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Turbulent entrainment is a process by which a locally turbulent region draws in an outer
irrotational fluid. A large number of small-scale vortices and shear layers exist near the
turbulent/non-turbulent interface; these features influence the local entrainment process.
Direct numerical simulations of a turbulent front evolving into a quiescent flow without
mean shear show that the entrainment rate is amplified by triggering the instability of
small-scale shear layers via weak perturbations with a wavelength matching that of the
unstable mode of the shear layers. Imposing artificial perturbations with a length scale
approximately 30 times the Kolmogorov scale leads to the rapid collapse of small-scale
shear layers due to instability, generating vortices near the turbulent/non-turbulent
interface. Amplification of the entrainment rate is linked to the enlarged area and increased
propagation velocity of the interface. The impact of perturbations on the entrainment
rate becomes most pronounced when the flow evolves over approximately 7 times the
Kolmogorov time scale, after which their influence diminishes over time. Additionally,
the increase in entrainment rate is dictated by the ratio of the perturbation amplitude
to the Kolmogorov velocity scale. The entrainment enhancement process is governed by
Kolmogorov scales, suggesting that even weak perturbations can amplify the entrainment
rate in high Reynolds number flows.

Key words: jets, shear layers

1. Introduction

Turbulent entrainment is the process by which a localised turbulent region draws in an
outer non-turbulent (irrotational) fluid, leading to the expansion of the turbulent region.
Entrainment plays a crucial role in various flows encountered in engineering and physics,
and is also evident in many environmental flows, such as atmospheric boundary layers
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(Schols 1984; Mahrt 1999) and clouds (Mellado 2017). At a cloud edge, dry air from
an external region is often mixed into the cloud (Sardina et al. 2015). Entrainment
significantly influences turbulent transport processes, especially in scalar mixing (e.g. heat
and substances) (Westerweel et al. 2009). Consequently, the control and enhancement of
turbulent entrainment remain important topics in both science and engineering (da Silva
et al. 2014).

Over the past decades, extensive research has been conducted to understand the
entrainment process, emphasising the turbulent/non-turbulent interface (TNTI) layer that
separates turbulent from non-turbulent regions (Westerweel et al. 2005; Holzner & Lüthi
2011; Taveira et al. 2013; van Reeuwijk & Holzner 2014; Krug et al. 2015; Jahanbakhshi &
Madnia 2016; Watanabe et al. 2016b), as summarised in da Silva et al. (2014). The TNTI
layer appears in canonical turbulent flows, such as jets, wakes and mixing layers. The local
entrainment process in many such flows is dominated by small-scale turbulent motions
located at or near the TNTI layer. Larger-scale motions predominantly dictate the total
entrainment rate by influencing the area of the interface (Mistry et al. 2016; Krug et al.
2017). Notably, the TNTI layer forms near small-scale vortices (vortex tubes) and shear
layers (da Silva, Dos Reis & Pereira 2011; Elsinga & da Silva 2019; Hayashi, Watanabe
& Nagata 2021b; Neamtu-Halic et al. 2021). Shear layers, originally termed vortex sheets
due to their inherent vorticity, are sheet-like structures exhibiting shearing motion (Vincent
& Meneguzzi 1994). Recent studies use the term shear layers to emphasise that their
essential characteristic is shear rather than vorticity (Eisma et al. 2015; Gul, Elsinga &
Westerweel 2020; Watanabe, Tanaka & Nagata 2020b; Fiscaletti, Buxton & Attili 2021).
This study employs ‘shear layers’ to denote small-scale shear layers arising from velocity
fluctuations, distinguishing them from those resulting from the mean velocity gradient,
the latter being large-scale structures. The properties of the small-scale vortices and shear
layers provide reasonable explanations for the entrainment process described by fluid
particle movements and vorticity transport near the TNTI layer (Taveira & da Silva 2014;
Jahanbakhshi, Vaghefi & Madnia 2015; Watanabe et al. 2017; Elsinga & da Silva 2019;
Hayashi et al. 2021b; Neamtu-Halic et al. 2021). These studies imply that vortices and
shear layers within the TNTI layer play dominant roles in the entrainment process.

Compared to vortices, small-scale shear layers have received limited investigation due
to challenges in their identification. Recent advancements in identifying shear layers based
on novel mathematical treatments of velocity gradient tensors have enabled researchers to
scrutinise their characteristics, as summarised herein (Kolář & Šístek 2014). The shear
layer is one of the smallest turbulent structures, characterised using the Kolmogorov
scales, and exhibits biaxial straining motion (Elsinga & Marusic 2010; Watanabe et al.
2020b; Fiscaletti et al. 2021). The interplay between shear and biaxial strain leads to
substantial enstrophy production and self-amplification of strain. Moreover, the velocity
field induced by shear layers makes a more pronounced contribution to the energy
cascade compared to that induced by vortex tubes (Enoki, Watanabe & Nagata 2023).
The stability of small-scale shear layers has also been investigated, given their role in
vortex formation in turbulent regions. Prior to the investigation of small-scale shear layers,
parallel shear flows had been studied theoretically as approximations of large-scale shear
layers induced by a mean flow. The flow is inherently unstable against weak perturbations,
leading to layer roll-up due to the Kelvin–Helmholtz instability. Linear stability theory
suggests that parallel shear flows are most unstable in the presence of perturbations with
a specific wavelength (Betchov & Szewczyk 1963). Similarly, small-scale shear layers in
turbulence generate vortices in a process reminiscent of the Kelvin–Helmholtz instability
(Vincent & Meneguzzi 1994; Watanabe et al. 2020b). Recent studies of small-scale shear
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layers confirmed the optimal wavelength for the small-scale shear instability, which is
approximately 30 times the Kolmogorov scale η (Watanabe & Nagata 2023). When
turbulence is subject to perturbations of this wavelength, the shear layers promptly
collapse, resulting in a higher population of vortices arising from the shear instability.
The evolution of shear layers is largely unaffected by perturbations with wavelengths much
larger or smaller than 30η. The optimal perturbation wavelength 30η was determined using
two simulations (Watanabe & Nagata 2023). One is a direct numerical simulation (DNS)
of turbulent flows, which examines the length and velocity scales of the shear layers.
The other is a numerical simulation of a modelled shear layer based on a conditionally
averaged flow field observed around the shear layers in DNS. The first has confirmed that
shear layers have a typical thickness δ of 4η regardless of Reynolds numbers. Simulating
modelled shear layers suggests that the optimal wavelength for shear instability is 7δ,
which is consistent with the stability analysis of uniform shear layers (Lin & Corcos 1984).
Because of the probability distribution of δ, perturbations with wavelength approximately
30η effectively promote the instability of many shear layers.

Previous studies concerning the entrainment process and small-scale shear instability
suggest the potential for enhancing entrainment by modulating small-scale shear layers.
Given the efficacy of flow control strategies that exploit various flow instabilities to
amplify the effects of weak disturbances (Cattafesta & Sheplak 2011), it is plausible
that manipulating small-scale shear layers can similarly lead to efficient flow control. In
this study, numerical experiments are carried out to explore entrainment enhancement by
stimulating small-scale shear layers, employing the DNS of a turbulent front perturbed by
artificial velocity fluctuations with a wavelength comparable to the unstable mode of shear
layers.

2. The DNS of a turbulent front evolving into a non-turbulent fluid

The DNS is conducted for a turbulent front evolving into a non-turbulent fluid without
mean shear. The flow configuration aligns with previous works (Cimarelli et al. 2015;
Silva, Zecchetto & da Silva 2018; Watanabe, da Silva & Nagata 2020a), which are
outlined briefly herein. The governing equations are the incompressible Navier–Stokes
equations, which are solved using an in-house finite-difference code based on the
fractional step method (Watanabe et al. 2020b). The code employs a fourth-order fully
conservative central difference and third-order Runge–Kutta schemes for spatial and
temporal discretisation (Morinishi et al. 1998). The initial field is generated by embedding
homogeneous isotropic turbulence (HIT) within a quiescent fluid. Snapshots from DNS
databases of statistically steady HIT (Watanabe et al. 2020b) are used. The computational
domain is set as a cube with side length L. Periodic boundary conditions are applied
in three directions. Within the coordinate system (x, y, z), y = 0 is positioned at the
domain centre, and (x, z) = (0, 0) is anchored at the corner of the x–z plane. During the
initialisation phase, the velocity field ui of HIT is modified by the top-hat function C( y):

C( y) = 0.5 + 0.5 tanh
[

4
ΔI

(
1 − 2 |y − L/2|

LT

)]
, (2.1)

resulting in C( y) ui(x, y, z), with LT = L/3 and ΔI = 10η, where η is the Kolmogorov
scale of HIT. Turbulence, centred at y = 0 with initial width LT , evolves into the
surrounding non-turbulent fluid. By definition, C = 1 in the turbulent region and C = 0 in
the non-turbulent region. Figure 1 shows a two-dimensional profile of vorticity magnitude
ω = |∇ × u| after the evolution of turbulence from its initial state. The turbulent region
exhibits large values of ω, and grows by entraining non-turbulent fluid.
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Figure 1. Distribution of vorticity magnitude ω in a turbulent front at t = 14τη0 for R4. The white lines
represent the irrotational boundary. The normalised vorticity magnitude ω̂ is defined as ω divided by the mean
value at y = 0.

The flow is statistically homogeneous in the x and y directions. Averages of flow
variables, represented by f̄ , are determined as spatial averages over the x–z planes as
functions of y and time t. A fluctuating component of a variable f is expressed as
f ′ = f − f̄ . The turbulent Reynolds number is given by Reλ = urmsλ/ν. Here, ν is the

kinematic viscosity, urms =
√

u′
iu

′
i/3 is the root mean square (rms) of velocity fluctuations,

and λ = √
15νu2

rms/ε is the Taylor microscale. Throughout this paper, successive indices
imply summation. The average kinetic energy dissipation rate is ε = 2νSijSij, and the
rate-of-strain tensor is Sij = (∂ui/∂xj + ∂uj/∂xi)/2. The Kolmogorov length, time and
velocity scales are defined as η = (ν3/ε)1/4, τη = (ν/ε)1/2 and uη = (νε)1/4, respectively.
Hereafter, a subscript 0 indicates statistics at y = 0 of the initial condition without
perturbations, such as η0 and uη0.

The evolution of the turbulent front is analysed under two distinct initial conditions. In
the first case, the velocity field of HIT, denoted as uHIT , serves as the initial field, i.e.
u = CuHIT . In the second case, solenoidal velocity perturbations uP are introduced to the
velocity field in the turbulent region. The perturbed velocity field is formulated as u =
C(uHIT + uP). A prior study addressed the impacts of uP on small-scale shear instability
in HIT, where the changes due to the promoted instability were discussed in terms of the
number of vortices, energy dissipation, enstrophy production and strain self-amplification
(Watanabe & Nagata 2023). Adopting this same methodology, uP is described using
sinusoidal functions: uP = [uf sin(2πy/λf ), uf sin(2πz/λf ), uf sin(2πx/λf )], where uf is
the amplitude, and λf is the wavelength. Different perturbation forms, such as random
disturbances with a single length scale, were tested for HIT (Watanabe & Nagata 2023),
showing that the evolution of perturbed HIT remains independent of perturbation type.

The parameters for DNS are detailed as follows. Five DNS databases of HIT with
Reλ = 43, 72, 128, 202 and 296 are labelled as R1, R2, R3, R4 and R5, respectively.
The numbers of grid points N3 for these cases are 2563, 5123, 10243, 20483 and 40963,
ensuring a grid spacing smaller than 0.8η. Cases without perturbations, i.e. uP = (0, 0, 0),
are simply designated as R1 to R5. Cases incorporating perturbations are designated as
RnΛa with n = 1, . . . , 5, indicating the Reynolds number, where Λ = S or L distinguishes
the wavelength λf , and a = uf /uη0 is the normalised amplitude. The designation Λ = S
corresponds to a perturbation of λf = 30η0, namely the optimal wavelength of small-scale
shear instability (Watanabe & Nagata 2023), whereas Λ = L assumes a larger wavelength,
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λf = 140η0. The normalised amplitude a ranges between 1.0 and 2.6. For instance, R2S14
considers turbulence at Reλ = 72 with a perturbation defined by λf = 30η0 and uf /uη0 =
1.4. Most simulations adapt perturbations with λf = 30η0 (Λ = S). One additional case
for R2 with Λ = L (λf = 140η0), in which the perturbation is unlikely to influence the
evolution of small-scale shear layers (Watanabe & Nagata 2023), is designated as R2L14.
Each simulation is allowed to progress until t = 15τη0. Three-dimensional data files for
post-processes are saved at intervals close to τη0. Ensemble averages are obtained from NS
simulations, each initialised with different snapshots of HIT. The values of NS are 10, 5,
3, 1 and 1, applied sequentially from case R1 to case R5. The perturbations are introduced
to the initial velocity field of shear-free turbulent fronts. The Appendix examines the
dependence of the flow evolution on the time at which perturbations are introduced.

The ratios between the integral scale LI and Kolmogorov scale η in the HIT used for
the initial condition are 37, 79, 191, 373 and 664, ascending from the lowest to the highest
Reλ cases. Here, LI = (2kT/3)3/2/ε is evaluated with the turbulent kinetic energy (TKE)
kT = uiui/2 and its dissipation rate ε (Rosales & Meneveau 2005). The integral scale
consistently exceeds the thickness of the shear layer, which is approximately 4η. The same
DNS databases were used to explore the statistical properties of small-scale shear layers
(Watanabe et al. 2020b). Notably, even at the smallest Reλ value with LI/η = 37, the
characteristics of small-scale shear layers, when normalised by Kolmogorov scales, remain
congruent with those observed at higher Reλ (Watanabe et al. 2020b). A key parameter
considered herein is the ratio of the perturbation wavelength λf to the Kolmogorov scale
η. This study focuses on entrainment in shear-free turbulent fronts, chosen for their initial
statistical homogeneity, which assures constant λf /η in the turbulent region at a fixed
value of λf . In contrast, turbulent shear flows, such as jets and mixing layers, display
statistical inhomogeneity, leading to spatial variations in λf /η. Previous studies indicate
that mean shear effects exert minimal influence on the scaling of the TNTI and small-scale
shear layers (Silva et al. 2018; Hayashi et al. 2021b), indicating that the findings from the
shear-free turbulent front can be extended to more complex flows with mean shear.

The present DNS considers internal perturbations in the turbulent region. Both internal
and external perturbations are applicable in laboratory experiments. Internal perturbations
can be generated in turbulence by objects, such as cylinders and spheres in a mean flow,
and settling particles, whose wakes produce velocity fluctuations at a certain scale (Britter,
Hunt & Mumford 1979; Nagata et al. 2020b; Kato, Takamure & Uchiyama 2022). External
perturbations can be introduced by fluidic actuators outside the turbulent region (Smith &
Glezer 1998).

3. Entrainment analysis

The entrainment process is explored by examining the isosurface of vorticity magnitude
ω at the outer edge of the turbulent front. As the vorticity decays over time with the
evolution of the shear-free turbulent front, the normalised vorticity magnitude ω̂, defined
as ω divided by the average ω̄ at y = 0, is utilised to identify the turbulent region. Similar
normalisations are commonly employed to examine the TNTI in turbulent shear flows,
where the mean vorticity magnitude decreases as the flow evolves (Bisset, Hunt & Rogers
2002; Attili, Cristancho & Bisetti 2014; Watanabe, Zhang & Nagata 2018). Turbulent and
non-turbulent regions are distinguishable by ω̂ > ωth and ω̂ ≤ ωth, respectively, using a
threshold ωth. Given that ω rapidly diminishes to zero from the turbulent region across
a thin TNTI layer, the identified turbulent region remains largely unaffected by the
specific choice of ωth, provided that ωth is chosen from a range for which the detected
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turbulent volume does not depend on ωth, as outlined in Taveira et al. (2013) and da
Silva et al. (2014). This threshold insensitivity in the TNTI analysis has been documented
for various flows (da Silva et al. 2014; Jahanbakhshi et al. 2015; Watanabe et al. 2018).
The present investigation adopts ωth = 0.01, determined by assessing the ωth dependence
of the turbulent volume. Consequently, the surface bounding on the irrotational region,
termed the irrotational boundary (Watanabe et al. 2015b; Zecchetto & da Silva 2021),
is demarcated as an isosurface of ω̂ = ωth. The irrotational boundary defines the outer
edge of the TNTI layer, which has a finite thickness. Figure 1 also shows the irrotational
boundary as an iso-vorticity line with ω̂ = 0.01. The iso-vorticity line effectively separates
the turbulent front characterised by large vorticity magnitude from the non-turbulent
region with negligible vorticity.

The entrainment of the turbulent front is examined through analysis of the irrotational
boundary using isosurface area density Σ ′, as described in Blakeley, Olson & Riley
(2022). The post-processing procedure is outlined briefly below, with a more in-depth
exploration of Σ ′ available in Blakeley et al. (2022), Blakeley, Olson & Riley (2023)
and works referenced therein. In each snapshot, the detection function X(x, y, z) of the
turbulent region is defined such that X = 1 when ω̂(x, y, z) ≤ ωth, and X = 0 when ω̂ >

ωth. The isosurface area density Σ ′ is then calculated as Σ ′(x, y, z) = −|∇ω̂|−1 ∇X · ∇ω̂.
The isosurface area A is written as A = ∫∫∫

V Σ ′ dx dy dz, where the integration spans the
entire computational domain V , while the volume of the turbulent region VT is expressed
using X as VT = ∫∫∫

V(1 − X) dx dy dz. The entrainment rate is defined as the temporal
change in turbulent volume, represented by V̇T = dVT/dt. The mean propagation velocity
of the irrotational boundary is then evaluated as VP = V̇T/A. These metrics related to
entrainment may be compared between turbulent fronts originating from perturbed and
unperturbed initial fields. For a given quantity Q, the relative disparity between the two
cases – for example, R2S14 and R2 – is evaluated as �Q = (QP − QU)/QU , where QP
and QU denote Q in the perturbed and unperturbed cases, respectively.

4. Results and discussion

The impact of perturbations on the turbulent front is first explored through visualisation
of the shear layers. The triple decomposition of the velocity gradient tensor (Kolář 2007;
Nagata et al. 2020a) is applied to obtain the local intensities of rigid-body rotation IR
and shearing motion IS (Watanabe & Nagata 2023). Vortex tubes and shear layers can be
identified using IR and IS, respectively. Figure 2(a) shows the temporal evolution of shear
layers (white) and vortices (orange) near the irrotational boundary for R2, for which the
initial field is derived from the original HIT without perturbations. Figure 2(b) shows the
equivalent flow region and time range for R2S14, for which the perturbation wavelength
corresponds to the unstable mode of small-scale shear instability. Both R2 and R2S14
initially observe the same shear layer, identified as ‘S’, at t/τη0 = 2. However, in the
perturbed case, a vortex, designated as ‘V’, forms within the shear layer by t/τη0 = 4.
Eventually, vortex formation occurs together with the breakdown of the shear layer at
t/τη0 = 6. In contrast, vortex formation occurs more gradually in the unperturbed case.
Weak perturbations with λf = 30η0 efficiently trigger shear instability at small scales near
the TNTI layer, as previously observed for HIT (Watanabe & Nagata 2023).

In the case of HIT, the shear instability promoted by perturbations results in an increased
number of vortices (Watanabe & Nagata 2023). This phenomenon is further confirmed for
the shear-free turbulent front. Vortices are identified following the methodology presented
in Watanabe & Nagata (2023). Within this framework, the current study assumes that a
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Figure 2. Temporal evolution of shear layers near the irrotational boundary for (a) R2 (unperturbed case) and
(b) R2S14 (perturbed case). The isosurfaces of IR/IR = 6 and IS/IS = 1.5 represent vortices (orange) and shear
layers (white), respectively. The mean intensities are evaluated at y = 0. From left to right, the time instances
are t/τη0 = 2, 4 and 6. The colour contour represents IS.
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Figure 3. Changes in the number of vortices NV by perturbations, represented by �NV . HIT refers to the
simulation of decaying HIT with a Reynolds number and perturbations corresponding to R2S10 (Watanabe &
Nagata 2023).

grid point belongs to a vortex when the intensity of rigid-body rotation IR normalised by
its time-dependent average at y = 0, denoted by IR, surpasses a threshold Ith. Each separate
region of vortex points constitutes a single vortex structure. Accordingly, the number of
vortices, represented as NV , is obtained as a function of time. Vortices are identified as
regions with IR/IR > Ith, with Ith = 3. Figure 3 presents the temporal variations of the
relative difference between perturbed and unperturbed cases, �NV , for the R2 series.
Positive �NV values signify an increase in vortices due to perturbation effects, negative
values indicate a decrease, and �NV = 0 suggests that perturbations do not influence the
number of vortices. The plots of �NV are therefore intended to examine the qualitative
impacts of perturbations on vortices rather than to provide an exact number of vortices.
Watanabe & Nagata (2023) evaluated the threshold (Ith) dependency of NV , focusing on
the perturbation response in HIT with the same methodology as in the present DNS. By
plotting the number of vortices against Ith, they observed identical perturbation effects,
namely an increase in NV due to promoted shear instability, regardless of Ith. They also
evaluated the potential of different variables to detect vortices, e.g. a second invariant
of ∂ui/∂xj, confirming that an increase in vortices is observed irrespective of the vortex
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Figure 4. (a) Temporal variations of entrainment rate V̇T . (b) Changes due to perturbations in the entrainment
rate V̇T , represented by �V̇T .

identification method used. For the turbulent front in figure 3, perturbations initially have
no influence on vortices, as shown by �NV = 0 at t = 0. When perturbations exhibit the
optimal wavelength of shear instability (RnSa), an increase in �NV is observed, suggesting
that more vortices are generated when shear instability is promoted. No such increase is
apparent in R2L14, where the perturbation wavelength considerably exceeds 30η. The
R2Sa cases with a representing a normalised amplitude demonstrate that perturbations
with a larger amplitude have more pronounced effects on the number of vortices. The
decaying HIT corresponding to R2S10 in Watanabe & Nagata (2023) may be compared
with the shear-free turbulent front, showing that variations in �NV are similar in both
flows. The responses of small-scale shear layers to perturbations are consistent in both
HIT and shear-free turbulent fronts. Watanabe & Nagata (2023) also demonstrated that
the increment in vortices remains similar for different Reynolds numbers in HIT.

The ramifications of enhanced shear instability are explored for the entrainment rate,
represented as V̇T . Figure 4(a) presents the temporal variations of the entrainment rate
V̇T for three cases. A positive value of V̇T indicates the growth of the turbulent region.
The entrainment rate is calculated using a second-order central difference on discrete data
sets of VT(t). The entrainment rate in R2S14 becomes higher than in the other cases after
t/τη0 ≈ 2. This amplified entrainment from t/τη0 ≈ 2 is virtually absent in R2L14 despite
having the same perturbation amplitude as R2S14.

Figure 4(b) assesses the relative difference in the entrainment rate between perturbed
and unperturbed cases by depicting �V̇T(t). Some simulation cases are omitted from
the figure for clarity, although they are presented later to assess the Reynolds number
dependence. Introducing perturbations that stimulate shear instability amplifies the
entrainment rate, as shown by �V̇T > 0 in the RnSa cases. Notably, �V̇T reaches its
maximum at approximately t/τη0 ≈ 7 irrespective of the Reynolds number. The increase
in vortices due to the shear instability promoted by perturbations is also most prominent at
t/τη0 ≈ 5, as shown in figure 3. This consistency suggests that the activity of small-scale
vortices plays a significant role in entrainment. After t/τη0 ≈ 7, �V̇T begins to decline and
the influence of perturbations diminishes with time. When the perturbation wavelength is
much larger than the unstable mode wavelength, the entrainment rate exhibits minimal
change, as evidenced by the small �V̇T for R2L14. Consequently, the entrainment is
enhanced when the perturbations are characterised by a wavelength similar in scale to
the unstable mode of small-scale shear layers.
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Entrainment enhancement by small-scale shear instability

After imposing impulsive perturbations at a given time, the flow evolves freely.
Although these perturbations initially cause an increase in the entrainment rate, indicated
by �V̇T > 0 in figure 4(b), a subsequent decrease of �V̇T occurs after reaching a peak,
and the difference between the perturbed and unperturbed cases becomes small. This
indicates that the perturbation effect is transient. Similarly, the impact on the number
of vortices is also temporary, as evidenced by the analogous trend of �NV in figure 3.
Continuous or repetitive application of perturbations would more effectively sustain this
enhanced entrainment. The transient enhancement of entrainment achieved by impulsive
perturbations has important applications for chemically reacting flows. In situations where
two reactants are introduced into separate flows, their mixing and subsequent reaction
occur rapidly near the TNTI layer, especially when the reaction time scale is shorter than
that of turbulence (Watanabe et al. 2013, 2014, 2015a; Jahanbakhshi & Madnia 2018;
Ren et al. 2023). Thus enhancing entrainment even for a short time could be leveraged
to increase the reaction rate near the TNTI layer.

Entrainment is the process by which the non-turbulent fluid gains vorticity near the
TNTI layer (Westerweel et al. 2005; Holzner & Lüthi 2011). A comparison of the
enstrophy budget within the TNTI layer and around vortex tubes and shear layers suggests
that these small-scale structures are relevant to the entrainment process described by
vorticity transport (Watanabe et al. 2017; Hayashi et al. 2021b; Neamtu-Halic et al.
2021). However, the mechanisms by which these structures cause entrainment locally
has not yet been determined. A more straightforward way to understand entrainment is
provided by Lagrangian viewpoints (Mathew & Basu 2002; Holzner & Lüthi 2011; Taveira
et al. 2013; Watanabe, da Silva & Nagata 2016a; Watanabe et al. 2016b). Entrained fluid
particles pass across the TNTI layers to reach the turbulent core region. The shear layers
within the TNTI layer are unstable, and their roll-up generates vortex tubes as shown in
figure 2. Layer roll-up causes a significant mixing of fluids on both sides of the shear layer
(Winant & Browand 1974; Rogers & Moser 1992). One of the possible mechanisms by
which small-scale structures cause entrainment is small-scale mixing associated with the
roll-up of shear layers. The shear layers within the TNTI layer separate the turbulent and
non-turbulent fluids (Elsinga & da Silva 2019; Hayashi et al. 2021b), which are expected
to be mixed by shear instability. Another entrainment mechanism is directly related to
the velocity distribution around vortex tubes and shear layers. Vortex tubes in turbulence
form within an axial straining flow (Jiménez & Wray 1998; da Silva et al. 2011), which
induces an inward flow to the vortex core (Davidson 2004). It has been noted that this
inward velocity of vortex tubes can initiate entrainment (Watanabe et al. 2017) when the
non-turbulent fluid is drawn into vortex tubes within the TNTI layer by the inward flow
and is then further transferred into the turbulent core region by the rotating motion of the
vortex. This explanation, based on the inward velocity of the straining flow, is also valid
for shear layers within the TNTI layer because the shear layers undergo a biaxial strain
with an inward velocity in the layer normal direction. The entrained fluid gains vorticity
by viscous diffusion when it is transferred by the inward flow, and this entrainment process
is consistent with Eulerian investigations of entrainment with vorticity transport.

The perturbation effect on the entrainment rate, described by �V̇T , is similar to that of
the number of vortices, �NV . This correlation between �V̇T and �NV has an important
implication for the dominant entrainment mechanism. The perturbations promote shear
instability, resulting in a greater number of vortices in the flow. The increase ‘rate’ of �NV ,
∂�NV/∂t, provides a measure of the promotion of shear instability due to perturbations.
As shown in figure 3, an increase in �NV is observed for t/τη ≤ 5. The roll-up of shear
layers in the perturbed cases is expected to occur more frequently than in the unperturbed
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Figure 5. Changes due to perturbations in the isosurface area A and mean propagation velocity VP,
represented by �A and �VP, respectively.

cases for t/τη ≤ 5. If mixing due to the roll-up of shear layers dominates the entrainment
process, then �V̇T should be maximised until t/τη ≤ 5. However, this contradicts the
results for �V̇T shown in figure 4(b). Instead, �V̇T and �NV reach their peaks at almost the
same time. This suggests that the entrainment rate is related to the number of vortices NV
rather than the increase rate of NV due to perturbations. It should be noted that NV is also
correlated with the number of shear layers because the latter forms in the proximity of the
former (Watanabe & Nagata 2023). Here, NV concerns the vortices throughout the entire
turbulent region; however, NV can also be related to the number of vortices near the TNTI
layer because vortices appear anywhere within the turbulent region. Indeed, the probability
for vortex tubes and shear layers to appear at a given location does not change between
the vicinity of the TNTI layer and the turbulent core region except within the viscous
superlayer (da Silva et al. 2011; Hayashi et al. 2021b). The correlation between �V̇T and
�NV suggests that the presence of small-scale vortical structures near the TNTI layer
plays an important role in entrainment, supporting a mechanism of entrainment linked to
the inward flows of vortex tubes and shear layers as discussed above.

The entrainment rate is linked to two main factors: the surface area of the
irrotational boundary A, and the mean propagation velocity VP. Figure 5 examines the
perturbation-induced variations in A and VP with �A and �VP, respectively, both of which
increase from 0 with time. The combined effect of these increments culminates in an
overall enhancement of the entrainment rate V̇T = VPA. An increase in the area is expected
from surface stretching due to vortices generated by shear instability (Neamtu-Halic et al.
2020).

Figure 6(a) shows the peak values of �V̇T in figure 4(b) plotted against the
perturbation amplitude normalised by uη0 for all Reynolds number cases with Λ = S
(λf = 30η0). A larger amplitude results in greater enhancement of the entrainment.
Notably, when normalised by the Kolmogorov velocity, the perturbation effects remain
largely independent of the Reynolds numbers. Values of �V̇T peak at approximately 7τη0,
which is also identical for all Reynolds numbers considered here. Thus the enhancement
of entrainment by small-scale shear instability occurs at the Kolmogorov scales.

The perturbations applied in the DNS presented herein result in an increase in the
initial TKE, denoted as kT = uiui/2. The relative increase is evaluated as �kT = (kTP −
kT0)/kT0, wherein kTP and kT0 correspond to the initial TKE at y = 0 for perturbed and
unperturbed cases. Figure 6(b) displays the maximal �V̇T values for each case against
�kT . The same entrainment enhancement can be achieved with weaker perturbations,
i.e. smaller �kT , at a higher Reynolds number. An approximate 10 % increase in the
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Figure 6. (a) Maximum values of the increase ratio of entrainment rate due to perturbations, represented by
�V̇T , plotted against the normalised perturbation amplitude a = uf /uη0. (b) Maximum values of �V̇T plotted
against the relative increase in TKE due to the perturbations, represented by �kT .

entrainment rate (a = 2.2) occurs with increases in the TKE of 2 % and 12 % for R5
and R1, respectively. The line in figure 6(a) illustrates an empirical fit using a quadratic
function, represented by �V̇T = C1a2, with C1 = 1.75, determined using a least squares
method. This fitting function is introduced only for discussing the Reynolds number
dependence for the range of a considered in this study, and not for establishing the
precise relationship between �V̇T and a. In fully developed turbulent regions, a scaling
u2
η0/kT0 ∼ Re−1

λ is anticipated (Pope 2000); hence this empirical relation for �V̇T suggests
a scaling �V̇T ∼ (u2

f /kT0) Reλ. For the present test case, the energy introduced by the
perturbation required to achieve equivalent entrainment enhancement (�V̇T ) decreases
as Re−1

λ with increasing Reynolds numbers. Case R2L14 investigates the influence of
perturbations with a wavelength significantly larger than the unstable mode wavelength of
shear layers. Under such conditions, perturbations exert minimal influence on small-scale
vortices and entrainment rate, as shown in figures 3 and 4(b). A weak influence of
large-scale perturbations was also reported for vortices in HIT (Watanabe & Nagata
2023). The perturbations in R2L14 lead to an increase in the initial kinetic energy
by �kT = 1.3 %. This increment is similar to that in R5S18, where �kT = 1.5 %. For
R5S18, the entrainment rate increases by approximately 6 %. In the numerical set-up
used for this study, the original HIT exhibits TKE approximately kT0 ≈ 1.5 (arbitrary
units), irrespective of the Reynolds number. Therefore, the similarity between the �kT
values in these two cases indicates that their initial kinetic energies are also comparable.
However, the influence of perturbations on the vortices and entrainment is evident when
the wavelength aligns with the unstable mode of shear layers. This comparison suggests
that the kinetic energy added by perturbations alone is not a significant factor in enhancing
entrainment; rather, the wavelength of the perturbations plays a crucial role. Additionally,
no clear correlation is observed between the entrainment rate and �kT across different
Reynolds numbers in figure 6(b). The kinetic energy increment alone does not dictate the
enhancement in entrainment rate. Instead, the perturbation amplitude (analogous to the
kinetic energy of perturbations) normalised by the Kolmogorov velocity determines the
increase in entrainment rate. This may be related to the scaling of shear layers. The velocity
jump across the shear layers is also determined by the Kolmogorov velocity (Watanabe
et al. 2020b; Fiscaletti et al. 2021; Hayashi, Watanabe & Nagata 2021a).
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5. Conclusions

The numerical experiments reported in this study demonstrate that entrainment rate can be
amplified significantly by introducing perturbations with wavelengths corresponding to the
unstable mode of small-scale shear layers, i.e. at approximately 30 times the Kolmogorov
scale. These perturbations efficiently stimulate the shear layers near the TNTI layer, and
accelerate vortex formations due to instability. The effects of impulsive perturbations
on entrainment and vortices are transient, diminishing over time. The Kolmogorov
scales primarily govern the process underlying the entrainment enhancement. Even weak
perturbations can yield substantial enhancements in entrainment via small-scale shear
instability, especially at higher Reynolds numbers, due to the smaller value of the
corresponding Kolmogorov velocity. The statistical behaviour of small-scale shear layers
is minimally influenced by flow types (Elsinga & Marusic 2010; Watanabe et al. 2020b;
Fiscaletti et al. 2021; Hayashi et al. 2021a), suggesting that this method of enhancement is
applicable to various turbulent flows. Furthermore, turbulent flows are filled with many
small-scale shear layers, which exist anywhere in turbulent regions (Horiuti & Takagi
2005; Buxton & Ganapathisubramani 2010; Pirozzoli, Bernardini & Grasso 2010; Nagata
et al. 2020a; Fiscaletti et al. 2021; Hayashi et al. 2021a). Intricate sensing mechanisms
are not required to locate and manipulate these shear layers, unlike other active flow
control techniques that rely on identifying specific turbulent structures. Although the
results reported herein are derived from idealised numerical experiments conducted under
controlled conditions, the resulting features of small-scale shear instability have broad
practical applications, from engineering to environmental flows. Although additional
research, including experimental validation, is required for future applications, the present
study introduces a new and widely applicable framework for flow control that leverages
small-scale shear instabilities triggered by weak and small-scale disturbances.
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Appendix. Effects of the initial transition of a shear-free turbulent front on
entrainment enhancement

The DNS of the shear-free turbulent front conducted in this study was initialised using
a velocity field featuring an artificial interface generated by a truncated velocity field
defined by (2.1). The flow evolution at an early time is influenced by the initial conditions,
which may affect the observed entrainment enhancement. This appendix addresses the
dependence of entrainment enhancement on the time at which perturbations are imposed.
To this end, the DNS is performed for two additional cases involving the transfer of
a passive scalar φ, whose evolution is governed by an advection–diffusion equation
(Watanabe et al. 2015b). The Schmidt number Sc = ν/D is set to 1, where D represents
the diffusivity coefficient. The initial distribution of the passive scalar φ is specified as
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Figure 7. The shear-free turbulent front visualised by passive scalar φ at t = 9.4τη in R2. The coordinates are
normalised by the Kolmogorov scale η at y = 0.
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Figure 8. (a) Entrainment rate V̇T plotted as a function of time after adding perturbations, t − T . The results
are compared between the perturbed (uf = 1.4uηP) and unperturbed (uf = 0) cases. (b) Changes due to
perturbations in the entrainment rate, represented by �V̇T .

φ( y) = C( y), which is 1 in the turbulent region and 0 in the non-turbulent region. The
passive scalar with Sc = 1 serves as the marker of the turbulent region. The interfaces
identified using vorticity and passive scalar are consistent, exhibiting minimal differences
in both the location and the local curvature of the isosurfaces (Gampert et al. 2014;
Watanabe et al. 2018). Perturbations are introduced into the turbulent core region with
φ > 0.5 after the flow has evolved from the initial condition for a time T . The Kolmogorov
scales corresponding to the time at which the perturbations are added are denoted by
ηP, τηP and uηP. These scales are evaluated by considering a volume average of the
energy dissipation rate in the turbulent region identified with the vorticity magnitude. The
simulations in this appendix are conducted for R2, λf = 30ηP and uf = 1.4uηP. Based on
the integral time scale τI = LI/

√
2kT/3 defined using the TKE kT and the characteristic

length scale of large-scale motions LI , T is determined to be either 0 or 0.51τI (9.4τη).
Here, τI and τη are evaluated for the original HIT used for the initial conditions of the
shear-free turbulent front. Figure 7 visualises the shear-free turbulent front at t = 9.4τη.
The flow evolves until this time instance, and then the sinusoidal perturbations described
in § 2 are introduced into the region with φ > 0.5. In this appendix, the results of a
single simulation for each case are presented without taking ensemble averages of different
simulations.

Figure 8(a) plots the entrainment rate V̇T as a function of t − T , which represents the
time after adding the perturbation. The results are compared between the perturbed and
unperturbed cases. Regardless of the time T at which the perturbations are added, the
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perturbed cases exhibit larger V̇T values than the corresponding unperturbed cases. The
choice of T influences the temporal evolution of V̇T because of the transient behaviour of
the shear-free turbulent front at early times. Figure 8(b) illustrates changes in entrainment
rate due to perturbations, denoted as �V̇T . The temporal variation of �V̇T is quantitatively
similar for all cases. Entrainment enhancement is observed for both T values, and is not
influenced by the initial transient behaviour of the shear-free turbulent front.
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