RESOLVABLE (r, λ)-DESIGNS AND THE FISHER INEQUALITY

S. A. VANSTONE
(Received 21 January 1979, revised 14 July 1979)
Communicated by W. D. Wallis

Abstract

It is well known that in any (v, b, r, k, λ) resolvable balanced incomplete block design that $b \geqslant v+r-1$ with equality if and only if the design is affine resolvable. In this paper, we show that a similar inequality holds for resolvable regular pairwise balanced designs ((r, λ)-designs) and we characterize those designs for which equality holds. From this characterization, we deduce certain results about block intersections in (r, λ)-designs.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30.

1. Introduction

An (r, λ)-design D is a collection B of nonempty subsets (called blocks) of a finite set V (called varieties) such that (i) every variety is contained in precisely r blocks and (ii) every pair of distinct varieties is contained in exactly λ blocks.

If every block of B has cardinality k then D is called a balanced incomplete block design (BIBD). Any block of D, which contains all of the varieties, is called a complete block.

If the blocks of D can be partitioned into classes such that every variety is contained in precisely one block of each class, then D is called a resolvable (r, λ)design. The classes are called resolution classes. A resolvable (r, λ)-design which is a BIBD is denoted RBIBD. An RBIBD having the property that any two blocks from distinct resolution classes intersect in a constant m number of varieties is termed affine.

In 1940, Fisher showed that in any BIBD having v varieties and b blocks, $b \geqslant v$. This inequality was later shown to hold for (r, λ)-designs and, in fact, for a more

Solving (4) for $\sum_{j=1}^{v} x_{j}$ and substituting into (3), we see that y_{i} is a linear combination of the vectors, $\mathbf{B}^{*} \cup\left\{\mathbf{B}_{i j}: 1 \leqslant j \leqslant t_{i}, 1 \leqslant i \leqslant r\right\}$. Also, if we substitute $\sum_{i=1}^{v} x_{i}$ into (2) and $\sum_{i=1}^{r} y_{i}=\mathbf{B}^{*}$, then x_{1} is a linear combination of $\mathbf{B}^{*} \cup\left\{\mathbf{B}_{i j}: 1 \leqslant j \leqslant t_{i}, 1 \leqslant i \leqslant r\right\}$. Clearly, the same can be done for any $x_{i}, 1 \leqslant i \leqslant v$. Since it is possible to write the basis $x_{1}, x_{2}, \ldots, x_{v}, y_{1}, \ldots, y_{r}$ as linear combinations of $\mathbf{B}^{*} \cup\left\{\mathbf{B}_{i j}\right\}$, this set must be a spanning set of S. Hence, the number of vectors in this set must be greater than or equal to $v+r$. That is,

$$
b+1 \geqslant v+r \quad \text { or } \quad b \geqslant v+r-1 \text {. }
$$

This completes the proof.

Theorem 2.2. Let D be a resolvable (r, λ)-design having v varieties and blocks. If $b=v+r-1$ then (i) the blocks of any given resolution class are equicardinal, (ii) $\lambda(v-1) \geqslant r(n-1)$ with equality if and only if D is an affine resolvable BIBD.

Proof. As in the proof of Theorem 2.1, consider the vector space S. Let $k_{i j}$ be the number of elements in $B_{i j}$. Summing the blocks which contain x_{l} gives

$$
\sum_{\mathbf{B}, x_{l} \in \mathbf{B}} \mathbf{B}=n x_{l}+\lambda \sum_{i=1}^{v} x_{i}+\sum_{i=1}^{r} y_{i} .
$$

Now, summing over all varieties yields

$$
\begin{equation*}
\sum_{i=1}^{r} \sum_{j=1}^{u_{i}} k_{i j} \mathbf{B}_{i j}=(n+\lambda v) \sum_{i=1}^{v} x_{i}+v \mathbf{B}^{*} \tag{5}
\end{equation*}
$$

From the proof of Theorem 2.1,

$$
\sum_{i=1}^{v} x_{i}=\frac{1}{L}\left[\sum_{i=1}^{r} \frac{1}{t_{i}}\left(\sum_{j=1}^{t_{i}} B_{i j}\right)-\mathrm{B}^{*}\right]
$$

where $L=\sum_{i=1}^{r}\left(1 / t_{i}\right)$. Substituting this into (5) and rearranging,

$$
\sum_{i=1}^{r} \sum_{j=1}^{\ell_{i}}\left[k_{i j}-\frac{1}{L t_{i}}(n+\lambda v)\right] \mathbf{B}_{i j}+\left[\frac{(n+\lambda v)}{L}-v\right] \mathbf{B}^{*}=0
$$

Since $b=v+r-1,\left\{\mathbf{B}^{*}\right\} \cup\left\{\mathbf{B}_{i j}: 1 \leqslant j \leqslant t_{i}, 1 \leqslant i \leqslant r\right\}$ is a basis for S and, hence,

$$
\begin{equation*}
k_{i j}-\frac{(n+\lambda v)}{L t_{i}}=0, \quad 1 \leqslant j \leqslant t_{i}, \quad 1 \leqslant i \leqslant r . \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{n+\lambda v}{L}-v=0 \tag{7}
\end{equation*}
$$

For fixed $i, k_{i j}$ is independent of j for all $j, 1 \leqslant j \leqslant t_{i}$. Therefore, the blocks of R_{i}
are equicardinal and we can let

$$
k_{i}=k_{i j}=\frac{n+\lambda v}{L t_{i}}, \quad 1 \leqslant i \leqslant r
$$

This proves (i) of the theorem.
Let $M=\sum_{i=1}^{r} t_{i}$. Clearly, $M=v+r-1$.
From (7),

$$
L=\frac{n+\lambda v}{v}
$$

Since $t_{i} \geqslant 1,1 \leqslant i \leqslant r$, the arithmetic-geometric mean inequality can be applied to the series $L=\sum_{i=1}^{r}\left(1 / t_{i}\right)$ and $M=\sum_{i=1}^{r} t_{i}$ to produce

$$
\begin{equation*}
L M \geqslant r^{2} \tag{8}
\end{equation*}
$$

with equality if and only if all of the t_{i} are equal. Hence,

$$
\frac{(n+\lambda v)}{v}(v+r-1) \geqslant r^{2}
$$

or

$$
\begin{equation*}
\lambda(v-1) \geqslant r(n-1) . \tag{9}
\end{equation*}
$$

If equality holds in (9) then we have equality in (8) and, hence, D is a resolvable BIBD with $b=v+r-1$. By the result of Bose (1942), D is an affine resolvable BIBD and the proof is complete.

If D is a resolvable (r, λ)-design which is a BIBD with block size k, then $b k=r v$, $\lambda(v-1) \doteq r(k-1)$ and from the Bose inequality it follows that $k \leqslant n$. Using this $f a c t$, it is readily deduced that for any resolvable BIBD with parameters (v, b, r, k, λ),

$$
\lambda(v-1) \leqslant r(n-1)
$$

which reverses the inequality given in (ii) of Theorem 2.2.
As an example of a resolvable (r, λ)-design having

$$
b=v+r-1 \quad \text { and } \quad \lambda(v-1)>r(n-1)
$$

we give the following: $B_{1}=\{1,2,3,4\}, B_{2}=\{1,2\}, B_{3}=\{3,4\}, B_{4}=\{1,3\}, B_{5}=\{2,4\}$, $B_{6}=\{1,4\}, B_{7}=\{2,3\}$, which is a resolvable (4,2)-design having 4 varieties and 7 blocks.

3. Mutually disjoint blocks

Let D be an (r, λ)-design having v varieties, and b blocks, t of which are mutually disjoint and of size k. Let A be the $v \times b$ incidence matrix of D where the first t columns correspond to the t mutually disjoint blocks and the first column has
ones in the first k rows, the second column has ones in the next k rows and so on for the first t columns. This is, of course, always possible. Now define a new matrix N as follows.

Let $E_{l \times b}$ be a $t \times b$ matrix having a one in position $(i, i), 1 \leqslant i \leqslant t$, and zeros elsewhere. Let $I_{1 \times b}$ be the all ones vector. Then,

$$
N=\left[\begin{array}{c}
A_{v \times b} \\
E_{t \times b} \\
I_{1 \times b}
\end{array}\right]_{(v+t+1) \times b}
$$

where J is a $v \times v$ matrix of all ones and I is the $v \times v$ identity matrix. Using Lemma 3.1 of Connor (1952),

$$
\operatorname{det} N N^{\mathrm{T}}=a^{-1} n^{v-i-2}\left|\begin{array}{ccccc}
F & H & \ldots & H & A \tag{10}\\
H & F & \ldots & \ldots & \ldots \\
\vdots & & \ddots & \vdots & \vdots \\
\ldots & \ldots & \ldots & H & \ldots \\
H & \ldots & H & F & A \\
A & \ldots & \ldots & A & G
\end{array}\right|_{(1+1) \times(l+1)}
$$

where

$$
\begin{gathered}
a=n+\lambda v, \quad F=a n-a k+\lambda k^{2}, \quad H=\lambda k^{2} \\
A=a n-a k r+\lambda v r k, \quad G=a n b-a v r^{2}+\lambda v^{2} r^{2}
\end{gathered}
$$

Now, if $t+1<b-v$, then $\operatorname{det} N N^{T} \geqslant 0$. Since $a>0$ and $n>0$, the $(t+1) \times(t+1)$ determinant in (10) must also be non-negative. Hence,

$$
\left|\begin{array}{ccccc}
F & H & \ldots & H & A \tag{11}\\
H & F & \ldots & \ldots & \ldots \\
\vdots & & \ddots & & \vdots \\
\ldots & \ldots & \ldots & H & \ldots \\
H & \ldots & H & F & A \\
A & \ldots & \ldots & A & G
\end{array}\right|=a^{t}(n-k)^{l-1} n\{s(n-k)+t X\} \geqslant 0
$$

where $s=a b-v r^{2}$ and $X=\left(b \lambda-r^{2}\right) k^{2}+2 n r k-a n$. If we have t mutually disjoint blocks of size k, then there must be t^{\prime} mutually disjoint blocks of size k for all t^{\prime}, $1 \leqslant t^{\prime} \leqslant t$. Therefore, the inequality in (11) must hold if we replace t by t^{\prime} for all t^{\prime}, $1 \leqslant t^{\prime} \leqslant t$. If we set $t=1$ in (11), we obtain an inequality on the block sizes in any (r, λ)-design. This inequality is

$$
\left(b \lambda-r^{2}\right) k^{2}+\left(v r^{2}-a b+2 n r\right) k+n\left(a b-v r^{2}-a\right) \geqslant 0
$$

and it was first proven in McCarthy and Vanstone (1979). We now state and prove a few consequences of (11) which will be useful in the characterization of resolvable (r, λ)-designs having $b=v+r-1$. Let s and X be as defined above.

Theorem 3.1. Let D be any (r, λ)-design having v varieties and blocks and such that $s \neq 0$ and $X \neq 0$. If D contains t mutually disjoint blocks of size $k>n$, then $t \leqslant 2$.

Proof. From (10), we have that

$$
\begin{equation*}
(n-k)^{l-1}\{s(n-k)+l X\} \geqslant 0 \tag{12}
\end{equation*}
$$

for all $l, 1 \leqslant l \leqslant t$. Assume $t \geqslant 3$, in which case there exists an integer $i, 1<i<t$. Since k is a fixed integer, $s(n-k)+i X$ is either positive or negative. If it is positive and X is negative and $(n-k)^{i-1}$ is positive, then replacing i by $i-1$ in (11) makes $(n-k)^{i-2}$ negative, and $s(n-k)+i X$ remains positive which contradicts (11). Suppose $s(n-k)+i X$ is negative, X is negative and $(n-k)^{i-1}$ is negative. If we replace i by $i+1$ in (12), $(n-k)^{i}$ is positive and $s(n-k)+(i+1) X$ is negative which contradicts (12). There are several other cases to consider but they all produce contradictions in a similar manner and so are omitted. Therefore, $t \leqslant 2$ and the proof is complete.

Theorem 3.3. Let D be any (r, λ)-design having v varieties, b blocks and such that $s>0$. Then, for $k>n$, any two blocks of size k intersect.

Proof. If $t=2$ in (12), $(n-k)^{t-1}$ is negative for $k>n$. Hence, if $T=s(n-k)+t X$ is positive, we get a contradiction. Suppose T is negative. Since $s(n-k)<0$, then

$$
s(n-k)+i X<0, \text { for } i=1 \text { or } 2
$$

since it is negative for $i=2$. Hence, if T is negative, replace t by $t-1$; then, $(n-k)^{t-2}$ is positive, T is negative and we have a contradiction. Therefore, D cannot contain a pair of disjoint blocks of size $k>n$. This completes the proof.

4. Characterization of resolvable (r, λ)-designs having $b=v+r-1$

We now apply the results of Sections 2 and 3 to characterize all resolvable (r, λ)-designs having v varieties and $b=v+r-1$ blocks. First, we require the following lemma.

Lemma 4.1. Let D be a resolvable (r, λ)-design having v varieties and $b=v+r-1$ blocks. Then

$$
s=a b-v r^{2} \geqslant 0, \quad a=n+\lambda \nu,
$$

with equality if and only if D is affine resolvable.

Proof.

$$
\begin{aligned}
s & =a b-v r^{2} \\
& =(n+\lambda v)(v+r-1)-v r^{2} \\
& =(n+\lambda v)(v-1)+n r+r^{2} v-r n v-v r^{2} \\
& =(v-1)(n+\lambda v-r n) .
\end{aligned}
$$

But Theorem 2.1 gives $\lambda(v-1) \geqslant r(n-1)$ with equality if and only if D is affine resolvable which implies that $n+\lambda v-r n \geqslant 0$ and the proof is complete.

Theorem 4.2. Let D be a resolvable (r, λ)-design having v varieties and $b=v+r-1$ blocks. Then D is either (i) an affie resolvable BIBD or (ii) an affine resolvable BIBD with complete blocks adjoined.

Proof. By Theorem 2.1, the blocks in a given resolution class of D are equicardinal. Suppose some resolution class of D contains t blocks of size $k>n$. Then Lemma 4.1 and Theorems 3.1 and 3.3 imply that $t=1$, and hence the resolution class consists of a single complete block. Therefore, the blocks of D either are
complete or have cardinality less than or equal to n. Form a new resolvable ($r^{\prime}, \lambda^{\prime}$)-design D^{\prime} by deleting all complete blocks of D. In $D^{\prime}, b^{\prime}=v+r^{\prime}-1$ and all blocks have size less than or equal to n. By counting the number of pairs which contain a particular variety, we get $\lambda^{\prime}(v-1) \leqslant r^{\prime}(n-1)$. But Theorem 2.2, gives $\lambda^{\prime}(v-1) \geqslant r^{\prime}(n-1)$ for D^{\prime}. Hence,

$$
\lambda^{\prime}(v-1)=r^{\prime}(n-1)
$$

and by Theorem 2.2, D^{\prime} is an affine resolvable BIBD. This completes the proof.
The research for this paper was supported under N.S.E.R.C. Grant No. A9258.

References

R. C. Bose (1942). 'A note on the resolvability of balanced incomplete block designs', Sankhyä 6, 105-110.
W. S. Connor (1952), 'On the structure of balanced incomplete block designs', Ann. Math. Stat. 23, 57-71.
R. A. Fisher (1940), 'An examination of the different possible solutions of a problem in incomplete blocks', Ann. Eugenics 10, 52-75.
D. McCarthy and S. A. Vanstone (1979), 'On the structure of regular pairwise balanced designs', Discrete Math. 25, 237-244.
D. K. Ray-Chaudhuri and R. M. Wilson (1979), 'On t-designs', Osaka Journal of Math. (to appear).

St. Jerome's College
University of Waterloo
Waterloo, Ontario
Canada

