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ON SEMIGROUP ALGEBRAS AND SEMISIMPLE
SEMILATTICE SUMS OF RINGS

by MARK L. TEPLY1

(Received 17th July 1979)

Let P be a semilattice. In (5), a ring T is called a supplementary semilattice sum of
subrings Ta (aeP) if the following conditions hold: T= £ Ta, T^^T^ for all

a, P G P, and Ta D I X TB I = 0 for each a e P. Thus, as an abelian group, T is a direct
wp /

sum of the additive subgroups To (aeP), and the multiplicative structure of T is
strongly influenced by the semilattice P. Properties of these rings have been studied
extensively in (2), (3), (5), and (6).

Let IT be a property of rings. A ring is called a ir-ring if it has property IT. An ideal /
of a ring is a ir-ideal if I is a w-ring. A ring is ir-semisimple if it has no nonzero
TT-ideals. Assume that the property IT satisfies the following conditions: (a) homomor-
phic images of IT -rings are v -rings, and (b) ideals of TT -rings are TT-rings. For example,
the properties of being nil, nilpotent, left quasi-regular, or von Neumann regular are
such properties.

It is known (see (5) and (6)) that if each ring Ta (a e P) is ir-semisimple, then the
supplementary semilattice sum T of subrings Ta (aeP) is also ir-semisimple. J.
Weissglass has posed the following converse problem (6, Question 1, p. 477): find a
condition on the semilattice P such that if T is any supplementary semilattice sum of
subrings Ta (a e P), then each Ta (a € P) must be Tr-semisimple whenever T is
-jr-semisimple. By proving a theorem on semigroup rings, we obtain the answer to
Weissglass' problem: P must be trivial. (Facts about semigroup rings can be found in
(1), (5), and (6).) In particular, if IT is the property of being nil, nilpotent, or left
quasi-regular, Weissglass' problem is answered by setting T = RS and Ta = RSa (a e P)
in the following result.

Theorem. Let P be any semilattice with at least 2 elements. If P has a zero (minimal)
element, denote it by /x. For any field R, there exist semijyoups Sa {a e P) such that

(1) S = U Sa is a semilattice P of semigroups Sa,

(2) the semigroup ring RSa has a nonzero nilpotent ideal whenever a ̂  pi, and

(3) the semigroup ring RS is Jacobson semisimple.

Proof. For each aeP, let Fa be the free semigroup without identity on the symbols

{xly, x2y, x3f} I 7 g a, & > a}.
1 The author received support from National Science Foundation Grant MCS 77-01818
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Let Ga be the semigroup obtained by adjoining a zero element z to Fa. Let Da be the
semigroup obtained by imposing the following relations on Ga:

(i) x\y = xlyx2y = x2yxly = x\y for all 7 S a, and
(ii) xiyxi0 = z = Xj&Xiy for i, j e {1, 2, 3} and 0 # 7.

Define Sa = Da - {xw, x2y | 7 > a} for a # p., and define 5^ = 0,,-{xly, x2y \ 7 ^ ft}
whenever /x exists. Thus Da is an ideal extension of Sa for each aeP. Let <p3v: SB —»
D , be the inclusion map whenever |3, 7 e P with /3 S 7. Then S = U Sa is a semilattice

P of semigroups S,, via the homomorphisms q>ey; that is, for xeSv and y e ST, x • y =
(*<P<,,cJ(y<PT.<7T)eSaT. (See (4, Theorem III.7.2) for details.)

In view of (ii), each element of Da (a e P) may be written as z or a monomial that is
homogeneous in 7 e P (i.e., a monomial in xie, x2&, x30 for some /3 > a or a monomial
in xlot and x2<j- We will assume that all elements of Sa and Da (aeP) are written in this
form. As usual, the support of an element t = £ rksk e RS, denoted by supp t, is

|
For any ring Q, let J(Q) denote the Jacobson radical of Q.
We now establish (2) and (3) by proving a sequence of lemmas.

Lemma 1. For any aeP, the support of any element of J(RSa) cannot contain a
monomial involving an x^ for any | 3>a and ie{l, 2, 3}.

Proof. Fix /3 > a, and let B = {x^Xy,.... x ^ | m ̂  1, i, = 1, 2 or 3 for all 7}£ D.
that is, B is the set of all monomials in Da involving an Xj0 entry by (ii). To obtain a
contradiction, we assume that teJ(RSa) and (supp t)C\B^ 0 . By (i) and (ii),
(supp x33fX33)nB7^ 0 , 0 i= x3etx3p e J(RSa), and the only monomials in suppx33fx33
that have degree >1 start and end with x3(J. Choose t'eRSa such that

X3Ptx3e +1 '+x 3 & tx 3 e t ' = 0.

If (suppf')nB = 0 , then (supp x30tx3et') n B = 0 by (ii). But then
B Plsupp (x30fx3(3 +1'+ x3ptx3et') j= 0 , which contradicts the fact that x3etx30 + t' +
x30fx30f' = 0. Hence (supp t')C\B^0.

By (i) we assume that each member of B is written with as many xlp entries as
possible (and hence as few x20 entries as possible). Then we can order B as follows:

if either (a) m > n or else (b) m = n, h = fc1; j2 =k2,..., /<,_! = fcq_j, jq > kq for some
q S n . Thus, if e,f, g, heB such that e>f, g>h, and both e and / end in x3e, then
eg>fg and eg>eh. Let e and g be maximal in (suppx3(JtX3p)nB and (supp t')C\B,
respectively. Then eg e supp x3(jtx3f3f', and eg<£ (supp x3pfx33)U (supp t'). This con-
tradicts the assumption that

Lemma 2. For any aeP, rzeJ(RSa) implies r = 0.

Proof. The ideal Rz of RSa is (ring) isomorphic to the field R; so J(RSa) HRz =
J(Rz) = 0.
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Lemma 3. /(J?S(i) = O if /x exists, and J(2?Sa) = {rx2a-rxlct | rei?} is a nilpotent
ideal of RSa for af [L.

Proof. Let a e P, and let H be the ideal of RDa generated by the set

{rz, rxla, rxzoc I rel?}.

By Lemma 1, J(RSa)^H. Hence J(RSJ = J(RSa)n(HC\RSJ = J(HnRSa) =
( H n R S J n / ( H ) c J ( H ) . The mapping 0: H-> JR[x] given by

I az + bx^ + 2, c>x'ia 10 = bx + 2̂  CjX1

is a ring homomorphism of H onto the polynomial ring J?[x]. (Note that if a = jx, then
b = d = 0.) Thus (J(H))e £ J(R[xJ) = 0; so

J(RSa) c J(H) e ker 0 = {az + bx^ - bxla \a,be R}.

If a = /x, then b = 0, and hence /(KS.J = 0 by Lemma 2.
Assume now that a i= /x, and let Nn = {rx^ - rxla | r G R}. If az + bx^ — bxla 6 J(RSa),

then az = (az + fcx2a-bxla)xloeJ(RSa); so a = 0 by Lemma 2. Hence J(RSa)^Na.
But a straightforward computation using (i) and (ii) shows that (RSa)Na = 0 = Na(RSa).
Thus Na is a nonzero nilpotent ideal of RSa, and hence Na S

For (= I *„ e RS with ta G RSa, let
aeP

and

maxP-supp l = {aeP-supp t \ 0 eP-supp f and ^ g a imply 0 = a}.

Lemma 4. /(RS) = 0.

Proof. To obtain a contradiction, assume that 0 f t = X k G J(RS) with k 6 i?Sa.
aeP

Let ^ G max P-supp t. As in the proof of (5, Theorem 1), 0 f t3 e J(RS0). By Lemma 3,
0 ^ (x and te = rx2(3 - rxlp G i?Se for some nonzero reR. Let 7 < 0; for x3e e RSy, write
X 3 B ' = Z t'a- Then t̂  = rx3ex2e-rx3f>xlfi + az + terms whose support consists of

aeP

monomials of degree at least two in either x13 or x3p. (The terms after the first two may
be 0.) But {7} = max P-supp x3fJt for x30 e RSy. Again, as in the proof of (5, Theorem
1), tyeJ(RSy). Hence our computed form of t'y contradicts Lemma 3. This completes
the proof of the Theorem.

Remark. The Theorem of this paper shows that conditions on a non-trivial semilat-
tice P alone are not sufficient for the ir-semisimplicity of the semilattice sum T of
subrings Ta (a G P) to force each Ta to be ir-semisimple. In particular, additional
restrictions must be placed on T to ensure the transfer of Tr-semisimplicity to each Ta.
We have seen that requiring T to be a semigroup ring RS, where S is a semilattice of
semigroups Sa, is also not sufficient; the problem arises because the images of the
homomorphisms {(p^ \ a, 0 e P, a S /3} are not in S0. In case the images of the defining
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homomorphisms <paP are always in Se (/3 e P), then S is called a strong semilattice P of
semigroups Sa (aeP) (4); for this case conditions on P have been found to ensure the
transfer of Tr-semisimplicity from RS to each RSa (see (5, Theorem 2)). In particular,
the Theorem of this paper shows that the "strong" hypothesis on S cannot be dropped
in (5, Theorem 2).

Another way to ensure the transfer of 7r-semisimplicity from the semilattice sum T
to each Ta (a e P) is to place additional restrictions on the property IT. AS a
consequence (2, Theorem 1), 7r-semisimplicity transfers from T to each Ta (a e P)
when either of the following conditions holds: (a) n is a strict, hereditary radical
property and P is finite, or (b) IT is an A-radical property. (See (2) for a discussion of
the strong conditions on rt in (a) and (b).) It is not known if the condition that P is
finite can be removed from (a).

REFERENCES

(1) A. H. CLIFFORD and G. B. PRESTON, Algebraic Theory of Semigroups, Vol. I. (Math.
Surveys of the Amer. Math. Soc, Providence, R. I., 1961).

(2) B. J. GARDNER, Radicals of supplementary semilattice sums of associative rings, Pacific J.
Math. 58 (1975), 387-392.

(3) J. JANESKI and J. WEISSGLASS, Regularity of semilattice sums of rings, Proc. Amer.
Math. Soc. 39 (1973), 479-482.

(4) M. PETRICH, Introduction to Semigroups (C. Merrill, Columbus, Ohio, 1973).

(5) M. L. TEPLY, E. G. TURMAN, and A. QUESADA, On Semisimple semigroup Rings,
Proc. Amer. Math. Soc. 79 (1980), 157-163.

(6) J. WEISSGLASS, Semigroup Rings and Semilattice Sums of Rings, Proc. Amer. Math. Soc.
39 (1973), 471^178.

UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA 32611
U.S.A.

https://doi.org/10.1017/S0013091500006374 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006374

