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WEAK INJECTIVITY AND CONGRUENCE EXTENSION IN 
CONGRUENCE-DISTRIBUTIVE EQUATIONAL CLASSES 

BRIAN A. DAVEY 

There are many concepts which arise naturally in a discussion of injectivity 
in an equational class; for example, weak injective algebras, absolute sub-
retracts, essential extensions, the congruence extension property, and the 
amalgamation property (see [3; 9; 17; 18]). It has already been demonstrated 
in several papers, notably [9; 17; 26; 27; 28], that the study of these concepts 
is greatly enriched by the assumption that the algebras under consideration 
have distributive congruence lattices. In this work attention is focused on weak 
injective algebras (Section 2) and the congruence extension property (Section 
3). 

In Section 1 our terminology is introduced, Jonsson's lemma and its im­
mediate corollaries are stated, and a diagramatic interpretation of Jonsson's 
lemma is given ; this Jônsson Diagram is the basis of all of our proofs. 

Our aim in Sections 2 and 3 is to reduce considerations of weak injectivity 
and congruence extension to the subdirectly irreducible algebras. For example, 
we prove (Theorem 2.2) that if K is a congruence distributive equational class 
whose subdirectly irreducible members form an axiomatic class, then a sub-
directly irreducible member of K is a weak injective in K provided it is a weak 
injective "within" the class of subdirectly irreducible algebras. This result is 
then applied to prove (Theorem 2.5) that if K is a congruence-distributive 
equational class generated by a finite simple algebra A, then the weak injec-
tives in K are precisely the Boolean extensions of A by complete Boolean 
algebras. The main result of Section 3 (Theorem 3.3) states that if K is a 
congruence-distributive equational class whose subdirectly irreducible algebras 
form an axiomatic class, then K satisfies the congruence extension property if 
and only if the subdirectly irreducible members of K satisfy the congruence 
extension property. The paper closes with a discussion, in Section 4, of some 
applications of the results. 

1. Preliminaries. For any class K of universal algebras (of the same type), 
let Equ(K) be the equational class generated by K, let Si(K) be the class 
consisting of all subdirectly irreducible members of K, let / (K) , i7(K), and 
5(K) be the classes consisting of all isomorphic copies, homomorphic images, 
and subalgebras of members of K, and let P (K) , Ps(K) and P ^ K ) be the 
classes consisting of all direct products, subdirect products, and ultraproducts 
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450 BRIAN A. DAVEY 

of members of K; if K = {A} we shall drop the brackets from around A.li^ 
is a filter on X, then dp is the congruence on 11(^4^ Ç X) given by 

a ss b(6p) *=> {x Ç X\a(x) = 6 (a)} 6 J T 

The reduced product I T C ^ x £ X)/6p will be denoted by I ï ^ ^ x l x Ç X) . 
For a discussion of reduced products and ultraproducts (otherwise known as 
prime products) we refer to T. Frayne, A. C. Morel, and D. Scott [11] and to 
G. Gràtzer [16], to which we also refer for all the standard terminology and 
results of universal algebra. If a : B >-> C is a monomorphism and 0 is a con­
gruence on C, then the restriction, 0 \ B, of 0 to B is defined by 

a ES 6(0 Ï 5 ) <=>aa ss 6a(0). 

All of our results rely heavily on Jonsson's lemma and its many powerful 
corollaries (see B. Jonsson [22]). 

1.1 JONSSON'S LEMMA. Let B be a subalgebra of the direct product of the family 
{Ax\x Ç X) and assume that B has a distributive congruence lattice. If 0 is a 
completely meet-irreducible congruence on B, then there is an ultrafilter &~ on X 
such that dp \ B ^ 0. 

If every algebra in a class K has a distributive congruence lattice, then we 
say that K is congruence distributive. The immediate corollaries of Jonsson's 
lemma are collected together in the following remark. 

1.2 Remark. Let A be a class of algebras and assume that K = Equ(A) is 
congruence distributive. 

(i) Since a congruence 0 on B is completely meet irreducible if and only if 
B/6 is subdirectly irreducible, it follows that Si(K) C HSPV(A) and hence 
K = IPsHSPu(A). 

(ii) If A is an axiomatic class (i.e., there is a set 2 of first-order sentences 
such that A is the class consisting of all models of 2) , then Pu(A) = A, and 
hence Si(K) C HS(A) and K = IPSHS(A). 

(iii) If A is a finite set of finite algebras, then Pu(A) = 1(A), and again 
Si(K) C HS(A) and K = IPSHS(A). 

(iv) If A is a finite set of finite algebras, then up to isomorphism K has 
only a finite set of subdirectly irreducible algebras and they are all finite. 

The situation described below is of fundamental importance to our considera­
tions. Assume that K is congruence distributive; let B, C G K, and let a : B >-> 
C be a monomorphism. By Birkhoff's subdirect-representation theorem we may 
express C as a subdirect product of subdirectly irreducible algebras; let 0 : C 
>-» Ii(^4x|x Ç X) be such a representation. Now let 0 be a completely meet-
irreducible congruence on B. By Jonsson's lemma there is an ultrafilter Ĵ ~ on 
X such that Op \ B ^ 0. Thus we obtain the commutative diagram below, 
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WEAK INJECTIVITY 451 

hereafter called a Jônsson Diagram) all unlabelled homomorphisms are 
"natural". 

B > > C >~ > tt(Ax\x £ X) 

B/(6p \B) > > C/(0p \ C) > > Uy{Ax\x G X) 

i # 
B/B 

A Jônsson Diagram 

1.3 Remark. We are often interested in extending congruences on B to con­
gruences on C or I I ( ^ x Ç X). The following observations are most relevant, 

(i) Since the congruences on B form an algebraic lattice, for every con­
gruence 6 on B there is a family (6j\j Ç J) of completely meet-irreducible con­
gruences such that 6 = /\(6j\j £ / ) ; which amounts to saying that B/B is a 
subdirect product of the family (B/6j\j £ J) of subdirectly irreducible algebras. 

(ii) For every family (3^|j 6 J ) of congruences on C, 

A(*A7 6 J H 3 = A ( M * | j € J)-
(iii) For every family fê~j\j G / ) of filters on X, 

A ( ^ y l i € J) = eA(srjUeJ)' 
N.B. Unless otherwise stated, all classes of algebras considered below are 

assumed to be congruence distributive. 

2. Weak Injectives and absolute subretracts. The concept of weak 
injectivity was introduced by G. Grâtzer and H. Lakser in [18] in order to 
extend the results of R. Balbes and G. Gràtzer [2] on injective Stone algebras 
to other equational classes of distributive pseudocomplemented lattices. In 
both [2] and [18] the (weak) injectives are described indirectly in terms of 
Boolean extensions. The first explicit use of Boolean extensions to describe 
injective algebras occurs in A. Day's thesis (see [9]). The results of this section 
were inspired by Day's work. The approach taken here is greatly influenced by 
the author's belief that Boolean extensions should be viewed as algebras of 
continuous functions, and hence our techniques are quite different to those 
used in [9]. 

Let K be a class of algebras; then an algebra / Ç K is an injective [a weak 
injective] in K if for each algebra C € K, each subalgebra B of C, and every 
homomorphism [epimorphism] X: B —> I, there exists an extension X : C —> / ; 
that is, X \ B — X. And I is an absolute subretract in K if it is a retract of each of 
its extensions in K. Clearly, if / is an injective then it is a weak injective, and 
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if / is a weak injective then it is an absolute subretract. For discussions of 
various aspects of injectivity in equational classes we refer the reader to 
[3;8;9;17;18]. 

2.1 PROPOSITION. A subdirectly irreducible member of an equational class K 
is a weak injective in K if and only if it is a weak injective in P f /Si(K). 

Proof. Assume that A is subdirectly irreducible and is a weak injective in 
PL7Si(K). Let C Ç K with B a subalgebra of C and let X : B -» A be an 
epimorphism. Then 6 = ker X is a completely meet-irreducible congruence on 
B and A is isomorphic to B/6; thus a Jônsson Diagram results. 

Clearly it is sufficient to find a homomorphism Ô : Up(Ax\x £ X) ->B/6 
such that the lower triangle commutes; but, since B/6 is isomorphic to A, 
such a homomorphism is provided by the weak injectivity of A in PL/Si(K). 

Our first theorem follows immediately. 

2.2 THEOREM. Let K be an equational class and assume that Si(K) is axiomatic. 
Then a subdirectly irreducible member of K is a weak injective in K if and only if 
it is weak injective in Si(K). 

2.3 COROLLARY. Assume that K = Equ(A) where A is a finite set of finite 
algebras. Then a subdirectly irreducible member of K is a weak injective in K if 
and only if it is a weak injective in Si(K). 

A simple application of 1.2 (iii) yields our final corollary. 

2.4 COROLLARY. Assume that K = Equ(^4) for some finite subdirectly 
irreducible algebra A. Then A is a weak injective in K. 

In general (without the assumption of congruence distributivity) a maximal 
subdirectly irreducible member of K is an absolute subretract; by 1.2 (iii) 
congruence distributivity guarantees that A is maximal in K = Equ(^4) and 
hence A is an absolute subretract in K. In general the congruence extension 
property is required in order to guarantee that an absolute subretract is a 
weak injective. Corollary 2.4 shows that if K is congruence distributive, then, 
as far as A is concerned, the congruence extension property is unnecessary; 
indeed, as the equational class generated by the lattice M% illustrates, the 
assumptions of 2.4 may hold while the congruence extension property fails. 
The interrelation between congruence distributivity and the congruence exten­
sion property will be investigated in the next section. 

If A is a finite algebra and B is a Boolean Algebra, then the algebra C(X, A) 
of continuous functions from the Boolean space X of ultrafilters of B into the 
discrete space A is called the Boolean extension of A by B and is denoted by 
A[B]. This differs from, but is equivalent to, the definition given in [16]. For 
the relevant results on Boolean algebras and Boolean spaces we refer the 
reader to P. R. Halmos [20]. In his study [9], of injectivity in congruence-
distributive equational classes, A. Day employed a categorical approach; we 
could do the same here, but little would be gained. For the interested reader 
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we make the observation tha t for any finite algebra A an adjoint to the (con-
t ravar ian t ) functor C(—, A) : BSp —> K from the category BSp of Boolean 
spaces to K = Equ(^4), is provided by the hom-set functor K ( — , A) : K 
- > B S p . 

We now sta te the main theorems of this section. 

2.5 T H E O R E M . Assume that K = Equ(^4) for some finite simple algebra A. 
Then I is a weak injective in K if and only if it is isomorphic to A [B] for some 
complete Boolean algebra B. 

The particular case of this result where A is the triangle is proved in E. 
Fried and G. Grâtzer [14]. In R. W. Quackenbush [28], where several of the 
results of [14] are placed in a universal-algebraic setting, the theorem above 
is s tated with the added assumption t ha t A is a weak injective in K. Corol­
lary 2.4 above shows t ha t this assumption is unnecessary, and hence the 
theorem follows from Quackenbush's result. Quackenbush calls on the results 
of A. Day [9] ; below we give a proof of Theorem 2.5 which is independent of 
Day ' s work. 

As was already mentioned, if K has the congruence extension property, then 
7 is a weak injective in K if and only if it is an absolute subretract in K. But 
since A is simple, if K satisfies the congruence extension property then by 1.2 
(iii) we have Si(K) C IS (A) and hence K = ISP (A). By restricting our 
at tent ion to ISP (A) ra ther than Equ(^4) = HSP(A) we can avoid the con­
gruence extension property. The following result was announced in [7]. The 
au thor would like to thank Harry Lakser for calling a t tent ion to the results of 
R. W. Quackenbush [28] and for pointing out t ha t with one addition to the 
proof of 2.6 (namely Corollary 2.10) Theorem 2.5 could be obtained. 

2.6 T H E O R E M . Assume that A is a finite simple algebra and let K = ISP (A). 
Then the following are equivalent: 

(ï) Usa weak injective in K ; 
(ii) 7 is an absolute subretract in K ; 

(iii) I is isomorphic to A [B] for some complete Boolean algebra B. 

We shall prove Theorems 2.5 and 2.6 simultaneously. 

Let (Ax\x G X) be a family of algebras and let <j> : A >-> n (^4 x | x £ X) be 
an embedding of A as a subdirect product ; if <£ also embeds A as a re t ract of 
n ^ z l x G X), then A is called a subdirect retract of the family (Ax\x Ç X). The 
following lemma and its corollary are the essence of Proposition 4.4 of B. A. 
Davey [8]; congruence distr ibutivi ty is not required. 

2.7 LEMMA. Let A be a finite algebra in an equational class K. For every com­
plete Boolean algebra B, A[B] is a subdirect retract of copies of A. 

A subdirect re t ract of a family of [weak] injectives in an equational class K 
is itself a [weak] injective in K (see [18]). 
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2.8 COROLLARY. Let A be a finite [weak] injective in an equational class K. 
For every complete Boolean algebra B, A[B] is a [weak] injective in K. 

Thus, if A is a finite simple algebra and K = Equ(yl) is congruence distribu­
tive, then (by 2.4) for every complete Boolean algebra B, A[B] is a weak in­
jective in K and hence is a weak injective in ISP (A). 

2.9 LEMMA. Assume that K = Equ(A) where A is a finite set of finite algebras. 
Let I be a weak injective in K; if A is a subdirectly irreducible homomorphic image 
of I, then A 6 H (A), and hence I 6 IPSH(A). 

Proof. Since / is a weak injective in K and K = HSP(A), we have / G 
HP (A). Thus A G H (I) implies A G HHP(A) = HP (A). By Jonsson's 
lemma, A G HPV(A) = H(A), as required. 

2.10 COROLLARY. Let K = Equ (A) for some finite simple algebra A. If I is a 
weak injective in K, then I G IPs (A) C ISP (A). 

Since every weak injective is an absolute subretract, to complete the proofs 
of 2.5 and 2.6 we must prove that every absolute subretract / in ISP (A) is of 
the form A[B] for some complete Boolean algebra B; i.e. since a Boolean 
algebra is complete if and only if its space of ultrafilters is extremally dis­
connected, we must prove that / is isomorphic to C(X, A) for some extremally 
disconnected Boolean space X. The result is trivial if \A\ — 1, so for the re­
mainder of this section we assume that A is a finite simple algebra with \A\ ^ 2. 

2.11 LEMMA. If B is a diagonal subalgebra of Ax (i.e. B contains the constant 
maps) and 6 is a congruence on B, then there is a filter ^ on X such that B = 
0*\B. 

Proof. By Remark 1.3 it is sufficient to consider the case in which B is 
completely meet irreducible. Consider a Jônsson Diagram with C = I l f / l^xÇ X) 
and Ax = A for all x G X. Since B is a diagonal subalgebra and A is finite it 
follows that 

B/(dr\B)~n*(Ax\x G X)~A, 

and hence B/(6& \ B) is simple. But B/B is a nontrivial homomorphic image of 
B/(0& \ B), and consequently 6 = d& \ B. 

For every subset Y of X define a congruence 6Y on Ax by 

a = b(0Y) <=> a(x) = b(x) for all x Ç F; 

i.e. 6Y = B[Y), where [Y) = { U C X\ Y C Z7} is the principal filter determined 
by F. _ 

Let X be a Boolean space and let ̂  be a filter on the set X. Then J ^ = 
{ U G ^~| Z7 is clopen in X} is a filter of the Boolean algebra B of clopen sub­
sets of X, and hence, since X is a Boolean space, there is a (unique) closed 
subset F of X such that ^ = [Y) Pi B. For all a, b e C(X, A) the set 
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{x G X\a(x) = b(x)\ is clopen in X and thus 

0W\C(X,A) = dY\C(X,A). 

Thus 2.11 yields the following result. 

2.12 COROLLARY. For every Boolean space X and each congruence 6 on C(X, A ) 
there is a closed subset Y of X such that 9 = 6Y\ C(X, A). 

2.13 PROPOSITION. Assume that X is a Boolean space, I is a subalgebra of 
C(X, A), and I is an absolute subretract in ISP (A). Then there is a closed subset 
Y of X such that the restriction map 

<j>\ I —> C(Y, A) given by a<t> = a \ F, 

is an isomorphism. 

Proof. Since I is an absolute subretract there is a retraction r: C(X, A) -*> I, 
and by 2.12 there is a closed subset Y of X with ker r = BY \ C(X, A). Assume 
that a, b £ I with a 9^ b; then ar ^ br, and so a \ Y ^ b \ Y since ker r = 
9Y\C(X, A). Hence 0 is one-one. Let c G C(Y, A). Since finite discrete 
spaces are injective in the category of Boolean spaces there exists b £ C(X, A) 
with b \ Y = c. Let a = br; then a = b (ker r) and so a \ Y = b \ Y = c. 
Thus <t> is onto. 

2.14 COROLLARY. / / / is an absolute subretract in ISP (A), then there is a 
Boolean space X such that I is isomorphic to C(X, A). 

Proof. Since / G ISP (A) there is a set 5 such that / is isomorphic to a sub-
algebra of ^4^. But As is isomorphic to C(j3S, A), and the Stone-Cech com-
pactification @S of the discrete space S is a Boolean space. Since a closed sub-
space of a Boolean space is itself Boolean, the result follows immediately from 
2.13. 

2.15 COROLLARY. If X is a Boolean space and C(X, A) is an absolute sub­
retract in ISP {A ), then X is extremally disconnected. 

Proof. Let X be a Boolean space and assume that C(X, A) is an absolute 
subretract in ISP (A). Let e : E -» X be a continuous map from an extremally 
disconnected space E onto X (e.g. let E be the Stone-Cech compactification of 
the underlying set of X). Then e induces an embedding 

<t>: C(X,A)y-> C(E,A) given by a4>(e) = a(e(e)) for all e G E. 

By 2.13 there is a closed subset Y of E such that the map 

ix : CÇX, A) -> C(Y, A) given by aM = (a0) f F, 

is an isomorphism. 
Since a continuous map from a compact space to a hausdorff space is a 

homeomorphism if and only if it is a bijection, and since a retract of an 
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extremally disconnected space is extremally disconnected, it is sufficient to 
prove that e \ Y : Y —>X is a bijection. That e \ Y is one-one follows from 
the fact that /x is onto, and that e \ Y is onto follows from the fact that \x is 
one-one; the arguments are standard and are omitted. 

With these two corollaries we conclude the proof of Theorems 2.5 and 2.6. 

By combining 2.8 with Theorem 2.5 we obtain the following result of 
R. W. Quackenbush [28]. 

2.16 THEOREM. Assume that K = Equ (A) from some finite simple algebra A. 
If A is infective in K, then the following are equivalent: 

(i) lis infective in K; 
(ii) lis a weak infective in K; 

(iii) / is isomorphic to A [B] for some complete Boolean algebra B. 

A class K has enough infectives if every member of K has an injective exten­
sion in K. If K has enough injectives, then in K the concepts of injective, weak 
injective, and absolute subretract are equivalent (see [3]). The proof of the 
following result is easy and is omitted. 

2.17 PROPOSITION. Assume that K = Kqu(A) for some finite simple algebra A. 
Then K has enough injectives if and only if A is injective in K and every sub-
directly irreducible member of K is isomorphic to a subalgebra of A (i.e. K = 
ISP (A)). 

By an argument similar to our proof of Proposition 2.1, A. Day [9] has 
shown that if A is a finite subdirectly irreducible algebra all of whose sub-
algebras are either weak injective in K = ISP (A) or subdirectly irreducible, 
and K is congruence distributive, then the following are equivalent: (i) K has 
enough injectives; (ii) A is injective in K; (iii) A is self injective (i.e. every 
homomorphism from a subalgebra of A into A extends to an endmorphism 
of A). Since no nontrivial proper subalgebra of a simple algebra is a weak 
injective we obtain the following combination of 2.17 and Day's result. 

2.18 PROPOSITION. Assume that K = Equ (̂ 4) for some finite simple algebra A 
all of whose nontrivial subalgebras are subdirectly irreducible. Then the following 
are equivalent: 

(i) K has enough injectives; 
(ii) A is injective in K and K = ISP (A); 

(iii) A is self injective and K = ISP (A). 

3. The congruence extension property. In part, the results of this section 
were inspired by the results of E. Fried, G. Grâtzer, and H. Lakser [15] and 
A. Day [10]. 

Let K be a class of algebras and let J5, C (E K, with B a subalgebra of C; 
a congruence 6 on B extends to C if there is a congruence $ on C such that 
<ï> \ B = 6. If for every subalgebra B of C the congruences on B extend to C, 
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then C satisfies the congruence extension property) if every member of K 
satisfies the congruence extension property then we say that K satisfies the 
congruence extension property. The congruences on B are extensile in K if for 
each extension C of B, with C £ K, the congruences on B extend to C. 

Let K be a congruence-distributive equational class; we shall show that, 
provided Si(K) is reasonably well behaved, the extendability of congruences 
in K is determined by the subdirectly irreducible members of K. 

A subdirectly irreducible algebra A in K is called an extensor if for every 
subdirectly irreducible member C of K and each subalgebra B of C each con­
gruence 6 on B, with B/6 isomorphic to A, extends to C. For example, if A 
cannot be obtained as a proper homomorphic image of a subalgebra of a sub­
directly irreducible member of K, it is an extensor. 

3.1 THEOREM. Assume that Si(K) is axiomatic. Let B and C be members of K, 
with B a subalgebra of C, and let 6 be a congruence on B. If B/6 is a subdirect 
product of extensors, then 6 extends to C. 

Proof. By Remark 1.3 it is sufficient to show that every completely meet-
irreducible congruence 6 on B, for which B/6 is an extensor, extends to C. 
Again, a Jônsson Diagram describes the situation. Since Si(K) is axiomatic, 
I I ^ ^ l J x G X) is subdirectly irreducible, and since B/6 is an extensor, there 
is a congruence $ on I T ^ ^ x £ X), with d& S $, such that $/d& extends 
0/(0p \B) It follows that $ \ C extends 6. 

3.2 COROLLARY. Assume that Si(K) is axiomatic. Let B £ K; if every sub­
directly irreducible homomorphic image of B is an extensor, then the congruences 
on B are extensile in K. 

The final corollary of 3.1 deserves a more prestigious title. This theorem 
generalizes a result of A. Day [10]. 

3.3 THEOREM. Assume that Si(K) is axiomatic. Then the following are 
equivalent: 

(i) K satisfies the congruence extension property; 
(ii) each subdirectly irreducible member of K satisfies the congruence extension 

property; 
(iii) each subdirectly irreducible member of K is an extensor. 

Of course, we could also state 3.1, 3.2, and 3.3 with the assumption that 
K = Equ(A) for some finite set A of finite algebras; this is left to the reader. 
In fact, in this case we can slightly improve 3.3; since the proof involves only 
an application of Remark 1.3 and a Jônsson Diagram, similar to the proof of 
3.1, it is omitted. 

3.4 THEOREM. Assume that K = Equ(A) for some finite set A of finite 
algebras. If C is a subdirect product of subdirectly irreducible algebras which 
satisfy the congruence extension property, then C satisfies the congruence extension 
property. 
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4. Some applications. The results of Section 2 may be used to obtain 
R. W. Quackenbush's description of the injectives and weak injectives in an 
equational class generated by a quasiprimal algebra A (see [26; 27]); for 
example, let A be a finite simple cylindric algebra of dimension 1 (see [21]), a 
finite field (regarded as a ring), a finite chain (regarded as a double Heyting 
algebra; see [29] ,where Heyting algebras are referred to as pseudo-Boolean 
algebras), or a finite simple monadic algebra (see [19]). Every lattice, and 
more generally every lattice-ordered algebra, has a distributive congruence 
lattice. Thus our results may be applied to any equational class generated by a 
finite simple lattice; for example, we obtain R. Balbes's description of injective 
[bounded] distributive lattices (see [1]), and E. Fried, G. Grâtzer, and H. 
Lakser's description of the weak injectives in the equation class Mn generated 
by Mn (see [15]). There are three non-trivial equational classes of double 
Stone algebras (see [23]); indeed, the subdirectly irreducible double Stone 
algebras are the 2-element chain C2, the 3-element chain C3, both of which are 
simple, and the 4-element chain C4, which is not simple. Clearly C2 and C3 are 
are self injective, whence 2.16 and 2.18 provide descriptions of the injective 
algebras in Equ(C2) and Equ(C3). The injective algebras in the equational 
class Equ(C4) of all double Stone algebras are described in T. Katrinâk [23]. 
When applied to De Morgan algebras and Kleene algebras our results yield 
R. Cignoli's description of the injective algebras (see [6]). 

The results of Section 3 have many applications also. For example from 3.2 
Ave obtain the result of E. Fried, G. Grâtzer, and H. Lakser [15] that if B is a 
lattice in the equational class Mn and B has no prime ideals, then the con­
gruences on B are extensile in Mn; in fact, the result holds in M^. (Let Mw 

be a countable lattice of length 2 and let Mw be the equational class it generates; 
then A £ Si(Mo,) if and only if A is a 2-element chain or has length 2 and at 
least five elements, whence Si(Mco) is axiomatic.) 

Let K be the class of distributive pseudocomplemented lattices; then 
A £ Si(K) if and only if it is isomorphic to a Boolean algebra with a new unit 
adjoined (see [25]), and hence Si(K) is axiomatic. That every algebra in Si(K) 
satisfies the congruence extension property follows trivially from the fact that 
Boolean algebras satisfy the congruence extension property; thus, by 3.3, K 
has the congruence exsension property (see [17]). 

Two further classes wrhere the use of our results would be fruitful are ortho-
modular lattices (see [4; 5]) and weakly associative lattices (see [12; 13; 14]). 
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