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Abstract

It is well known that in any (v, b, r, k, A) resolvable balanced incomplete block design that
b^v+r—l with equality if and only if the design is affine resolvable. In this paper, we show
that a similar inequality holds for resolvable regular pairwise balanced designs ((r, A)-designs)
and we characterize those designs for which equality holds. From this characterization, we
deduce certain results about block intersections in (r, A)-designS.
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1. Introduction

An (r, A)-design D is a collection B of nonempty subsets (called blocks) of a finite
set V (called varieties) such that (i) every variety is contained in precisely r blocks
and (ii) every pair of distinct varieties is contained in exactly A blocks.

If every block of B has cardinality k then D is called a balanced incomplete
block design (BIBD). Any block of D, which contains all of the varieties, is called
a complete block.

If the blocks of D can be partitioned into classes such that every variety is
contained in precisely one block of each class, then D is called a resolvable (r, A)-
design. The classes are called resolution classes. A resolvable (r, A)-design which is
a BIBD is denoted RBIBD. An RBIBD having the property that any two blocks
from distinct resolution classes intersect in a constant m number of varieties is
termed affine.

In 1940, Fisher showed that in any BIBD having v varieties and b blocks, b^v.
This inequality was later shown to hold for (r, A)-designs and, in fact, for a more
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Solving (4) for £y=i*,- a nd substituting into (3), we see that yi is a linear combina-
tion of the vectors, B*u{Bi}-: 1 ^j^tit 1 < /</•}. Also, if we substitute 2i=i*i m t 0

(2) and S5_i }>i = B*, then A^ is a linear combination of B* u {Bi;-: 1 ^j < tit 1 s$ i < r}.
Clearly, the same can be done for any jq, K i ^ t , Since it is possible to write the
basis xvx2,...,xv,y1,...,yras linear combinations of B* u{B^}, this set must be a
spanning set of S. Hence, the number of vectors in this set must be greater than or
equal to v+r. That is,

b+l^v+r or b>v + r-1.

This completes the proof.

THEOREM 2.2. Let D be a resolvable (r, \)-design having v varieties and b blocks.
If b = v + r— 1 then (i) the blocks of any given resolution class are equicardinal,
(ii) X(v— l)3sr(/i— 1) with equality if and only if D is an affine resolvable BIBD.

PROOF. AS in the proof of Theorem 2.1, consider the vector space S. Let ktj be
the number of elements in Bi}. Summing the blocks which contain x, gives

Now, summing over all varieties yields

(5) £ £ kq Bi3- = (n + A») £ *, + vB*.

From the proof of Theorem 2.1,

v i r r i / ' < \ I

i=i Lii=lti\i=i 7 J

where L = Si=1(l/O- Substituting this into (5) and rearranging,

Since b = v + r-1, {B*}u{Bi}-: 1 ^j^tiy 1 ^ /<r} is a basis for S and, hence,

(6) kij

and

(7)

For fixed i, ki} is independent of j for ally, 1 ̂ j^t^ Therefore, the blocks of R
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are equicardinal and we can let

n + Xv
*< = *« = - 7 7 - .

This proves (i) of the theorem.
Let M = SJ=1 ti. Clearly, M = v+r - 1 .
From (7),

« + Xv

Since ff> 1, 1 </^r , the arithmetic-geometric mean inequality can be applied to
the series L — Ei_iO/*<) and M = Yn=\h to produce

(8) LM>r2

with equality if and only if all of the tt are equal. Hence,

or

(9) \(v

If equality holds in (9) then we have equality in (8) and, hence, D is a resolvable
BIBD with b = v+r-l. By the result of Bose (1942), D is an affine resolvable
BIBD and the proof is complete.

If D is a resolvable (r, A)-design which is a BIBD with block size k, then bk = rv,
X(v — l) = r(k—l) and from the Bose inequality it follows that k^n. Using this
fact, it is readily deduced that for any resolvable BIBD with parameters (v, b, r, k, A),

which reverses the inequality given in (ii) of Theorem 2.2.
As an example of a resolvable (r, A)-design having

b = v+r-l and A(t;-l)>r(n-l),

we give the following: Bx = {1,2,3,4},^ = {1,2}, B3 = {3,4}, Bt = {1,3}, B5 = {2,4},
B6 = {1,4}, B7 = {2,3}, which is a resolvable (4,2)-design having 4 varieties and
7 blocks.

3. Mutually disjoint blocks

Let D be an (r, A)-design having v varieties, and b blocks, t of which are mutually
disjoint and of size k. Let A be the vxb incidence matrix of D where the first /
columns correspond to the t mutually disjoint blocks and the first column has
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ones in the first k rows, the second column has ones in the next k rows and so on for
the first t columns. This is, of course, always possible. Now define a new matrix N
as follows.

Let Elxb be a txb matrix having a one in position (i,i), K i ^ ( , and zeros
elsewhere. Let Ilxb be the all ones vector. Then,

•txb

AWT

1 1 ... 1

1 ... 1

r r

1 ... 10 ... 0 0

r r

1 ...

1 .

1 .

0 .

• r

0 r

1 1 ... 1 b

Xiv+t+1)

where / is a v x v matrix of all ones and / is the vxv identity matrix. Using Lemma
3.1 of Connor (1952),

F H ... H A

H F

(10) det JVWT =
H ...

H ... H F A

A A G
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where
a = n+Xv, F=an-ak+\k\ H = \k?,

A = an—akr+Xvrk, G = anb—avr^+AtPr*.

Now, if t+l<b-v, then detJViVT>0. Since a>0 and n>0, the
determinant in (10) must also be non-negative. Hence,

[6]

(11)

F
H

H

A

H
F

...

...

H

H
...

H

F

A

A
...

A

G

= aHn - kf-1 n{s(n - k)+tX) > 0

where s = ab-vr2 and X = (bX—r^k^+lnrk—an. If we have t mutually disjoint
blocks of size k, then there must be t' mutually disjoint blocks of size k for all t',
K ?' < ?. Therefore, the inequality in (11) must hold if we replace t by t' for all t',
K t' < t. If we set t = 1 in (11), we obtain an inequality on the block sizes in any
(r, A)-design. This inequality is

(bA - r2) k2+(vr2 - ab+2nr) k+n(ab - vr2 - a) > 0

and it was first proven in McCarthy and Vanstone (1979). We now state and prove
a few consequences of (11) which will be useful in the characterization of resolvable
(r, A)-designs having b = v+r— 1. Let s and X be as defined above.

THEOREM 3.1. Let D be any (r, X)-design having v varieties and b blocks and such
that s^O and X^O. If D contains t mutually disjoint blocks of size k>n, then r<2.

PROOF. From (10), we have that

(12) (ji-kf-i{a{n-k)+lX)>Q

for all /, l^Mt. Assume t>3, in which case there exists an integer i, 1 < I < / .

Since A: is a fixed integer, s(n—k)+iX is either positive or negative. If it is positive
and .Jf is negative and (n-fc)*"1 is positive, then replacing i by i—1 in (11) makes
(n—ky~2 negative, and s{n—k)+iX remains positive which contradicts (11).
Suppose s(n—k)+iX is negative, X is negative and (n—ky-1 is negative. If we
replace i by i+1 in (12), (n—ky is positive and s(n—k)+(i+1) A'is negative which
contradicts (12). There are several other cases to consider but they all produce
contradictions in a similar manner and so are omitted. Therefore, f<2 and the
proof is complete.
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THEOREM 3.3. Let D be any (r, X)-design having v varieties, b blocks and such that
s>0. Then, for k>n, any two blocks of size k intersect.

PROOF. If / = 2 in (12), (n-fc)'-1 is negative for k>n. Hence, if T= s(n-k)+tX
is positive, we get a contradiction. Suppose Tis negative. Since s(n—k)<0, then

s(n-k) + iX<0, for i = 1 or 2,

since it is negative for i = 2. Hence, if T is negative, replace thy t—l; then, (n—kj~2

is positive, Tis negative and we have a contradiction. Therefore, D cannot contain
a pair of disjoint blocks of size k > n. This completes the proof.

4. Characterization of resolvable (r, A)-designs having b = v+r — 1

We now apply the results of Sections 2 and 3 to characterize all resolvable
(r, A)-designs having v varieties and b = v+r— 1 blocks. First, we require the
following lemma.

LEMMA 4.1. Let D be a resolvable (r, X)-design having v varieties andb = v+r~l
blocks. Then

s = ab—w2^0, a = n+Xv,

with equality if and only if D is affine resolvable.

PROOF.

s = ab—vr2

= (n + Xv)(v+r-l)-vr*

= (n+Xv)(v— l)+nr+r2v—rnv—w2

= (v-l)(n+Xv-rn).
But Theorem 2.1 gives A(»— l )>r (n - l ) with equality if and only if D is affine
resolvable which implies that n+Xv—rn>0 and the proof is complete.

THEOREM 4.2. Let Dbea resolvable (r, Xydesign having v varieties andb = v+r— 1
blocks. Then D is either (i) an affie resolvable BIBD or (ii) an affine resolvable
BIBD with complete blocks adjoined.

PROOF. By Theorem 2.1, the blocks in a given resolution class of D are equi-
cardinal. Suppose some resolution class of D contains / blocks of size k>n. Then
Lemma 4.1 and Theorems 3.1 and 3.3 imply that f = 1, and hence the resolution
class consists of a single complete block. Therefore, the blocks of D either are
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complete or have cardinality less than or equal to n. Form a new resolvable
(/•', A')-design D' by deleting all complete blocks of D. In D', b' = v+r'-l and all
blocks have size less than or equal to n. By counting the number of pairs which
contain a particular variety, we get \'(v—l)^r'(n—l). But Theorem 2.2, gives
X\v-\)^r\n~\) for D'. Hence,

and by Theorem 2.2, D' is an affine resolvable BIBD. This completes the proof.
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