THE NUMBER OF IRREDUCIBLE TOURNAMENTS

by E. M. WRIGHT \dagger
(Received 12 February, 1969)

An n-tournament is a set of n labelled points, each pair A, B of which is joined either by the oriented line $A B$ or by the oriented line $B A$. There are $N=n(n-1) / 2$ such pairs and so F_{n} different n-tournaments, where $F_{n}=2^{N}$. A tournament is reducible if the points can be separated into two non-empty subsets \mathscr{A} and \mathscr{B}, such that every line joining a point in \mathscr{A} to a point in \mathscr{B} is directed towards the point in \mathscr{B}. Rado [3] showed that an irreducible tournament is strongly connected; i.e. for every ordered pair of points A, B, there is a sequence of correctly oriented lines $A C_{1}, C_{1} C_{2}, \ldots, C_{h} B$ in the tournament, and conversely that a strongly connected tournament is irreducible.

We write f_{n} for the number of different irreducible n-tournaments and $P(n)=f_{n} / F_{n}$ for the probability that an n-tournament is irreducible.

Every n-tournament \mathscr{C} contains a unique maximal irreducible sub-tournament \mathscr{B} such that every edge joining a point in $\mathscr{C}-\mathscr{B}$ to a point in \mathscr{O} is directed towards the point in \mathscr{B}. There are just $\left({ }_{s}^{n}\right) f_{s} F_{n-s}$ different n-tournaments in which \mathscr{B} has s nodes. Since s may have any value from 1 to n, we have

$$
\begin{equation*}
F_{n}=f_{n}+\sum_{s=1}^{n-1}\binom{n}{s} f_{s} F_{n-s} \tag{1}
\end{equation*}
$$

This result, in the equivalent form,

$$
P(n)=1-\sum_{s=1}^{n-1}\binom{n}{s} P(s) 2^{-s(n-s)}
$$

is due to Moon and Moser [1]; they deduce that

$$
\left|P(n)-1+n 2^{1-n}\right|<2^{1-n}
$$

and Moon [2] improves this by replacing 2^{1-n} by $n^{2} 2^{3-2 n}$ on the right-hand side. Part of my object here is to improve this further by deducing from (1) a complete asymptotic expansion for $P(n)$ or, what is equivalent, for f_{n} when n is large.

We write T_{n} for the number of non-isomorphic n-tournaments (or, if we change our phraseology a little, for the number of different n-tournaments on n unlabelled points), and t_{n} for the number of non-isomorphic irreducible n-tournaments. By similar reasoning to the above, we find that

$$
\begin{equation*}
T_{n}=t_{n}+\sum_{s=1}^{n-1} t_{s} T_{n-s} \tag{2}
\end{equation*}
$$

\dagger The research reported herein has been supported by the United States Government.

We use this to find an asymptotic expansion of t_{n} in terms of T_{n}, T_{n-1}, \ldots This is useful, since Moon [2] gives a result from which we can calculate the asymptotic expansion of T_{n}. In particular, he shows that $T_{n} \sim 2^{N} / n!$.

If we put

$$
F_{n}=n!G_{n}, \quad f_{n}=n!g_{n}(n \geqq 1), \quad G_{0}=1, \quad g_{0}=-1
$$

in (1), we obtain

$$
\begin{equation*}
\sum_{s=0}^{n} g_{s} G_{n-s}=0 \quad(n \geqq 1) \tag{3}
\end{equation*}
$$

If we put $T_{0}=1, t_{0}=-1$ in (2), we have

$$
\begin{equation*}
\sum_{s=0}^{n} t_{s} T_{n-s}=0 \quad(n \geqq 1) \tag{4}
\end{equation*}
$$

In what follows we use C for a positive number, not always the same at each occurrence, but always independent of n. The constant implied in the $O($) notation is a C. The similarity of (3) and (4) makes it convenient to prove the following result.

Lemma. If $H_{0}=1, h_{0}=-1,0 \leqq h_{n}<H_{n}(n \geqq 1)$,

$$
\begin{equation*}
\sum_{s=0}^{n} h_{s} H_{n-s}=0 \quad(n \geqq 1) \tag{5}
\end{equation*}
$$

and

$$
C<n!2^{-N} H_{n}<C
$$

then, for any fixed positive integer r, we have

$$
\begin{equation*}
h_{n}=H_{n}+\sum_{s=1}^{r-1} \beta_{s} H_{n-s}+O\left(H_{n-r}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{s}=\sum_{t=0}^{s} h_{t} h_{s-t}=-2 h_{s}+\sum_{t=1}^{s-1} h_{t} h_{s-t} \quad(s \geqq 1) \tag{7}
\end{equation*}
$$

By (5),

$$
\sum_{s=0}^{r-1}\left(h_{s} H_{n-s}+H_{s} h_{n-s}\right)=-\sum_{s=r}^{n-r} h_{s} H_{n-s}=-E_{r}
$$

say. Now

$$
0 \leqq E_{r}=\sum_{j=r}^{n-r} h_{j} H_{n-j} \leqq \sum_{j=r}^{n-r} H_{j} H_{n-j} \leqq 2 \sum_{j=r}^{[n / 2]} H_{j} H_{n-j} \leqq C H_{r} H_{n-r}^{[n / 2]} A_{j=r}^{\left[n / B_{j},\right.}
$$

where

$$
A_{j}=\frac{r!(n-r)!}{j!(n-j)!} \leqq n^{j-r}
$$

and

$$
2 \log B_{j} / \log 2=j^{2}+(n-j)^{2}-r^{2}-(n-r)^{2}=2(j-r)(j+r-n) \leqq-(j-r)(n-2 r) .
$$

Hence

$$
E_{r} \leqq C H_{r} H_{n-r} \sum_{j=r}^{[n / 2]} n^{j-r} 2^{-(j-r)(n-2 r) / 2} \leqq C H_{n-r} .
$$

It follows that

$$
\sum_{s=0}^{r-1}\left(h_{s} H_{n-s}+H_{s} h_{n-s}\right)=O\left(H_{n-r}\right) .
$$

If we replace n, r by $n-t, r-t$, where $0 \leqq t<r$ we have

$$
\sum_{s=0}^{r-t-1}\left(h_{s} H_{n-t-s}+H_{s} h_{n-t-s}\right)=O\left(H_{n-r}\right) .
$$

We multiply the left-hand side by h_{1} and sum from $t=0$ to $t=r-1$. The sum is

$$
\begin{aligned}
\sum_{t=0}^{r-1} \sum_{s=0}^{r-t-1}\left(h_{t} h_{s} H_{n-t-s}+h_{t} H_{s} h_{n-t-s}\right) & =\sum_{v=0}^{r-1} H_{n-v} \sum_{t=0}^{v} h_{t} h_{v-t}+\sum_{v=0}^{r-1} h_{n-v} \sum_{t=0}^{v} h_{t} H_{v-t} \\
& =\sum_{v=0}^{r-1} \beta_{v} H_{n-v}-h_{n}
\end{aligned}
$$

by (5) and (7), where $\beta_{0}=1$. But the corresponding sum on the right-hand side is $O\left(H_{n-r}\right)$ and so we have (6).

We remark that it may be readily deduced from (5) and (7) that

$$
H_{n}+\sum_{s=1}^{n} \beta_{s} H_{n-s}=-h_{n},
$$

a result which compares somewhat oddly with (6).
To use our lemma we consider first the case in which $H_{n}=G_{n}$. Here we have

$$
G_{1}=G_{2}=1, \quad G_{3}=\frac{4}{3}, \quad G_{4}=\frac{8}{3} ; \quad g_{1}=1, \quad g_{2}=0, \quad g_{3}=\frac{1}{3}, \quad g_{4}=1 ;
$$

and so

$$
\beta_{1}=-2, \quad \beta_{2}=1, \quad \beta_{3}=-\frac{2}{3}, \quad \beta_{4}=-\frac{4}{3} .
$$

Substituting in (6), we obtain

$$
\begin{aligned}
f_{n}=F_{n}- & 2 n F_{n-1}+n(n-1) F_{n-2}-\frac{2}{3} n(n-1)(n-2) F_{n-3} \\
& -\frac{4}{3} n(n-1)(n-2)(n-3) F_{n-4}+O\left(n^{5} F_{n-5}\right) \\
=2^{N}\{1 & -\binom{n}{1} 2^{2-n}+\binom{n}{2} 2^{4-2 n}-\binom{n}{3} 2^{8-3 n} \\
& \left.-\binom{n}{4} 2^{15-4 n}+O\left(n^{5} 2^{-5 n}\right)\right\} .
\end{aligned}
$$

Since $P_{n}=f_{n} / F_{n}=f_{n} 2^{-N}$, this also gives us the asymptotic expansion of P_{n}.
Next we have

$$
T_{1}=T_{2}=1, \quad T_{3}=2, \quad T_{4}=4, \quad T_{5}=12
$$

by [2]. Hence, by (4),

$$
t_{0}=-1, \quad t_{1}=1, \quad t_{2}=0, \quad t_{3}=t_{4}=1, \quad t_{5}=6
$$

and so in this case

$$
\beta_{1}=-2, \quad \beta_{2}=1, \quad \beta_{3}=-2, \quad \beta_{4}=0, \quad \beta_{5}=-10
$$

Hence

$$
\begin{equation*}
t_{n}=T_{n}-2 T_{n-1}+T_{n-2}-2 T_{n-3}-10 T_{n-5}+O\left(T_{n-6}\right) \tag{8}
\end{equation*}
$$

This is of little value until we have an asymptotic expansion for T_{n}. Moon [2] gives an exact expression for T_{n} from which it is easy to deduce an asymptotic expansion with a little calculation. We find that

$$
T_{n}=G_{n}+\frac{3}{3}(n-2) G_{n-2}+\frac{4}{45}(n-4)(10 n-41) G_{n-4}+O\left(n^{3} G_{n-6}\right)
$$

and so, by (8),

$$
t_{n}=G_{n}-2 G_{n-1}+\frac{1}{3}(2 n-1) G_{n-2}-\frac{2}{3}(2 n-3) G_{n-3}+\frac{2}{45}(n-4)(20 n-67) G_{n-4}+O\left(n^{2} G_{n-5}\right)
$$

Hence

$$
T_{n}=\frac{2^{N}}{n!}\left\{1+\binom{n}{3} 2^{5-2 n}+\frac{1}{3}\binom{n}{5}(10 n-41) 2^{15-4 n}+O\left(n^{9} 2^{-6 n}\right)\right\}
$$

and

$$
\begin{aligned}
t_{n}=\frac{2^{N}}{n!}\left\{1-2\binom{n}{1} 2^{1-n}\right. & +\frac{2}{3}\binom{n}{2}(2 n-1) 2^{3-2 n}-4\binom{n}{3}(2 n-3) 2^{6-3 n} \\
& \left.+\frac{1}{3}\binom{n}{5}(20 n-67) 2^{14-4 n}+O\left(n^{7} 2^{-5 n}\right)\right\}
\end{aligned}
$$

REFERENCES

1. J. W. Moonand L. Moser, Almost all tournaments are irreducible, Canadian Math. Bull. 5 (1962), 61-65.
2. J. W. Moon, Topics on tournaments (New York, 1968).
3. R. Rado, Theorems on linear combinatorial topology and general measure, Ann. of Math. 44 (1943), 228-270.

University of Aberdeen

