-\zeta_{2^{k+2}} / p\right)=1\right)$. This gives us $\left(\mathrm{A}_{k}\right)$ simply as a consequence of Redei's machinery.

To obtain (B_{k}) we argue similarly, replacing $F_{k}\left(\sqrt{-p_{k}}\right)$ with $F_{k}\left(\sqrt{-\tau_{k} p_{k}}\right)$ for L_{k}, $F_{k}\left(\sqrt{p_{k}}, \sqrt{-\tau_{k}}\right)$ for M_{k} and $F_{k}\left(\sqrt{-\tau_{k}}\right)$ for $\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$. We need only note that here $\sqrt{-\tau_{k}}$ serves as a uniformizer for the dyadic prime of $F_{k}\left(\sqrt{-\tau_{k}}\right)$, and that the units here continue to be squares modulo p [C-H 13.4,13.6].
3. For $k \geq 0$, let $\varepsilon_{k}=\cot \left(\pi / 2^{k+2}\right)=\cot \left(\pi / 2^{k+1}\right)+\csc \left(\pi / 2^{k+1}\right) \in F_{k}$. We note

$$
\varepsilon_{k}=\cot \left(\pi / 2^{k+1}\right)+\sqrt{1+\cot ^{2}\left(\pi / 2^{k+1}\right)}
$$

and let

$$
\bar{\varepsilon}_{k}=\cot \left(\pi / 2^{k+1}\right)-\sqrt{1+\cot ^{2}\left(\pi / 2^{k+1}\right)}
$$

so that $\varepsilon_{k} \bar{\varepsilon}_{k}=-1, k \geq 1$ (for example, $\varepsilon_{0}=1, \varepsilon_{1}=1+\sqrt{2}, \varepsilon_{2}=1+\sqrt{2}+\sqrt{2(2+\sqrt{2})}$). Now recall that $\zeta_{2^{k+3}}=\cos \left(\pi / 2^{k+2}\right)+i \sin \left(\pi / 2^{k+2}\right)$, so that

$$
\varepsilon_{k}+i=\csc \left(\pi / 2^{k+2}\right) \zeta_{2^{k+3}}
$$

implying that if $p \equiv 1 \bmod 2^{k+3}, \varepsilon_{k}+i$ is in the same square class modulo p as $\csc \left(\pi / 2^{k+2}\right)$ iff $p \equiv 1 \bmod 2^{k+4}$. Taking norms, we find that

$$
\begin{aligned}
& \mathcal{N}_{\mathbb{R}_{1} / \mathbf{Q}}\left(\varepsilon_{1}+i\right)= \\
& \mathcal{N}_{\mathbb{N}_{R_{2} / \mathbf{Q}}\left(\varepsilon_{2}\right.}(1+i)= \\
& =\mathcal{N}_{\mathbb{R}_{1} / \mathbf{Q}}\left(\left(\varepsilon_{2}+i\right)\left(\bar{\varepsilon}_{2}+i\right)\right) \\
& \\
& =\mathcal{N}_{\mathbb{R}_{1} / \mathbf{Q}}\left(-2+2 \varepsilon_{1} i\right) \\
& \\
& =\mathcal{N}_{R_{1} / \mathbf{Q}}(2 i) \mathcal{N}_{\mathbb{R}_{1} / \mathbf{Q}}\left(\varepsilon_{1}+i\right) \\
& \\
& =2^{4} 2^{2} 2^{1}
\end{aligned}
$$

and in general, by induction,

$$
\begin{aligned}
\mathcal{N}_{\mathbb{R}_{k} / \mathbf{Q}}\left(\varepsilon_{k}+i\right) & =\mathcal{N}_{\mathbb{R}_{k-1} / \mathbf{Q}}\left(\left(\varepsilon_{k}+i\right)\left(\bar{\varepsilon}_{k}+i\right)\right) \\
& =\mathcal{N}_{\mathbb{R}_{k-1} / \mathbf{Q}}\left(-2+2 \varepsilon_{k-1} i\right) \\
& =\mathcal{N}_{\mathbb{R}_{k-1} / \mathbf{Q}}(2 i) \mathcal{N}_{\mathbb{R}_{k-1} / \mathbf{Q}}\left(\varepsilon_{k-1}+i\right) \\
& =2^{2^{k}} \cdots 2^{4} 2^{2} 2^{1}
\end{aligned}
$$

which in turn implies

$$
\frac{\varepsilon_{k}+i}{1-\zeta_{2^{k+2}}}=\left(1-\zeta_{2^{k+2}}\right)^{2+4+\cdots+2^{k}} \mu
$$

where μ is a unit in $\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$.
But as $p \in A(2)^{k}$, all units of $\mathbb{Q}\left(\zeta_{2^{k+2}}\right)$ are squares $\bmod p$, hence $1-\zeta_{2^{k+2}}$ and $\csc \left(\pi / 2^{k+2}\right)$ belong in the same square class. Moreover

$$
\csc \left(\pi / 2^{k+2}\right)=\frac{2 \cos \left(\pi / 2^{k+2}\right)}{\sin \left(\pi / 2^{k+1}\right)}=\csc \left(\pi / 2^{k+1}\right) \sqrt{2+2 \cos \left(\pi / 2^{k+1}\right)}=\csc \left(\pi / 2^{k+1}\right) \sqrt{\tau_{k}}
$$

essentially by half angle formula. But we claim that $\csc \left(\pi / 2^{k+1}\right)$ is itself a square $\bmod p$ and as such, $\csc \left(\pi / 2^{k+2}\right), \sqrt{\tau_{k}}$ and $\sqrt{-\tau_{k}}$ are all in the same square class. To justify this claim, we need only note the following sequence of identities. Let $\theta_{k}=-i \varepsilon_{k}$ and $\bar{\theta}_{k}=$ $-i \bar{\varepsilon}_{k}$. As $\varepsilon_{k} \bar{\varepsilon}_{k}=-1, \theta_{k} \bar{\theta}_{k}=1$. Therefore

$$
\begin{gathered}
\left(1+\bar{\theta}_{k}\right)^{2} \theta_{k}=2+\theta_{k}+\bar{\theta}_{k} \\
\left(1-i \bar{\varepsilon}_{k}\right)^{2}\left(-i \varepsilon_{k}\right)=2-2 i \varepsilon_{k-1} \\
\left(1-i \bar{\varepsilon}_{k}\right)^{2} \varepsilon_{k}=2\left(\varepsilon_{k-1}+i\right) \\
\left(\frac{1-i \bar{\varepsilon}_{k}}{\sqrt{2}}\right)^{2} \varepsilon_{k}=\varepsilon_{k-1}+i
\end{gathered}
$$

($k \geq 1$) implying that $\bmod p, \varepsilon_{k}$ and $\varepsilon_{k-1}+i$, hence $\csc \left(\pi / 2^{k+1}\right)$ are all in the same square class. But again, $p \in A(2)^{k}$, and as such ε_{k}, a unit in $\mathbb{Q}\left(\zeta_{2^{k+}}\right)^{+}$is a $\bmod p$ square by assumption. Thus we have C_{k}.

Given this, to show D_{k}, we need only compute $\left(\sqrt{-\tau_{k}} / p\right)=\left(-\tau_{k} / p\right)_{4}$. To this end we note that if c_{k} is the narrow class number of $F_{k}\left(\sqrt{-\tau_{k}}\right)$, then c_{k} is odd [2; 13.7] and we may write $p_{k}^{c_{k}}=a_{k}^{2}+\tau_{k} b_{k}^{2}$ with $a_{k}, b_{k} \in O_{F_{k}}$. Now $\bmod p_{k}, a_{k}^{2} \equiv-\tau_{k} b_{k}^{2}$, implying that $-\tau_{k}$ is a 4 th power iff $a_{k} b_{k}$ is a square $\bmod p_{k}$ i.e. iff $\left(a_{k} b_{k}, p_{k}\right)_{p_{k}}=1$. By Hilbert reciprocity, we have

$$
\left(a_{k} b_{k}, p_{k}\right)_{p_{k}}=\prod_{\omega \nmid p_{k}}\left(a_{k} b_{k}, p_{k}\right)_{\omega}=\prod_{\omega \nmid p_{k}}\left(a_{k}, p_{k}\right)_{\omega} \prod_{\omega \nmid p_{k}}\left(b_{k}, p_{k}\right)_{\omega}
$$

We note that as p_{k} is totally positive, we may ignore infinite primes as for these $\left(x, p_{k}\right)_{\omega}=$ $1 \forall x \in O_{F_{k}}$. Now if $b_{k}=\tau_{k}^{\beta_{k}} b_{k}^{\prime}$, then

$$
\prod_{\omega \nmid p_{k}}\left(b_{k}, p_{k}\right)_{\omega}=\prod_{\omega X p_{k} \tau_{k}}\left(b_{k}^{\prime}, p_{k}\right)_{\omega}\left(\tau_{k}, p_{k}\right)_{\tau_{k}}^{\beta_{k}}
$$

But $p \in A(2)^{k}$ implies that p splits to F_{k+1}, hence $\left(\tau_{k}, p_{k}\right)_{\tau_{k}}=\left(\tau_{k}, p_{k}\right)_{p_{k}}=1$. Moreover, if $v \mid b_{k}, v$ finite and nondyadic, then $\bmod v, p_{k} \equiv a_{k}^{2}$. Therefore $\left(b_{k}^{\prime}, p_{k}\right)_{v}=1$ and $\Pi_{\omega \nmid p_{k}}\left(b_{k}, p_{k}\right)_{\omega}=1$

Finally, we note both $p_{k}, \tau_{k} \mid a_{k}$ and if $v \mid a_{k}$, then $\bmod v, p_{k} \equiv \tau_{k} b_{k}^{2}$, hence $\left(a_{k}, p_{k}\right)_{v}=$ $\left(a_{k}, \tau_{k}\right)_{v}$. Thus we have

$$
\begin{aligned}
\prod_{\omega X p_{k}}\left(a_{k}, p_{k}\right)_{\omega} & =\prod_{\omega \nmid p_{k_{k} \tau_{k}}}\left(a_{k}, p_{k}\right)_{\omega}=\prod_{\omega X p_{k} \tau_{k}}\left(a_{k}, \tau_{k}\right)_{\omega} \\
& =\prod_{\omega \nmid \tau_{k}}\left(a_{k}, \tau_{k}\right)_{\omega} \\
& =\left(a_{k}, \tau_{k}\right)_{\tau_{k}}
\end{aligned}
$$

since τ_{k} is totally positive. But $\left(a_{k}, \tau_{k}\right)_{\tau_{k}}=1 \operatorname{iff} \mathcal{N}_{E_{k} / \mathbb{Q}}\left(a_{k}\right)^{2} \equiv 1 \bmod 2^{k+4}$, the Hilbert symbol $\left(\alpha, \tau_{k}\right)_{\tau_{k}}$ corresponding to the extension F_{k+1} / F_{k}. Thus, by $\left(\mathrm{C}_{k}\right)$, we have both parts of $\left(\mathrm{D}_{k}\right)$.
4. In this section, we compute the density in the set of primes of $A(2)^{k}$. We begin by noting [C-H 13.7] that as F_{k} has units with independent signs, $U_{k}^{+}=U_{k}^{2}$, where U_{k}, U_{k}^{+}are, respectively, the units and totally positive units of F_{k}. As such, there exists a unit $\varepsilon^{(1)}$, which is negative at precisely one embedding of F_{k}. Thus by considering the various conjugates of $\varepsilon^{(1)},\left\{\varepsilon^{(1)}, \ldots, \varepsilon^{(k)}\right\}$, we obtain a complete system of representatives for U_{k} / U_{k}^{2}.

Therefore, $p \in A(2)^{k}$ iff $p \equiv 1 \bmod 2^{k+3}$ and p splits to $E_{k}=F_{k}\left(\sqrt{\varepsilon^{(1)}}, \ldots, \sqrt{\varepsilon^{(k)}}\right)$, that is, iff p splits to $E_{k} F_{k+1}$. As $E_{k} \cap F_{k+1}=F_{k}$ (by checking ramification at the infinite primes), we have $\left[E_{k} F_{k+1}: \mathbb{Q}\right]=2^{k+2^{k}+1}=d_{k}$ and that the Dirichlet density, $\delta\left(A(2)^{k}\right)=$ $1 / d_{k}$.

In conclusion, the author wishes to thank Drs. P. E. Conner, J. Hurrelbrink and P. Stevenhagen, for their support and numerous helpful conversations.

References

1. P. Barrucand, H. Cohn Primes of type $x^{2}+32 y^{2}$, class numbers and residuacity, J. Reine Angew. Math 238(1969) 67-70.
2. P. E. Conner, J. Hurrelbrink, Class Number Parity, World Scientific Publ., (1988).
3. G. Gras, Relations congruentielles entre nombres de classes de corps quadratiques, Acta Arith. 52(1989), 147-162.
4. R. Pioui, Mesures de Haar p-adiques et interprétation arithmétique de $\frac{1}{2} L_{2}(\chi, s)-\frac{1}{2} L_{2}(\chi, t), s, t \in \mathbb{Q}_{2}(\chi$ quadratique), Thèse, Université de Franche-Comté, Besançon, (1990).
5. L. Redei, Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkorper, J. Reine Angew. Math. 180(1939), 1-43.
6. P. Stevenhagen, Class groups and governing fields, Thesis, University of California at Berkeley, 1988.
7. K. S. Williams, On the class number of $\mathbb{Q}(\sqrt{-p})$ modulo 16, for $p \equiv 1 \bmod 8$ a prime, Acta Arith 39(1981), 381-398.

Department of Mathematics

The American University
4400 Massachusetts Avenue NW
Washington D.C. 20016
U.S.A.

