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The M S renormalization scheme

9.1 Renormalizability and power counting rules

The notion of a superficial degree of divergences, based on the power counting rule of a
given Feynman diagram, is often used for studying the renormalizability of the interactions
in the Lagrangian. For instance, if we consider the previous two-point correlator �5(q2),
we can see, for n-dimensions space–time, that, to lowest order, it behaves for large p2 as:

�5(q2) ∼ lim
p→∞ pn−2 , (9.1)

and its degree of divergence is:

d = n − 2 . (9.2)

More generally, for an arbitrary Green’s function G, the superficial degree of divergence
reads:

d = nl +
∑

v

δv − 2nB − nF , (9.3)

where:

n = space–time dimensions,

l = number of loops (independent integrals),

δv = number of momentum factors at the vertex v, (9.4)

nB = number of internal boson lines (we consider a theory with massless bosons), (9.5)

nF = number of internal fermion lines. (9.6)

For a given interaction Lagrangian term LI, which one can write symbolically as:

LI ∼ g(∂)δ(φ)b(ψ) f , (9.7)

where φ and ψ are the bosonic and fermion fields, one can define the index of divergence
of the interaction Lagrangian as:

r =
(

n − 2

2

)
b +

(
n − 1

2

)
f + δ − n , (9.8)
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9 The M S renormalization scheme 85

where:

δ = number of space–time derivatives inLI,

b = number of boson fields inLI,

f = number of fermion lines inLI. (9.9)

Actually, using the fact that the action:

S =
∫

LI dn x (9.10)

is dimensionless, one can deduce from a dimensional analysis that:

n = dim[g] +
(

n − 2

2

)
b +

(
n − 1

2

)
f + δ , (9.11)

such that:

r = −dim[g] . (9.12)

One can define respectively by:

v = number of vertices corresponding toL1
I in the Green’s function G,

NB = number of external boson lines inG,

NF = number of external fermion lines inG, (9.13)

which obey the relations:

2nB + NB = vb; 2nF + NF = v f ,

l = nB + nF − v + 1 ,
∑

v

δv = vδ . (9.14)

Eliminating for instance the internal fields through Eq. (9.14), one can rewrite Eq. (9.3)
as:

d = rv −
(

n − 2

2

)
NB −

(
n − 1

2

)
NF + n , (9.15)

where r is the index divergence given above. This result can be generalized to any numbers
of interaction Lagrangians by the substitution:

rv →
∑

i

rivi (9.16)

From these definitions, one can classify the different theories as:

� If one of the ri is positive, the divergences cannot be removed by any finite numbers of renormal-
ization constants and interaction parameters. Then the theory is not renormalizable.

� If all ri ≤ 0, then there is a possibility to remove the divergences by finite numbers of renormalization
constants and interaction parameters. The theory is a candidate for a renormalizable theory.

� If ri < 0 for all i , then the theory is super renormalizable since the number of types of divergent
diagrams, and the number of diagrams are finite.
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86 III M S scheme for QCD and QED

� If ri = 0, the theory is renormalizable in a narrow sense, which is the case of QCD. As QCD has
a dimensionless coupling, then comes the conclusion from Eq. (9.12).

9.2 The QCD Lagrangian counterterms

As we have seen before, one can remove the UV divergences of a renormalizable
theory by finite numbers of counterterms to any orders of perturbation theory. In QCD,
the counterterms of the Langrangian are:

�LQCD = �3Y M
1

4
(∂µ Aν − ∂ν Aµ) (∂µ Aν − ∂µ Aν)

+ �1Y M
1

2
(∂µ Aν − ∂ν Aµ) g �Aν × �Aµ

+ �5
1

4
g2( �Aµ × �Aν) ( �Aµ × �Aν)

− �2F i
∑

j

ψ̄ j γ µ ∂µ ψ j + �4

∑
j

m j ψ̄ j ψ j

− �1F g ψ̄
λ

2
γ µ ψ �Aµ

+ �6
1

2αG
(∂µ

�Aµ)2 + �̃3 (∂µ ϕ̄)2 + �̃1 g ∂µ �ϕ Aµ × ψ , (9.17)

which are all we need for removing the UV divergences of the theory. We have used the
notation:

�Aµ × �Aν ≡ fabc Ab
µ Ac

ν . (9.18)

It is possible to rescale the fields in such a way that LQCD has the form in Eq. (5.12)
but in terms of ‘bare’ quantities. This manipulation is correlated to the introduction of
renormalization constants and then to the choices of renormalization schemes.

9.3 Dimensional renormalization

In QED, it is natural to use the on-shell renormalization scheme:

�5(q2)R = �5(q2) − �5(q2 = 0) , (9.19)

for defining a renormalized Green’s function, as the photon and electron are observed, and
then are on their mass-shells (for a electron self-energy diagram, on can, for example, do
the subtraction at p2 = m2

e), which is not the case of QCD, as quarks are off-shell due
to confinement. Therefore, there is a freedom to choose the renormalizaton schemes. We
shall discuss these different renormalization schemes and their relations in the following
sections. t’Hooft [123] has introduced the M S (renormalization) scheme, which is specific
for dimensional regularization. In this scheme, one only has to eliminate the 1/ε poles
[or in the M S scheme, the 1/ε̂ poles defined in Eq. (8.44)] of the Green’s functions. The
renormalization constants are mass-independent and will appear as counterterms in the
initial Lagrangian constrained by the Slavnov–Taylor identities [104].
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9 The M S renormalization scheme 87

Table 9.1. Dimensions of the couplings and
fields in n dimensions

Name Notation Dimension

gauge coupling g 1
2 (4 − n)

quark mass mi 1

covariant gauge parameter αG 0

fermion field ψ j (x) 1
2 (n − 1)

gluon field Aa
µ (x) 1

2 (n − 2)

Faddeev–Popov field ϕa(x) 1
2 (n − 2)

9.4 Renormalization constants

Taking into account the dimension obtained in the 4 − ε world (see Table 9.1) via the mass
scale ν, one has relations between renormalized and bare parameters:

gR = ν−ε/2 gB Z−1/2
α

g2/4π ≡ αs ,

m R
j = m B

j Z−1
m ,

αR
G = αB

G Z−1
G ,(

ψα
j

)R = νε/2
(
ψα

j

)B
(Z2F )−1/2 ,(

Aa
µ

)
R

= νε/2
(

Aa
µ

)
B

(Z3Y M )−1/2 ,

(ϕa)R = νε/2(ϕa)B(Z̃3)−1/2 , (9.20)

where Zi ≡ 1 − �i . One can introduce the renormalization constant for the quark-gluon-
quark vertex as:

(gψ̄ Aψ)R = (gBψ̄ B ABψB)νε Z−1
1F , (9.21)

which corresponds to the Feynman diagrams (Fig. 9.1).

+

Analogously, one can introduce the three-gluon renormalization constant (Z1Y M ) corre-
sponding to the vertex (Fig. 9.2).
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88 III M S scheme for QCD and QED

+ +
1

2
–

n

i=1
i

and, (Z̃1) ghost self-energy and (Z̃3) ghost-gluon-ghost vertex one (Fig. 9.3).

and (Z5) four-gluon vertices one. Then, one can deduce:

gY M
B = Z1Y M Z−3/2

3Y M gR ,

g̃B = Z̃−1
1 Z−1/2

3Y M gR ,

gF
B = Z1F Z−1/2

3Y M Z−1
2F gR ,(

g(5)
B

)2 = Z5 Z−2
3Y M g2

R , (9.22)

which are related to each other by BRS [103] invariance:

gY M
B = ...... = gB

(5) , (9.23)

leading to the Slavnov–Taylor [104] identities:

Z3Y M/Z1Y M = Z̃3/Z̃1 = Z2F/Z1F ,

Z5 = Z2
1Y M/Z3Y M . (9.24)

This is the analogue of the QED relation:

Z1F = Z2 . (9.25)

The mass renormalization constant is:

m B = (
Zm ≡ Z4 Z−1

2F

)
m R , (9.26)

and the gauge one is:

αB
G = αR

G Z−1
G Z3Y M . (9.27)

Z3Y M comes from the evaluation of the gluon propagator (Fig. 9.4).
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9 The M S renormalization scheme 89

1

2
+ – +

n

i =1

i

Z2F and Zm come from the quark self-energy diagram, which can be parametrized as:

� = m B�1 + ( p̂ − m B)�2 , (9.28)

and leads to:

Z2F ≡ 1

1 − �2|pole
, Zm = 1 − �1|pole , (9.29)

More generally, for a Green’s function with NG, NF P and NF external gluons, ghost and
fermion fields, one can associate the renormalization constants:

Z� = (
Z1/2

3Y M

)−NG
(
Z1/2

3

)−NF P
(
Z1/2

2F

)−NF
. (9.30)

Expressions of these renormalization constants are known from standard diagram tech-
niques (see Table 11.1).

9.5 Check of the renormalizability of QCD

We are now in a position to check the renormalizability of QCD. We want to see if the
counterterms presented in Eq. (9.17) are sufficient for removing all divergences in Feynman
integrals to all orders.

If one looks at the superficial degree of divergences for the Feynman diagrams given in
Eq. (9.15), and using the fact in Eq. (9.12), we can see for QCD in four dimensions:

d = 4 − NB − 3

2
NF , (9.31)

for NB and NF external lines of bosons and fermions. Here, NB includes gluons NG and
Faddeev–Popov NFP ghosts. Remarking that the coupling in the ghost-gluon-ghost vertex
behaves like kµ (see Appendix E), the number of boson fields become:

NB = NG + NFP + 1

2
NFP . (9.32)

It is easy to see that the condition d ≥ 0 for a superficially divergent integral is obtained
for seven different cases of the set (NF , NG, NFP) discarding the case (0, 0, 0) (vacuum)

https://doi.org/10.1017/9781009290296.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.016


90 III M S scheme for QCD and QED

and the one (0, 1, 0) because of Lorentz invariance. These seven diagrams are displayed in
Fig. (9.5):

d = 2 d = 1

d = 1 d = 0 d = 0 d = 0

d = 1

and have the same structure as the counterterms. It is an easy exercise to show that these
divergences can all be absorbed by the counterterms. One should also notice that owing
to gauge and Lorentz invariances, the apparent degree of divergence 2, 1, 1, 1 of the self-
energies of gluons, ghost, fermions, and of the three-gluon vertex become logarithmic.
These features have explicitly shown the renormalizability of QCD, which is maintained to
all orders of perturbative QCD [113,108,125,104,103].
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