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Abstract

Let k be field of characteristic zero. Let f ∈ k[X,Y] be a nonconstant polynomial. We prove that the space
of differential (formal) deformations of any formal general solution of the associated ordinary differential
equation f (y′, y) = 0 is isomorphic to the formal disc Spf(k[[Z]]).
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1. Introduction

Let f ∈ C[X, Y] be a nonconstant polynomial. Let z(T ) ∈ C[[T ]] be a formal
solution of the associated ordinary differential equation f (z′(T ), z(T )) = 0. We call
a differential formal deformation of z(T ) an element z(U, T ) ∈ C[[U, T ]] satisfying
f (∂T (z(U, T )), z(U, T )) = 0 and z(0, T ) = z(T ). A natural open problem is the study
of the space of differential formal deformations of z(T ). (See [1] for related, though
different, questions.)

The present work addresses a formulation of this question in terms of formal
geometry. It may also be seen as a differential analogue of the following theorem of
Drinfeld, which generalised a characteristic zero version due to Grinberg and Kazhdan
and describes the structure of formal neighbourhoods in arc schemes (see [5, 6], and
also [2, 3], or [4]).

Theorem 1.1 [5, Theorem 0.1]. Let k be a field. Let V be an integral k-variety with
dim(V) ≥ 1. Let γ ∈ L(V)(k) be a rational point of the associated arc scheme, not
contained in L(Vsing). If L(V)γ denotes the formal neighbourhood of the k-scheme
L(V) at the point γ, there exist an affine k-scheme S of finite type, with s ∈ S (k), and
an isomorphism of formal k-schemes:

L(V)γ � Ss⊗̂kk[[(Ti)i∈N]].
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In order to give a geometric definition of the space of differential formal
deformations, we make use of the formalism of differential algebra proposed by Ritt
and Kolchin which is very suitable for our purposes. In this setting, our main result
reads as follows.

Theorem 1.2. Let k be a field of characteristic zero. Let f ∈ k[X, Y] be a nonconstant
polynomial. Let C = Spec(k[X, Y]/〈 f 〉). Let γ ∈ Lδ∞(C)(k) be a differential arc. For
every test-ring (A,mA) and every differential A-deformation γA of the arc γ, there
exists a unique a ∈ mA such that γA(T ) = γ(T + a) ∈ A[[T ]]. In particular, the formal
k-scheme Lδ∞(C)γ is isomorphic to Spf(k[[X]]).

Let us explain the notation in this statement. The k-scheme Lδ∞(C)γ, which is the
geometric incarnation of the space of differential deformations, is defined as follows.
We endow the ring k[(Yi)i∈N] with the k-derivation δ defined by δ(Yi) = Yi+1 for every
integer i ∈ N; the associated differential ring is denoted as usual by k{Y} and called the
ring of differential polynomials (in one variable).

For every subset S of k{Y}, one denotes by [S ]δ the differential ideal generated by
S in the ring k{Y}. Let n ≥ 1 be an integer. Then the k-scheme Lδ∞(C) is defined as
Spec(k{Y}/[ f (Y1,Y0)]δ). If A is a k-algebra, a differential A-arc is an A-point ofLδ∞(C),
that is, an element γA(T ) ∈ A[[T ]] with f (γ′A(T ), γA(T )) = 0.

If γ is a differential (k-)arc and if (A,mA) is a local k-algebra with nilpotent maximal
ideal mA and residue field A/mA isomorphic to k, that is, a test-ring, a differential A-
deformation of γ is an A-point of Lδ∞(C)γ, namely, an element γA(T ) ∈ A[[T ]] with
f (γ′A(T ), γA(T )) = 0 and γA(T ) = γ(T ) (mod mA[[T ]]).

As a corollary of Theorem 1.2, we obtain a description of the space of differential
formal deformations as a one-parameter space, which constitutes, to the best of our
knowledge, an original statement in the study of (algebraic) differential equations.

Corollary 1.3. Let k be a field of characteristic zero. Let f ∈ k[X,Y] be a nonconstant
polynomial. Let z(T ) ∈ k[[T ]] be a power series satisfying f (z′(T ), z(T )) = 0. Let
z(U, T ) be a differential formal deformation of z(T ). Then there exists a unique power
series a(U) ∈ k[[U]] with a(0) = 0 and such that z(T,U) = z(T + a(U)).

Indeed, for every integer n ≥ 1, the quotient k[[U]]/〈Un〉 is a test-ring. We may
apply Theorem 1.2 to the image of z(T,U) in k[[U]]/〈Un〉[[T ]], which gives the
existence of a unique element an(U) ∈ 〈U〉/〈Un〉 such that z(T,U) = z(T + an(U))
(mod Un). By uniqueness of the an(U), there exists a unique power series a(U) ∈
k[[U]] such that a(U) = an(U) (mod Un) for every integer n ≥ 1. Such an element
a(U) has the required property.

2. Proof of our statement

2.1. A first remark. For every c = (c1, c0) ∈ C(k), we denote by Lδ∞,c(C)(A) the set
of differential A-arcs γA such that γA(0) = c0 and γ′A(0) = c1. Let us begin with the
following algebraic formulation of the Cauchy–Lipschitz theorem in our context.
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Proposition 2.1. Keep the notation of Theorem 1.2. Let c = (c1, c0) ∈ C(k). If
∂1( f )(c) , 0, then there exists a family (ci)i≥2 of elements of k such that [ f (Y1, Y0)]δ +

〈Y0 − c0,Y1 − c1〉 = 〈(Yi − ci)i≥0〉. In particular, we have Lδ∞,c(C) � Spec(k).

Proof. Let us set c2 = −∂1( f )(c)−1∂2( f )(c)c1. Thus, there exist two polynomials
Q0, Q1 ∈ k[Y0, Y1, Y2] such that Y2 − c2 = δ( f (Y1, Y0)) + (Y0 − c0)Q0 + (Y1 − c1)Q1.
The same argument, applied, for every integer i ≥ 3, to δ(i)( f (Y1, Y0)), gives rise to
the existence of the elements ci and polynomials Qi, j ∈ k[Y0, . . . ,Yi] such that

Yi − ci = δ(i+1)( f (Y1,Y0)) +

i−1∑
j=0

(Y j − c j)Qi, j.

Hence, we deduce that 〈(Yi − ci)i≥0〉 = [ f (Y1,Y0)]δ + 〈Y0 − c0,Y1 − c1〉. �

2.2. The proof of Theorem 1.2. The second assertion formally comes from the first
one. Indeed, the natural bijection Spf(k[[X]])(A)→Lδ∞(C)γ(A), functorial in the test-
ring (A,mA) and defined by a ∈ mA 7→ γ(T + a), determines an isomorphism of formal
k-schemes. Let us prove the first assertion, which splits into different cases. Up to a
translation, we may assume that γ(0) = 0.

Case 1. We assume that ∂1( f )(γ′(0), γ(0)) , 0. To prove Theorem 1.2, we state the
following lemma.

Lemma 2.2. Let (A,mA) be a test-ring. Let P ∈mA[[T ]], α ∈ k×. Then, for every b ∈mA,
the equation b = αX + X2P(X) admits a unique solution a ∈ mA.

Proof. Multiplying by α−1, one may assume that α = 1. Let us show the uniqueness.
Indeed, let us assume that there exist a1, a2 ∈ mA which satisfy

b = a1 + (a1)2P(a1)
b = a2 + (a2)2P(a2). (2.1)

Set Q := (X + Y)P(X) + Y2(P(X) − P(Y)) ∈ X A[[X,Y]] + Y A[[X,Y]]. From (2.1),

(a1 − a2) · (1 + Q(a1, a2)) = 0. (2.2)

Since in (2.2) the element 1 + Q(a1, a2) is invertible in A, we conclude that a1 = a2.
We now prove the existence part of the statement by induction on the nilpotence

degree of mA in A, that is, the smallest integer n ∈ N such that mn
A = 0. For n = 2, the

assertion is clear since we have a = b. Let us assume that the assertion holds for every
integer n ≥ 2. By assumption, we know that there exists a unique element a′ ∈ mA such
that

b̄ = ā′ + (ā′)2P(ā′) (mod mn
A). (2.3)
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By (2.3), there exists b0 ∈ m
n
A such that

b + b0 = a′ + (a′)2P(a′) (2.4)

in the ring A. Set a0 := −b0. Then (2.4) coincides with

b = (a′ + a0) + (a′)2P(a′),

or, equivalently, with

b = (a′ + a0) + (a′ + a0)2P(a′ + a0) (2.5)

since a2
0 = 0 in the ring A. We set a := a′ + a0. This element has the required property

thanks to (2.5). �

Let (A,mA) be a test-ring. Let ηA(T ) = γ(T ) +
∑

i≥0 ηA,iT i, with ηA,i ∈ mA for every
integer i ∈ N, be a differential A-deformation of γ. By assumption,

f (η′A(T ), ηA(T )) = 0. (2.6)

The action of ∂T on (2.6) provides

η′′A(T )∂1( f )(η′A(T ), ηA(T )) = −η′A(T )∂2( f )(η′A(T ), ηA(T )). (2.7)

Furthermore, by the Taylor expansion of (2.6),

ηA,1∂1( f )(γ′, γ) + ηA,0∂2( f )(γ′, γ) = 0 (mod 〈T 〉). (2.8)

Let γA(T ) = γ(T ) +
∑

i≥0 γA,iT i, with γA,i ∈ mA for every integer i ∈ N, be a
differential A-deformation of γ. Let us exhibit a candidate for the element a ∈ mA.
We apply (2.7) to the particular case ηA(T ) = γ(T ) and deduce that there exists
u ∈ (k[[T ]])× such that γ(T ) = Tu(T ), since ∂1( f )(γ′(T ), γ(T )) ∈ (k[[T ]])× and γ(0) = 0
by assumption. Then, we conclude by Lemma 2.2 that there exists a unique element
a ∈ mA such that γA,0 = au(a).

We are going to show that this element a has the required property. Set τa(T ) :=
γ(T + a) := γ(T ) +

∑
n≥0 τa,iT i. Let us prove, by induction on the integer n ∈ N, that

γA,n coincides with τa,n. The relation γA,0 = au(a) = τa,0 implies that this assertion
holds for n = 0. Since ∂1( f )(γ′, γ) ∈ (A[[T ]])×, we deduce from (2.8) applied to γA

and τa that
γA,1 =−γA,0∂2( f )(γ′, γ)/∂1( f )(γ′, γ) (mod 〈T 〉)

=−τa,0∂2( f )(γ′, γ)/∂1( f )(γ′, γ) (mod 〈T 〉)
= τa,1.

In the same way, (2.7) applied to γA and τa implies, by induction, that γA,n = τa,n, for
every integer n ∈ N.

Case 2. We assume that ∂1( f )(γ′(0), γ(0)) = 0. The basic idea here is to reduce to the
previous case. Let A be a test-ring and γA a differential A-deformation of γ.

First, let us note that A ⊂ A[[u]]u. In addition, the k-algebra A[[u]]u is a test-ring
with maximal ideal mA[[u]]u and residue field k((u)). In this way, the differential
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A-deformation γA can be seen as a differential A[[u]]u-deformation of γ. Let us denote
by γu the differential arc (γ′(T + u), γ(T + u)) ∈ k((u))[[T ]]2. Since the arc γ is not
constant, we observe that ∂2( f )(γu(0)) = ∂2( f )(γ(u)) , 0 in k((u)), and we can apply,
in this context, the last argument.

So, by the arguments used in the first case, we conclude that there exist a
nonnegative integer n and a power series a(u) ∈ mA[[u]] such that

γA(T + u) = γu(T + a(u)/un) = γ(T + u + a(u)/un). (2.9)

We are going to show that a(u) lies in unmA[[u]]. Let us assume that the converse
holds (in particular, n is positive). Thus we may write a(u) =

∑
0≤i≤n−1 ai ui + unã(u)

with ã(u) ∈ mA[[u]] and we may assume that a0 , 0. Let us set ā(u) =
∑

0≤i≤n−1 aiui

and b(u) = u + ã(u) ∈ A[[u]]. Let m be the smallest integer such that mm+1
A = 0. By a

Taylor expansion in (2.9),

γA(T + u) = γ(T + b(u) + ā(u)/un) = γ(T + b(u)) +

m∑
j=1

(ā(u)) jγ( j)(T + b(u))/ j!u jn.

(2.10)
Since a0 , 0, there exists a positive integer ν such that ν ≤ m and ai ∈ m

ν
A for every

integer i ∈ {0, . . . , n − 1}. Moreover, there exists an integer i0 ∈ {0, . . . , n − 1} such
that ai0 ∈ m

ν
A \ m

ν+1
A . Let us replace A by A′ := A/mν+1

A . Then the image of (2.10) in
A′[[T, u]], upon changing the integer n, now reads

γA(T + u) = γ(T + b(u)) + ā(u)γ′(T + b(u))/un

with ā(0) , 0. Multiplying by un and specialising u to 0, one obtains the relation
ā(0)γ′(T ) = 0, which is a contradiction since the arc γ(T ) is not constant.

At the end, we have the relation γA(T + u) = γu(T + a(u)) with a ∈ mA[[u]] uniquely
determined. By specialising u to 0, we conclude that there exists α := a0 ∈ mA such
that γA(T ) = γ(T + α), and α is unique.
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